Web N-Grams as a Resource for Corpus Linguistics

Stefan Evert

English Computational Corpus Linguistics
Technische Universität Darmstadt, Germany
evert@linglit.tu-darmstadt.de

Heidelberg, 12.01.2012
Scaling up

because more data are better data for statistical NLP (Church and Mercer 1993)

- 1964: 1 million words (Brown Corpus)
Scaling up
because more data are better data for statistical NLP (Church and Mercer 1993)

- 1964: 1 million words (Brown Corpus)
- 1995: 100 million words (British National Corpus)
Scaling up
because more data are better data for statistical NLP (Church and Mercer 1993)

- 1964: 1 million words (Brown Corpus)
- 1995: 100 million words (British National Corpus)
- 2003: 1,000+ million words (English Gigaword, WaCky)
Scaling up
because more data are better data for statistical NLP (Church and Mercer 1993)

- 1964: 1 million words (Brown Corpus)
- 1995: 100 million words (British National Corpus)
- 2003: 1,000+ million words (English Gigaword, WaCky)
- 2006: 1,000,000 million words (Google Web 1T 5-Grams)
The Google Web 1T 5-Gram database
Brants and Franz (2006)

- Not the full 1 trillion words of English Web text, but . . .
- Frequency counts for bigrams, trigrams, 4-grams and 5-grams extracted from this corpus
 - thresholds: $f \geq 200$ for terms, $f \geq 40$ for n-grams
- Multiple compressed text files with total size of 24.4 GiB
- No linguistic pre-processing (case-folding, lemmatization, POS tagging, parsing, word sense disambiguation, . . .)
- Little boilerplate cleanup (“from collectibles to cars”)
The Google Web 1T 5-Gram database
Brants and Franz (2006)

<table>
<thead>
<tr>
<th>word 1</th>
<th>word 2</th>
<th>word 3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>supplement</td>
<td>depend</td>
<td>on</td>
<td>193</td>
</tr>
<tr>
<td>supplement</td>
<td>depending</td>
<td>on</td>
<td>174</td>
</tr>
<tr>
<td>supplement</td>
<td>depends</td>
<td>entirely</td>
<td>94</td>
</tr>
<tr>
<td>supplement</td>
<td>depends</td>
<td>on</td>
<td>338</td>
</tr>
<tr>
<td>supplement</td>
<td>derived</td>
<td>from</td>
<td>2668</td>
</tr>
<tr>
<td>supplement</td>
<td>des</td>
<td>coups</td>
<td>77</td>
</tr>
<tr>
<td>supplement</td>
<td>described</td>
<td>in</td>
<td>200</td>
</tr>
</tbody>
</table>

excerpt from file 3gm-0088.gz
Some applications of Google Web1T5

- broad-coverage word-level n-gram models (of course . . .)
 - machine translation
 - speech recognition
 - predictive typing
 - . . .

- replacement for Google API in knowledge mining tools

- spelling correction (Bergsma et al. 2009)

- linguistic steganography (Chang and Clark 2010)

- near-synonym choice (Islam and Inkpen 2010)

- prediction of fMRI neural activation (Mitchell et al. 2008)

- testbed for n-gram search engines and analysis software
 (Stein et al. 2010; Sekine and Dalwani 2010; Lin et al. 2010)
 - e.g. http://www.netspeak.org/ (University of Weimar)
Application example: Netspeak
http://www.netspeak.org/
Advantages of Google Web1T5

1 Size
 ▶ more data are better data (Church and Mercer 1993)
 ▶ three orders of magnitude larger than current Web corpora, four orders of magnitude larger than BNC
 ▶ much better coverage of words and esp. phrases
 ▶ data-driven NLP scales logarithmically (Banko and Brill 2001)

2 Pre-compiled n-gram frequency data
 ▶ frequency counts for a trillion words of text need massive computing power and clever algorithms
Limitations of Google Web1T5

1 Lack of linguistic annotation
 ▶ *part-time* is split into a trigram (*part*, –, *time*)
 ▶ cannot search for *can/N* or verb-object combinations
Limitations of Google Web1T5

1. Lack of linguistic annotation
 - *part-time* is split into a trigram (*part*, –, *time*)
 - cannot search for *can*/N or verb-object combinations

2. Frequency thresholds
 - precise co-occurrence frequencies only for bigrams
Limitations of Google Web1T5

1. **Lack of linguistic annotation**
 - *part-time* is split into a trigram (*part*, –, *time*)
 - cannot search for *can/N* or verb-object combinations

2. **Frequency thresholds**
 - precise co-occurrence frequencies only for bigrams

3. **Lack of normalisation**
 - case-folding, deletion of non-words, numbers, URLs,

 ...
Limitations of Google Web1T5

1. Lack of linguistic annotation
 - *part-time* is split into a trigram (*part, –, time*)
 - cannot search for *can*/*N* or verb-object combinations

2. Frequency thresholds
 - precise co-occurrence frequencies only for bigrams

3. Lack of normalisation
 - case-folding, deletion of non-words, numbers, URLs, …

4. No indexing for interactive search
 - queries require linear scan of many GiB of compressed text
 - no suitable open-source indexing software available
Limitations of Google Web1T5

1. Lack of linguistic annotation
 - *part-time* is split into a trigram (*part*, –, *time*)
 - cannot search for *can/N* or verb-object combinations

2. Frequency thresholds
 - precise co-occurrence frequencies only for bigrams

3. Lack of normalisation
 - case-folding, deletion of non-words, numbers, URLs, ...

4. No indexing for interactive search
 - queries require linear scan of many GiB of compressed text
 - no suitable open-source indexing software available

5. Pre-compiled n-gram frequency data
 - corpus linguists more interested in frequencies of patterns, association strength, collocations, distributional similarity
 - cannot use tagger, parser, ... without original corpus data
Limitations of Google Web1T5

1. **Lack of linguistic annotation**
 - *part-time* is split into a trigram (*part, –, time*)
 - cannot search for *can/N* or verb-object combinations

2. **Frequency thresholds**
 - precise co-occurrence frequencies only for bigrams

3. **Lack of normalisation**
 - case-folding, deletion of non-words, numbers, URLs, ...

4. **No indexing for interactive search**
 - queries require linear scan of many GiB of compressed text
 - no suitable open-source indexing software available

5. **Pre-compiled n-gram frequency data**
 - corpus linguists more interested in frequencies of patterns, association strength, collocations, distributional similarity
 - cannot use tagger, parser, ... without original corpus data

6. **Web language** (sex, lolcats and advertising)
Web1T5 as a resource for corpus linguistics

1. What can Web1T5 do for corpus linguists?
 - frequencies of words and phrases
 - collocation analysis
 - distributional semantics

2. Software implementation
 - how to compute lemmatised frequencies, association scores and distributional similarity
 - challenges: efficiency, limitations of Web1T5

3. Evaluating the quality of Web1T5
 - anecdotal evidence and pet peeves
 - direct comparison of frequencies and association scores
 - task-based evaluation: multiword extraction and distributional semantics
Web1T5 as a resource for corpus linguistics

1 What can Web1T5 do for corpus linguists?
 ▶ frequencies of words and phrases
 ▶ collocation analysis
 ▶ distributional semantics
Web1T5 as a resource for corpus linguistics

1. What can Web1T5 do for corpus linguists?
 - frequencies of words and phrases
 - collocation analysis
 - distributional semantics

2. Software implementation
 - how to compute lemmatised frequencies, association scores and distributional similarity
 - challenges: efficiency, limitations of Web1T5
Web1T5 as a resource for corpus linguistics

1 What can Web1T5 do for corpus linguists?
 ▶ frequencies of words and phrases
 ▶ collocation analysis
 ▶ distributional semantics

2 Software implementation
 ▶ how to compute lemmatised frequencies, association scores
 and distributional similarity
 ▶ challenges: efficiency, limitations of Web1T5

3 Evaluating the quality of Web1T5
 ▶ anecdotal evidence and pet peeves
 ▶ direct comparison of frequencies and association scores
 ▶ task-based evaluation: multiword extraction and
 distributional semantics
But first . . .
But first . . .

Introducing **Web1T5-Easy**

My solution to problems 3, 4 and 5
Requirements

A Web1T5 indexing software for corpus linguists should

- be flexible and powerful enough to support queries on multi-word patterns, collocation analysis, distributional semantics, word frequency distributions, ...
- be open-source (or at least available free of charge)
- be easy to install and run (no GPU computing . . .)
- run on commodity hardware (e.g. a €5000 server)
- be fast enough for occasional interactive exploration
- connect to other analysis tools (Excel, R, . . .)
Web1T5-Easy architecture

<table>
<thead>
<tr>
<th>word 1</th>
<th>word 2</th>
<th>word 3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>supplement</td>
<td>depend</td>
<td>on</td>
<td>193</td>
</tr>
<tr>
<td>supplement</td>
<td>depending</td>
<td>on</td>
<td>174</td>
</tr>
<tr>
<td>supplement</td>
<td>depends</td>
<td>entirely</td>
<td>94</td>
</tr>
<tr>
<td>supplement</td>
<td>depends</td>
<td>on</td>
<td>338</td>
</tr>
<tr>
<td>supplement</td>
<td>derived</td>
<td>from</td>
<td>2668</td>
</tr>
<tr>
<td>supplement</td>
<td>des</td>
<td>coups</td>
<td>77</td>
</tr>
<tr>
<td>supplement</td>
<td>described</td>
<td>in</td>
<td>200</td>
</tr>
</tbody>
</table>

- This looks very much like a relational database table
- So why not just put the data into an off-the-shelf RDBMS?
 - built-in indexing for quick access
 - powerful query language SQL
- I’m not the only one to come up with this idea . . .
 (Evert 2010; Lam 2010)
Web1T5-Easy architecture

<table>
<thead>
<tr>
<th>word</th>
<th>id</th>
</tr>
</thead>
<tbody>
<tr>
<td>depend</td>
<td>6094</td>
</tr>
<tr>
<td>depending</td>
<td>3571</td>
</tr>
<tr>
<td>depends</td>
<td>3846</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>on</td>
<td>14</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>supplement</td>
<td>5095</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>id 1</th>
<th>id 2</th>
<th>id 3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>5095</td>
<td>6094</td>
<td>14</td>
<td>193</td>
</tr>
<tr>
<td>5095</td>
<td>3571</td>
<td>14</td>
<td>174</td>
</tr>
<tr>
<td>5095</td>
<td>3846</td>
<td>4585</td>
<td>94</td>
</tr>
<tr>
<td>5095</td>
<td>3846</td>
<td>14</td>
<td>338</td>
</tr>
<tr>
<td>5095</td>
<td>4207</td>
<td>27</td>
<td>2668</td>
</tr>
<tr>
<td>5095</td>
<td>2298</td>
<td>62481</td>
<td>77</td>
</tr>
<tr>
<td>5095</td>
<td>1840</td>
<td>11</td>
<td>200</td>
</tr>
</tbody>
</table>

- Use numeric ID coding as in IR / large-corpus query engines
- More efficient to store, index and sort in RDBMS
- Frequency-sorted lexicon is beneficial for variable-length coding of integer IDs
Which RDBMS?

Requirements

- Web1T5-Easy is more than an interactive end-user GUI
- Preferably on dedicated RDBMS not shared with other users
- Indexing expensive → want to share pre-compiled database

My choice: **SQLite** [www.sqlite.org]

- Lightweight embedded SQL engine & RDBMS
- Database stored in single, platform-independent file
- Available for C, C++, Java, C#, Perl, Python, PHP, R, ...

But it’s all SQL & Perl, so you can substitute any other RDBMS!

(for all other technical details see Evert 2010)
Database encoding procedure

Pre-processing (normalisation, filtering, …)
Database encoding procedure

Pre-processing (normalisation, filtering, . . .)

⇒

Numeric ID coding & database insertion [1d 23h]

211 GiB
Carried out in spring 2009 on quad-core Opteron 2.6 GHz with 16 GiB RAM
— should be faster on state-of-the-art server with latest version of SQLite.
Database encoding procedure

Pre-processing (normalisation, filtering, ...)
⇓
Numeric ID coding & database insertion [1d 23h]
⇓
Collapse duplicate rows (from normalisation) [6d 7h]
Database encoding procedure

Pre-processing (normalisation, filtering, . . .)

⇓

Numeric ID coding & database insertion [1d 23h]

⇓

Collapse duplicate rows (from normalisation) [6d 7h]

⇓

Indexing of each n-gram position [3d 2h]
Database encoding procedure

Pre-processing (normalisation, filtering, . . .)

\[\downarrow\]

Numeric ID coding & database insertion [1d 23h]

\[\downarrow\]

Collapse duplicate rows (from normalisation) [6d 7h]

\[\downarrow\]

Indexing of each n-gram position [3d 2h]

\[\downarrow\]

Statistical analysis for query optimisation [not useful]
Database encoding procedure

Pre-processing (normalisation, filtering, ...)
⇒
Numeric ID coding & database insertion [1d 23h]
⇒
Collapse duplicate rows (from normalisation) [6d 7h]
⇒
Indexing of each n-gram position [3d 2h]
⇒
Statistical analysis for query optimisation [not useful]
⇒
Build database of co-occurrence frequencies [ca. 3d]
Database encoding procedure

Pre-processing (normalisation, filtering, . . .)
\[\downarrow\]
Numeric ID coding & database insertion [1d 23h]
\[\downarrow\]
Collapse duplicate rows (from normalisation) [6d 7h]
\[\downarrow\]
Indexing of each n-gram position [3d 2h]
\[\downarrow\]
Statistical analysis for query optimisation [not useful]
\[\downarrow\]
Build database of co-occurrence frequencies [ca. 3d]
\[\downarrow\]

211 GiB

Carried out in spring 2009 on quad-core Opteron 2.6 GHz with 16 GiB RAM — should be faster on state-of-the-art server with latest version of SQLite.
Querying the database

It’s easy to search the database for patterns like

`association ... Xal Y`
Querying the database

It’s easy to search the database for patterns like

\textit{association} \ldots \textit{Xal} Y

with a “simple” SQL query:

\begin{verbatim}
SELECT w3, w4, SUM(f) AS freq FROM ngrams
WHERE w1 IN (SELECT id FROM vocab WHERE w='association')
AND w3 IN (SELECT id FROM vocab WHERE w LIKE '%al')
GROUP BY w3, w4 ORDER BY freq DESC;
\end{verbatim}
Querying the database

It’s easy to search the database for patterns like

\[
\text{association} \ldots \text{Xal Y}
\]

with a “simple” SQL query:

```
SELECT w3, w4, SUM(f) AS freq FROM ngrams
WHERE w1 IN (SELECT id FROM vocab WHERE w='association')
AND w3 IN (SELECT id FROM vocab WHERE w LIKE 'X%al')
GROUP BY w3, w4 ORDER BY freq DESC;
```

Web1T5-Easy implements a more user-friendly query language:

\[
\text{association} \ ? \ %\text{al} \ *
\]
Web1T5-Easy demo

https://cogsci.uni-osnabrueck.de/~korpora/Web1T5/ (but currently broken)

This is the Web interface of the Web1T5-Easy package, using a GOPHER page design.

Query Form

Search pattern: association ? %al*

- display first 50 N-grams with frequency ≥ 100
- variable elements are listed normally, constant elements are shown

Results

87979 association .. social workers
54756 association .. computational linguistics
54119 association .. trial lawyers
49715 association .. annual meeting
45917 association .. real estate
45703 association .. criminal defense
37246 association .. mental health
26721 association .. pharmaceutical scientists
26644 association .. professional engineers
26132 association .. artificial intelligence
24770 association .. annual conference
21821 association .. neurological surgeons

50 matches in 11.09 seconds
Web1T5-Easy query performance

<table>
<thead>
<tr>
<th>Web1T5-Easy query</th>
<th>cold cache</th>
<th>warm cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>corpus linguistics</td>
<td>0.11s</td>
<td>0.01s</td>
</tr>
<tr>
<td>web as corpus</td>
<td>1.29s</td>
<td>0.44s</td>
</tr>
<tr>
<td>time of *</td>
<td>2.71s</td>
<td>1.09s</td>
</tr>
<tr>
<td>%ly good fun</td>
<td>181.03s</td>
<td>24.37s</td>
</tr>
<tr>
<td>[sit,sits,sat,sitting] * ? chair</td>
<td>1.16s</td>
<td>0.31s</td>
</tr>
<tr>
<td>* linguistics (association ranking)</td>
<td>11.42s</td>
<td>0.05s</td>
</tr>
<tr>
<td>university of * (association ranking)</td>
<td>1.48s</td>
<td>0.48s</td>
</tr>
</tbody>
</table>

(64-bit Linux server with 2.6 GHz AMD Opteron CPUs, 16 GiB RAM and fast local hard disk; based on timing information from the public Web interface.)
Approximating lemmatized frequency counts

- Web1T5 frequencies based on unnormalized word forms
- Web1T5-Easy can perform case-folding normalization during indexing (default)
Approximating lemmatized frequency counts

- Web1T5 frequencies based on unnormalized word forms
- Web1T5-Easy can perform case-folding normalization during indexing (default)
- Approximate lemmatized frequency counts by morphological query expansion

```
query  f
hear  sound  36,304
```
Approximating lemmatized frequency counts

- Web1T5 frequencies based on unnormalized word forms
- Web1T5-Easy can perform case-folding normalization during indexing (default)
- Approximate lemmatized frequency counts by morphological query expansion

<table>
<thead>
<tr>
<th>query</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hear sound</td>
<td>36,304</td>
</tr>
<tr>
<td>[hear, hears, heard, hearing]</td>
<td></td>
</tr>
<tr>
<td>[sound, sounds]</td>
<td>95,453</td>
</tr>
</tbody>
</table>

- lazy approach: use TreeTagger lexicon, or extract from BNC
- pooled frequency counts with SQL aggregates (GROUP BY)
Collocations

- Collocation: frequent co-occurrence within short span of up to 5 words (Firth 1957; Sinclair 1966, 1991)
 - plays important role in lexicography, corpus linguistics, language description, word sense disambiguation, ...
 - collocation database is also a sparse representation of a distributional semantic model (term-term matrix)

- Web1T5 only provides co-occurrence frequencies for immediately adjacent bigrams (e.g. * day and day *)
Collocations

- Collocation: frequent co-occurrence within short span of up to 5 words (Firth 1957; Sinclair 1966, 1991)
 - plays important role in lexicography, corpus linguistics, language description, word sense disambiguation, …
 - collocation database is also a sparse representation of a distributional semantic model (term-term matrix)

- Web1T5 only provides co-occurrence frequencies for immediately adjacent bigrams (e.g. * day and day *)

- Approximate counts for distance n from $n+1$-gram table

 day ? ? * and * ? ? day

 quasi-collocations
Quasi-collocations database

- **Web1T5-Easy**: pre-compiled database of quasi-collocations
 - brute-force, multi-pass algorithm
 - runtime approx. 3 days on server with 16 GiB RAM

- **Flexible collocational span** L4, ..., L1 / R1, ..., R4
 - separate count for each collocate and position
 - co-occurrence frequency in user-defined span and association scores are calculated on the fly
 - benefits from tight integration of Perl & SQLite

- **Standard association measures**: X^2, G^2, t, MI, Dice
Quasi-collocations demo

Collocates of “corpus” (f=5137372)

<table>
<thead>
<tr>
<th>collocate</th>
<th>t-score</th>
<th>frequency</th>
<th>expected</th>
<th>span distribution (left, right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>christi</td>
<td>1582.37</td>
<td>2504283</td>
<td>198.3</td>
<td></td>
</tr>
<tr>
<td>tx</td>
<td>794.93</td>
<td>639346</td>
<td>3725.8</td>
<td></td>
</tr>
<tr>
<td>habeas</td>
<td>720.32</td>
<td>518962</td>
<td>52.8</td>
<td></td>
</tr>
<tr>
<td>texas</td>
<td>629.04</td>
<td>411495</td>
<td>7978.1</td>
<td></td>
</tr>
<tr>
<td>columbus</td>
<td>429.55</td>
<td>186575</td>
<td>1034.0</td>
<td></td>
</tr>
<tr>
<td>dallas</td>
<td>390.37</td>
<td>156254</td>
<td>1943.7</td>
<td></td>
</tr>
<tr>
<td>writ</td>
<td>372.46</td>
<td>138960</td>
<td>116.1</td>
<td></td>
</tr>
<tr>
<td>callosum</td>
<td>368.99</td>
<td>136174</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>327.51</td>
<td>146346</td>
<td>21058.1</td>
<td></td>
</tr>
<tr>
<td>hotels</td>
<td>287.67</td>
<td>114198</td>
<td>16985.0</td>
<td></td>
</tr>
<tr>
<td>luteum</td>
<td>275.98</td>
<td>76176</td>
<td>5.7</td>
<td></td>
</tr>
<tr>
<td>oh</td>
<td>265.20</td>
<td>80036</td>
<td>5009.5</td>
<td></td>
</tr>
</tbody>
</table>
Distributional semantics

- Distributional hypothesis (Harris 1954): meaning of a word can be inferred from its distribution across contexts
 “You shall know a word by the company it keeps!”
 — (Firth 1957)
Distributional semantics

- Distributional hypothesis (Harris 1954): meaning of a word can be inferred from its distribution across contexts

 “You shall know a word by the company it keeps!”

 — (Firth 1957)

- Reality check: What is the mystery word?

 ▶ He handed her her glass of XXXXX.
 ▶ Nigel staggered to his feet, face flushed from too much XXXXX.
 ▶ Malbec, one of the lesser-known XXXXX grapes, responds well to Australia’s sunshine.
 ▶ I dined off bread and cheese and this excellent XXXXX.
 ▶ The drinks were delicious: blood-red XXXXX as well as light, sweet Rhenish.
Distributional semantics

- Distributional hypothesis (Harris 1954): meaning of a word can be inferred from its distribution across contexts
 “You shall know a word by the company it keeps!”
 — (Firth 1957)

- Reality check: What is the mystery word?
 - He handed her her glass of XXXXX.
 - Nigel staggered to his feet, face flushed from too much XXXXX.
 - Malbec, one of the lesser-known XXXXX grapes, responds well to Australia’s sunshine.
 - I dined off bread and cheese and this excellent XXXXX.
 - The drinks were delicious: blood-red XXXXX as well as light, sweet Rhenish.

- XXXXX = claret
 - all examples from BNC (carefully selected & slightly edited)
Distributional semantics

- A computer can (sometimes) do the same, with sufficient amounts of corpus data and full collocational profiles

<table>
<thead>
<tr>
<th></th>
<th>get w_1</th>
<th>see w_2</th>
<th>use w_3</th>
<th>hear w_4</th>
<th>eat w_5</th>
<th>kill w_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>knife</td>
<td>51</td>
<td>20</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>cat</td>
<td>52</td>
<td>58</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>???</td>
<td>115</td>
<td>83</td>
<td>10</td>
<td>42</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>boat</td>
<td>59</td>
<td>39</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cup</td>
<td>98</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pig</td>
<td>12</td>
<td>17</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>banana</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>
Distributional semantics

- A computer can (sometimes) do the same, with sufficient amounts of corpus data and full collocational profiles

<table>
<thead>
<tr>
<th></th>
<th>get (w_1)</th>
<th>see (w_2)</th>
<th>use (w_3)</th>
<th>hear (w_4)</th>
<th>eat (w_5)</th>
<th>kill (w_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>knife</td>
<td>51</td>
<td>20</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>cat</td>
<td>52</td>
<td>58</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>???</td>
<td>115</td>
<td>83</td>
<td>10</td>
<td>42</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>boat</td>
<td>59</td>
<td>39</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cup</td>
<td>98</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pig</td>
<td>12</td>
<td>17</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>banana</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
\text{sim}(???, \text{knife}) = 0.770
\]
Distributional semantics

- A computer can (sometimes) do the same, with sufficient amounts of corpus data and full collocational profiles

<table>
<thead>
<tr>
<th></th>
<th>get w_1</th>
<th>see w_2</th>
<th>use w_3</th>
<th>hear w_4</th>
<th>eat w_5</th>
<th>kill w_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>knife</td>
<td>51</td>
<td>20</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>cat</td>
<td>52</td>
<td>58</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>???</td>
<td>115</td>
<td>83</td>
<td>10</td>
<td>42</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>boat</td>
<td>59</td>
<td>39</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cup</td>
<td>98</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pig</td>
<td>12</td>
<td>17</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>banana</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

\[
sim(???, \text{pig}) = 0.939
\]
Distributional semantics

- A computer can (sometimes) do the same, with sufficient amounts of corpus data and full collocational profiles

<table>
<thead>
<tr>
<th></th>
<th>get w_1</th>
<th>see w_2</th>
<th>use w_3</th>
<th>hear w_4</th>
<th>eat w_5</th>
<th>kill w_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>knife</td>
<td>51</td>
<td>20</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>cat</td>
<td>52</td>
<td>58</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>???</td>
<td>115</td>
<td>83</td>
<td>10</td>
<td>42</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>boat</td>
<td>59</td>
<td>39</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cup</td>
<td>98</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pig</td>
<td>12</td>
<td>17</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>banana</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

$$\text{sim}(???, \text{cat}) = 0.961$$
Distributional semantics

- A computer can (sometimes) do the same, with sufficient amounts of corpus data and full collocational profiles

<table>
<thead>
<tr>
<th></th>
<th>get w_1</th>
<th>see w_2</th>
<th>use w_3</th>
<th>hear w_4</th>
<th>eat w_5</th>
<th>kill w_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>knife</td>
<td>51</td>
<td>20</td>
<td>84</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>cat</td>
<td>52</td>
<td>58</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>???</td>
<td>115</td>
<td>83</td>
<td>10</td>
<td>42</td>
<td>33</td>
<td>17</td>
</tr>
<tr>
<td>boat</td>
<td>59</td>
<td>39</td>
<td>23</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cup</td>
<td>98</td>
<td>14</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>pig</td>
<td>12</td>
<td>17</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>banana</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

??? = dog
Distributional semantics with Web1T5

- Basis of distributional semantic model (DSM):
 term-term **co-occurrence matrix** of collocational profiles
 - very sparse: e.g. $250k \times 100k$ matrix with 24.2 billion cells, but only 245.4 million cells ($\approx 1\%$) have nonzero values
Distributional semantics with Web1T5

- Basis of distributional semantic model (DSM): term-term **co-occurrence matrix** of collocational profiles
 - very sparse: e.g. $250k \times 100k$ matrix with 24.2 billion cells, but only 245.4 million cells ($\approx 1\%$) have nonzero values
- We’ve already computed collocational profiles
 - 32 GiB collocations database = sparse co-occurrence matrix
 - export for further processing with 250k most frequent word forms as target terms (rows) and 100k mid-frequency word forms as feature terms (columns)
Distributional semantics with Web1T5

- Basis of distributional semantic model (DSM): term-term **co-occurrence matrix** of collocational profiles
 - very sparse: e.g. $250k \times 100k$ matrix with 24.2 billion cells, but only 245.4 million cells ($\approx 1\%$) have nonzero values

- We’ve already computed collocational profiles
 - 32 GiB collocations database = sparse co-occurrence matrix
 - export for further processing with 250k most frequent word forms as target terms (rows) and 100k mid-frequency word forms as feature terms (columns)

- DSM implemented in **R** (experimental **wordspace** package)
 - column-compressed sparse matrix
 - t-score feature weights with sqrt transformation
 - cosine similarity measure (converted to angle = distance)
 - dim. reduction with randomized SVD (Halko *et al.* 2009)
 - needs 20 GiB RAM and half a day (or else a weekend)
DSM with Web1T5: nearest neighbours

Neighbours of **linguistics** (cosine angle):

- sociology (24.6), sociolinguistics (24.6), criminology (29.5),
 anthropology (30.8), mathematics (31.2), phonetics (33.1),
 phonology (33.2), philology (33.2), literatures (33.5),
 gerontology (35.3), prosemear (35.5), geography (35.8),
 humanities (35.9), archaeology (35.9), science (36.5), . . .
DSM with Web1T5: nearest neighbours

Neighbours of **linguistics** (cosine angle):

- sociology (24.6), sociolinguistics (24.6), criminology (29.5), anthropology (30.8), mathematics (31.2), phonetics (33.1), phonology (33.2), philology (33.2), literatures (33.5), gerontology (35.3), proseminar (35.5), geography (35.8), humanities (35.9), archaeology (35.9), science (36.5), ...

Neighbours of **spaniel** (cosine angle):

- terrier (23.0), schnauzer (26.5), pinscher (27.0), weimaraner (28.3), keeshond (29.1), pomeranian (29.4), pekingese (29.6), bichon (30.1), vizsla (30.5), labradoodle (30.6), apso (31.1), spaniels (32.0), frise (32.0), yorkie (32.1), sheepdog (32.3), dachshund (32.4), retriever (32.7), whippet (32.9), havanese (33.1), westie (34.5), mastiff (34.6), dandie (34.7), chihuahua (34.9), dinmont (35.0), elkhound (35.0), ...
DSM with Web1T5: semantic map
(data from ESSLLI 2008 shared task on concrete noun categorization)
Evaluating the quality of Web1T5
Anecdotal Evidence

Insufficient boilerplate removal & de-duplication:

from * to *

"Traditional" Web corpora are better:

Google ≈ 121,000,000 hits

Google.de ≈ 119,600,000 hits

Web1T5 5-Grams 18,288,410 hits

ukWaC 3 hits

BNC 0 hits
Anecdotal Evidence

Insufficient boilerplate removal & de-duplication:

\begin{itemize}
 \item \texttt{from __ to __}\texttt{ }\textbf{9,443,572}
 \item \texttt{from collectibles to cars}\textbf{ }\textbf{8,844,838}
 \item \texttt{from collectables to cars}\textbf{ }\textbf{5,678,941}
 \item \texttt{from time to time}\textbf{ }\textbf{793,957}
 \item \texttt{from left to right}\textbf{ }\textbf{749,705}
 \item \texttt{from start to finish}\textbf{ }\textbf{572,917}
 \item \texttt{from a to z}\textbf{ }\textbf{486,669}
 \item \texttt{from year to year}\textbf{ }\textbf{372,935}
\end{itemize}
Anecdotal Evidence

Insufficient boilerplate removal & de-duplication:

from * to *
from collectibles to cars 9,443,572
from collectables to cars 8,844,838
from time to time 5,678,941
from left to right 793,957
from start to finish 749,705
from a to z 572,917
from year to year 486,669
from top to bottom 372,935

“Traditional” Web corpora are better:

Google \(\approx 121,000,000 \) hits
Google.de \(\approx 119,600,000 \) hits
Web 1T 5-Grams 18,288,410 hits
ukWaC 3 hits
BNC 0 hits
Anecdotal Evidence

Which words are semantically similar to **hot** (in DSM)?

- I hope there are no minors in the room!
Anecdotal Evidence

Which words are semantically similar to **hot** (in DSM)?

- I hope there are no minors in the room!
Anecdotal Evidence

Which words are semantically similar to **hot** (in DSM)?

- I hope there are no minors in the room!

<table>
<thead>
<tr>
<th>Word</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>big</td>
<td>29.5</td>
</tr>
<tr>
<td>butt</td>
<td>31.1</td>
</tr>
<tr>
<td>ass</td>
<td>31.1</td>
</tr>
<tr>
<td>wet</td>
<td>31.2</td>
</tr>
<tr>
<td>naughty</td>
<td>31.6</td>
</tr>
<tr>
<td>pussy</td>
<td>31.6</td>
</tr>
<tr>
<td>sexy</td>
<td>31.6</td>
</tr>
<tr>
<td>chicks</td>
<td>32.0</td>
</tr>
<tr>
<td>cock</td>
<td>32.2</td>
</tr>
<tr>
<td>ebony</td>
<td>32.3</td>
</tr>
<tr>
<td>fat</td>
<td>32.4</td>
</tr>
<tr>
<td>girls</td>
<td>32.4</td>
</tr>
<tr>
<td>asian</td>
<td>32.7</td>
</tr>
<tr>
<td>cum</td>
<td>33.1</td>
</tr>
<tr>
<td>babes</td>
<td>33.2</td>
</tr>
<tr>
<td>dirty</td>
<td>33.2</td>
</tr>
<tr>
<td>bikini</td>
<td>33.3</td>
</tr>
<tr>
<td>granny</td>
<td>33.4</td>
</tr>
<tr>
<td>teen</td>
<td>33.8</td>
</tr>
<tr>
<td>pics</td>
<td>33.8</td>
</tr>
<tr>
<td>gras</td>
<td>34.1</td>
</tr>
<tr>
<td>fucking</td>
<td>34.1</td>
</tr>
<tr>
<td>galleries</td>
<td>34.2</td>
</tr>
<tr>
<td>fetish</td>
<td>34.3</td>
</tr>
<tr>
<td>babe</td>
<td>34.3</td>
</tr>
<tr>
<td>blonde</td>
<td>34.5</td>
</tr>
<tr>
<td>pussies</td>
<td>34.5</td>
</tr>
<tr>
<td>whores</td>
<td>34.6</td>
</tr>
<tr>
<td>fuck</td>
<td>34.6</td>
</tr>
<tr>
<td>horny</td>
<td>34.7</td>
</tr>
</tbody>
</table>

Please don’t ask about cats and dogs . . .
Linguistic Evaluation of Web 1T 5-Grams

- Compare Web1T5 with British National Corpus (Aston and Burnard 1998) and ukWaC Web corpus (Baroni et al. 2009)
Linguistic Evaluation of Web 1T 5-Grams

- Compare Web1T5 with British National Corpus (Aston and Burnard 1998) and ukWaC Web corpus (Baroni et al. 2009)

- Method 1: Direct comparison of frequency counts
 - expect good correlation, but better coverage from Web1T5
 - Baroni et al. (2009) use a similar approach to compare their ukWaC Web corpus against the BNC
 - same for association scores (bigrams, collocations)
Linguistic Evaluation of Web 1T 5-Grams

- Compare Web1T5 with British National Corpus (Aston and Burnard 1998) and ukWaC Web corpus (Baroni et al. 2009)

- Method 1: Direct comparison of frequency counts
 - expect good correlation, but better coverage from Web1T5
 - Baroni et al. (2009) use a similar approach to compare their ukWaC Web corpus against the BNC
 - same for association scores (bigrams, collocations)

- Method 2: Task-based evaluation
 - do applications benefit from the Web1T5 data?
 - multiword extraction: English particle verbs (VPC, Baldwin 2008) and light verb constructions (LVC, Tu and Roth 2011)
 - standard shared tasks for distributional models, such as TOEFL synonyms and WordSim-353 (Finkelstein et al. 2002)
Comparison of frequency counts

- Scatterplots of (log) frequencies in different corpora
 - BNC vs. ukWaC vs. Web 1T 5-Grams
 - only include items that occur in all three corpora
 (not interested in coverage / idiosyncrasies)
 - correlation r from regression model $f_{ukWaC} \sim \beta \cdot f_{BNC}$ etc.
Comparison of frequency counts

- Scatterplots of (log) frequencies in different corpora
 - BNC vs. ukWaC vs. Web 1T 5-Grams
 - only include items that occur in all three corpora
 (not interested in coverage / idiosyncrasies)
 - correlation r from regression model $f_{ukWaC} \sim \beta \cdot f_{BNC}$ etc.

- Test data sets
 - Basic English words (lemmatised vs. word form in Web1T5)
 - inflected forms of Basic English words
 - binary compound nouns extracted from WordNet 3.0
 - English particle verbs from VPC task (adjacent bigrams)
 - English particle verbs (co-occurrence in L0/R3 window)
Comparison of frequency counts

Basic English (lemmatised vs. word forms)
(dashed lines indicate acceptable frequency difference within one order of magnitude)
Comparison of frequency counts

Basic English (inflected forms)
(dashed lines indicate acceptable frequency difference within one order of magnitude)
Comparison of frequency counts

Binary compound nouns (WordNet)
(dashed lines indicate acceptable frequency difference within one order of magnitude)
Comparison of frequency counts

Particle verbs (adjacent bigrams)
(dashed lines indicate acceptable frequency difference within one order of magnitude)
Comparison of frequency counts

Particle verbs (L0/R3 quasi-collocations)
(dashed lines indicate acceptable frequency difference within one order of magnitude)
Evaluation on English VPC extraction task
(Baldwin 2008)

- English **verb-particle constructions** (VPC) consisting of head verb + one obligatory prepositional particle
 - *hand in, back off, wake up, set aside, carry on, ...*
Evaluation on English VPC extraction task
(Baldwin 2008)

- English **verb-particle constructions** (VPC) consisting of head verb + one obligatory prepositional particle
 - *hand in, back off, wake up, set aside, carry on, ...*
- Data set of 3,078 candidate VPC types
 - extracted from written part of BNC with combination of tagger-, chunker-, and parser-based methods
Evaluation on English VPC extraction task

(Baldwin 2008)

- English **verb-particle constructions** (VPC) consisting of head verb + one obligatory prepositional particle
 - *hand in, back off, wake up, set aside, carry on, ...*

- Data set of 3,078 candidate VPC types
 - extracted from written part of BNC with combination of tagger-, chunker-, and parser-based methods

- Manually annotated as compositional / non-compositional
 - baseline: **14.3%** non-compositional VPC (440 / 3,078)
 - compositional: *carry around, fly away, refer back, ...*
 - further distinction of transitive/intransitive VPC not used
Evaluation on English VPC extraction task

(Baldwin 2008)

- English **verb-particle constructions** (VPC) consisting of head verb + one obligatory prepositional particle
 - *hand in, back off, wake up, set aside, carry on*, …
- Data set of 3,078 candidate VPC types
 - extracted from written part of BNC with combination of tagger-, chunker-, and parser-based methods
- Manually annotated as compositional / non-compositional
 - baseline: **14.3%** non-compositional VPC (440 / 3078)
 - compositional: *carry around, fly away, refer back*, …
 - further distinction of transitive/intransitive VPC not used
- Evaluation: candidate ranking from BNC/ukWaC/Web1T5
 - surface co-occurrence (L0,R3) + POS filter (except Web1T5)
 - Web1T5 without/with morphological expansion
 - using best association measure for each corpus (*X^2*, *X^2*, *t*, *G^2*, Dice)
Evaluation on English VPC extraction task

(Baldwin 2008)
Evaluation on English VPC extraction task
(Baldwin 2008)
Evaluation on English VPC extraction task
(Baldwin 2008)
Evaluation on English VPC extraction task

(Baldwin 2008)
Evaluation on English VPC extraction task
(Baldwin 2008)
Do association measures scale badly?
fitted to BNC data
Do association measures scale badly?
fitted to BNC data
Do association measures scale badly?

fitted to BNC data
Do association measures scale badly?
fitted to BNC data
Do association measures scale badly?
fitted to Web1T5 data
What’s wrong with Web1T5 quasi-collocations?

![Graph showing the relationship between ukWaC and BNC with TP and FP markers.](image-url)
What’s wrong with Web1T5 quasi-collocations?
What’s wrong with Web1T5 quasi-collocations?
What’s wrong with Web1T5 quasi-collocations?
Evaluation on English LVC extraction task
(Tu and Roth 2011)

English **light verb constructions** (LVC) consisting of verb (semantically bleached) + object noun (often deverbal)

- *take a walk, give a speech, have a look, make a call, ...*
Evaluation on English LVC extraction task
(Tu and Roth 2011)

- English **light verb constructions** (LVC) consisting of verb (semantically bleached) + object noun (often deverbal)
 - *take a walk, give a speech, have a look, make a call, ...*

- Data set of 2,162 candidate LVC tokens
 - extracted from BNC with parser and various heuristics (e.g. object NP must have deverbal head noun)
 - only for verbs *do, get, give, have, make* and *take*
Evaluation on English LVC extraction task
(Tu and Roth 2011)

- English **light verb constructions** (LVC) consisting of verb (semantically bleached) + object noun (often deverbal)
 - *take a walk, give a speech, have a look, make a call, ...*

- Data set of 2,162 candidate LVC tokens
 - extracted from BNC with parser and various heuristics (e.g. object NP must have deverbal head noun)
 - only for verbs *do, get, give, have, make* and *take*

- Manually annotated as LVC / non-LVC in sentence context
 - reduced to 891 verb + head noun types for this experiment
 - type considered a LVC if at least 50% of its tokens are LVC
 - baseline: **39.2%** LVC (349 / 891 candidate types)
Evaluation on English LVC extraction task
(Tu and Roth 2011)

- **English light verb constructions** (LVC) consisting of verb (semantically bleached) + object noun (often deverbal)
 - *take a walk, give a speech, have a look, make a call, ...*

- Data set of 2,162 candidate LVC tokens
 - extracted from BNC with parser and various heuristics (e.g. object NP must have deverbal head noun)
 - only for verbs *do, get, give, have, make* and *take*

- Manually annotated as LVC / non-LVC in sentence context
 - reduced to 891 verb + head noun types for this experiment
 - type considered a LVC if at least 50% of its tokens are LVC
 - baseline: 39.2% LVC (349 / 891 candidate types)

- Evaluation: candidate ranking from BNC/ukWaC/Web1T5
 - surface co-occurrence (L3,R3) + POS filter (except Web1T5)
 - association measure: G^2 with POS filter, MI without
Evaluation on English LVC extraction task
(Tu and Roth 2011)
Evaluation on English LVC extraction task
(Tu and Roth 2011)
Evaluation on English LVC extraction task
(Tu and Roth 2011)
Evaluation on English LVC extraction task
(Tu and Roth 2011)
Evaluation on English LVC extraction task

(Tu and Roth 2011)
Evaluation on English LVC extraction task
(Tu and Roth 2011)
Comparison of association scores for English LVC

![Comparison of association scores for English LVC](chart.png)
Comparison of association scores for English LVC
Comparison of association scores for English LVC

![Scatter plot showing comparison of association scores for English LVC.](Image)
Evaluating distributional similarity in Web1T5

- Distributional semantic model built from Web1T5 can be evaluated in various shared tasks (e.g. ESSLLI 2008)

- Direct comparison with semantic similarity ratings (WordSim-353, Finkelstein et al. 2002)
 - 353 noun-noun pairs with "relatedness" ratings
 - Rated on scale 0–10 by 16 test subjects
 - Closely related: money/cash, soccer/football, type/kind, . . .
 - Unrelated: king/cabbage, noon/string, sugar/approach, . . .

- Correlation with DSM similarity in BNC/Wikipedia/Web1T5
 - DSM parameters: term-term matrix, \((L2, R2)\) surface context, \(\sqrt{t}\) weighting, cosine similarity, SVD to 300 dimensions
 - Lemma vs. POS-disambiguated lemma on BNC and Wikipedia
 - Word forms on Web1T5
Evaluating distributional similarity in Web1T5

- Distributional semantic model built from Web1T5 can be evaluated in various shared tasks (e.g. ESSLLI 2008)

- Here: direct comparison with semantic similarity ratings (WordSim-353, Finkelstein et al. 2002)
 - 353 noun-noun pairs with “relatedness” ratings
 - rated on scale 0–10 by 16 test subjects
 - closely related: money/cash, soccer/football, type/kind, ...
 - unrelated: king/cabbage, noon/string, sugar/approach, ...

Correlation with DSM similarity in BNC/Wikipedia/Web1T5
- DSM parameters: term-term matrix, (L2,R2) surface context, √t weighting, cosine similarity, SVD to 300 dimensions
- lemma vs. POS-disambiguated lemma on BNC and Wikipedia
- word forms on Web1T5
Evaluating distributional similarity in Web1T5

- Distributional semantic model built from Web1T5 can be evaluated in various shared tasks (e.g. ESSLLI 2008)

- Here: direct comparison with semantic similarity ratings (WordSim-353, Finkelstein et al. 2002)
 - 353 noun-noun pairs with “relatedness” ratings
 - rated on scale 0–10 by 16 test subjects
 - closely related: money/cash, soccer/football, type/kind, ...
 - unrelated: king/cabbage, noon/string, sugar/approach, ...

- Correlation with DSM similarity in BNC/Wikipedia/Web1T5
 - DSM parameters: term-term matrix, (L2,R2) surface context, \sqrt{t} weighting, cosine similarity, SVD to 300 dimensions
 - lemma vs. POS-disambiguated lemma on BNC and Wikipedia
 - word forms on Web1T5
Evaluating distributional similarity in Web1T5

correlation with human relatedness ratings (Finkelstein et al. 2002)
Evaluating distributional similarity in Web1T5
correlation with human relatedness ratings (Finkelstein et al. 2002)

BNC (POS filter)
28 words missing
r = 0.491

Wikipedia (POS filter)
11 words missing
r = 0.570

Web1T5
0 words missing
r = 0.529
Work in progress

- Find out what’s really wrong with the Web 1T 5-grams
 - qualitative error analysis: which words and pairs are off?
 - further experiments on scaling of association measures, direct comparison of frequencies and association score, etc.
 - esp. usefulness of morphological expansion
 - linguistic quality of Web data (topics, slang, ...)

- Software improvements (Web1T5-Easy 2.0)
 - adapt to Web1T5 European edition (Brants and Franz 2009)
 - better customisation (e.g. normalisation, tagged data)
 - consistent Unicode support, more flexible Web GUI
 - include distributional model in open-source code

- Partial POS-tagging and lemmatisation of n-grams possible?
That’s all folks!

http://webascorpus.sf.net/Web1T5-Easy/

Try the online demo at
http://cogsci.uos.de/~korpora/Web1T5/
— currently offline —

Thanks for listening!

References II

Evert, Stefan (2010). Google Web 1T5 n-grams made easy (but not for the computer). In *Proceedings of the 6th Web as Corpus Workshop (WAC-6)*, Los Angeles, CA.

References III

Lin, Dekang; Church, Kenneth; Ji, Heng; Sekine, Satoshi; Yarowsky, David; Bergsma, Shane; Patil, Kailash; Pitler, Emily; Lathbury, Rachel; Rao, Vikram; Dalwani, Kapil; Narsale, Sushant (2010). New tools for web-scale n-grams. In *Proceedings of the 7th International Conference on Language Resources and Evaluation (LREC 2010)*, Valletta, Malta. European Language Resources Association (ELRA).

