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Query Rewriting in Large Scale Web Search

• Problem: 

– Web search: Term mismatch between user queries and web docs.

Users describe their information need by a few keywords, which are 
likely to be different from the index terms of the web documents.

– Sponsored search / Ads: Additional difficulty of matching queries 
against very few, very short documents.
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against very few, very short documents.

• Task: Conjunctive term matching needs to be relaxed by 

– rewriting query terms into new terms with similar statistical 
properties (generative models for query expansion),

– ranking candidate rewrites w.r.t. criteria such as click-through-rate 
or semantic similarity (discriminative models for rewrite ranking).



Discriminative Models for Rewrite Ranking

• Rewrite candidates from different sources need to be filtered according to 
criteria such as click-through-rate or semantic similarity

=  Learning-to-Rank problem: Learn ranking of query rewrites from data that are 
ranked according to measures of interest.

• Task(s):

– Create training data (by sampling from user logs) and test data (by manual 
labeling a subsample).
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– Feature engineering, incorporating complex models of string similarity as 
dense features.

– Find most robust learner, i.e., learner that performs best under various 
evaluation metrics on clean test data when trained on noisy training set.



Extracting Weak Labels from Co-click Data

• Training data extraction:

– Assume two queries to be related if they lead to certain amount of user 
clicks on the same retrieval results (cf. Fitzpatrick & Dent (1997)’s model of 
query similarity based on the intersection of retrieval results).

– Threshold of >= 10 co-clicks suffices to find query-pairs that are considered 
similar by human judges.

– Data set of > 1 billion query-rewrite pairs extracted for experiments.
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• Test data labeling:

– 100 queries with 30 rewrites, sampled in descending order of co-clicks.

– Labeling in two steps: Rank rewrites using GUI, then (re)assign rank labels 
and binary relevance score (see Rubenstein & Goodenough (1965)).



Data Statistics

Train Dev Test

Number of queries 250,000 2,500 100

Average number of 

rewrites per query

4,500 4,500 30

Percentage positive 

rewrites per query

0.2 0.2 43
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• Train, Dev, and Test sets are sampled from same user logs data.

• Different percentage of relevant documents per query.

• Co-click threshold of 10 just sufficient for significant correlation between 
human relevance judgments and automatic labeling.



Features

• Features are composed of following building blocks:

– Levenshtein distance, based on following edit operations:

• insertion

• deletion

• substitution

• all
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– Cost functions for Levenshtein edit operations:

• unit cost for all operations

• character-based edit-distance as cost function for substitution operation

• probabilistic cost functions for substitution = generalized edit distance



Features, continued

• Probabilistic term substitution models based on Pointwise Mutual Information:

– Introduced by Church & Hanks (1990) as word association ratio.

– Negative PMI values happen in rare events where strings co-occur less 

PMI = log
p(wi ,w j )

p(wi )p(w j )
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– Negative PMI values happen in rare events where strings co-occur less 
frequently than random:

– Negative PMI values set to zero in our case.

p(wi,w j ) < p(wi)p(w j )



Features, continued

• Normalizations of PMI:

– Positive PMI values bounded to range between 0 and 1 by linear rescaling.

• Joint normalization:

PMI J =
PMI(wi ,w j )

− log(p(w ,w ))

– Measures the amount of shared information between two strings relative to 

sum of the information of the individual strings.
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J
− log(p(wi ,w j ))



Features, continued

• Specialization normalization:

– PMIS favors pairs where wj is a specialization of wi

– PMIS is at maximum when p(wi,wj) = p(wj), i.e. when p(wi|wj) = 1

PMIS =
PMI(wi ,w j )

− log(p(wi ))
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• Generalization normalization:

– wj generalizes wi:

PMIG =
PMI(wi,w j )

− log(p(w j ))



Features, continued

• Examples:

– PMIG(apple, mac os) = .2917

– PMIS(apple, mac os) = .3686

– Evidence for specialization.

– PMIG(ferrari models, ferrari) = 1
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– PMIS(ferrari models, ferrari) = .5558

– Perfect generalization.

– PMI values computed from Web counts.



Features, continued

• Multiword queries:

– Original order of query terms

– Or: alphabetically sorted bag-of-words

• Estimation of cost matrix:

– Relative frequency of session transitions in query log of 1.3 billion English 
queries

– Smoothed transition probability from clustering model trained on user logs
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– Smoothed transition probability from clustering model trained on user logs

• Resulting feature set of about 60 dense features



Learning to Rank Query Rewrites

• Various loss functions optimized in Stochastic Gradient Descent framework:

– Training data S = {xq
(i),yq

(i)} i=1
n where xq={xq1, …, xq,n(q)} is a set of rewrites 

for query q, and yq = (yq1, …, yq,n(q)) is a ranking on rewrites.

– Minimize regularized objective for training set

by stochastic updating

  

min
w

l (w) + Ω(w)
xq ,yq

∑

w = w − η g
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by stochastic updating

where   

wt+1 = wt − η tgt

  
gt = ∇(l (w) + Ω(w))



Learning to Rank Rewrites, cont.

• Conditional log-linear model on set(!) of relevant queries (Riezler et al. 
ACL’02) for binary relevance scores (expressed as rank 1 for relevant, and 
rank 2 for non-relevant rewrites):

l llm (w) = − log

e
w,φ ( xqi )

xqi ∈xq |yqi =1

∑

e
w,φ ( xqi )∑
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• Gradient:

  

e
xqi ∈xq

∑

  

∂

∂wk

l llm (w) = −pw φk | xq; yqi =1[ ]+ pw φk | xq[ ]



Learning to Rank Rewrites, cont.

• Listwise hinge loss for prediction loss L(yq,πq) = MAP (Mean Average 
Precision) (= SVM-MAP of Yue et al. SIGIR’07):

where

(z) =max{0,z}, and φ(x ,y ) is a partial order feature map (see Yue et al.’07). 

  
l lh (w) = (L(yq , π q

* ) − w,φ(xq , yq ) − φ(xq , π q

* ) )+

π q

* = arg max π q ∈ Π q \ yq
L (yq , π q ) + w ,φ (x q , π q )
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(z)+=max{0,z}, and φ(xq,yq) is a partial order feature map (see Yue et al.’07). 

• Gradient:   

  

∂

∂w k

l lh (w ) =
0 if w,φ (xq , yq ) − φ (xq , π q

* ) > L (yq , π q

* )

−(φ (xq , yq ) − φ (xq , π q

* )) else

 
 
 

  



Learning to Rank Rewrites, cont.

• (Margin-rescaled) pairwise hinge loss (Joachims’02; Cortes et al. ICML’07; 
Agarwal & Niyogi JMLR’09; ):

where Pq is the set of pairs of rewrites for query q that need to be compared. 

• Gradient for SGD on pair-level: 

  

l ph (w) = ((|
1

yqi

−
1

yqj

|
(i, j)∈Pq

∑ )− w,φ(xqi )−φ(xqj ) sgn(
1

yqi

−
1

yqj

))+
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• Gradient for SGD on pair-level: 

  

∂

∂w k

l ph (w ) =

0 if w ,φ ( x qi ) − φ ( x qj ) sgn(
1

yqi

−
1

yqj

) > |
1

yqi

−
1

yqj

|

−(φ ( x qi ) − φ ( x q j
)) sgn(

1

yqi

−
1

yqj

) else

 

 
  

 
 
 



Learning to Rank Rewrites, cont.

• Bipartite pairwise ranking for binary relevances, e.g, co-clicks >= 10 vs. < 10:

• Multipartite pairwise ranking for relevance levels, e.g., number of co-clicks:
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Experimental Evaluation

• Baselines:

– Random shuffling of relevant/non-relevant rewrites.

– Single dense feature that performed best on development set (clustering 
model log-probability used for cost-matrix estimation).

• SGD training:

– Constant learning rates

– Each metaparameter evaluated on development set after every fifth out of 

η ∈ 1,0.5,0.1,0.01,0.001{ }
– Each metaparameter evaluated on development set after every fifth out of 

100 passes over the training set.

• Evaluation:

– Evaluated on manually labeled test set of 100 queries with 30 rewrites each.

– Evaluation metrics Mean Average Precision (MAP), Normalized Discounted 
Cumulative Gain (NDCG), Area-under-the-ROC-curve (AUC), Precision@n.
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Experimental Results

MAP NDCG@10 AUC P@1 P@3 P@5

Random 51.8 48.7 50.4 45.6 45.6 46.6

Best Feature 71.9 70.2 74.5 70.2 68.1 68.7

Log-linear 74.7 75.1 75.7 75.3 72.2 71.3
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n

SVM-MAP 74.3 75.2 75.3 76.3 71.8 72.0

SVM-bipartite 73.7 73.7 74.7 79.4 70.1 70.1

SVM-multipart. 76.5 77.3 77.2 83.5 74.2 73.6

SVM-multipart.

-margin

75.7 76.0 76.6 82.5 72.9 73.0



Statistical Significance

• Statistical significance of result differences for pairwise system comparisons:

– Approximate Randomization test with stratified shuffling applied to results 
on the query level (Noreen 1989)

Best-feat. SVM-bipart. SVM-MAP Log-linear SVM-multi.-
marg.

SVM-multi.

Best-feature - <0.005 <0.005 <0.005 <0.005 <0.005
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SVM-bipart. - - 0.324 <0.005 <0.005 <0.005

SVM-MAP - - - 0.374 <0.005 <0.005

Log-linear - - - - 0.053 <0.005

SVM-multi.-
marg.

- - - - - <0.005

SVM-multi. - - - - - -



Experimental Results

• Evaluation results:

– SVM-multipartite outperforms all other ranking systems under all evaluation 
metrics at a significance level >= 0.995.

– Result differences for systems ranked next to each other are not statistically 
significant.

– All systems outperform random and best-feature baselines.

• Discussion:

Learning Dense Models of Query Similarity from Click Logs

• Discussion:

– SVM-multipartite ranker is most robust across all eval metrics.

– Position-sensitive margin rescaling does not help.

– SVM-MAP overtrains on dev set, thus does not win on MAP evaluation.



Conclusion

• Research questions:

– Is number of co-clicks useful implicit feedback to create multipartite 

rankings for training rankers?

– Are machine learning techniques robust enough to learn from noisy data 

and achieve good performance w.r.t. human quality standards? 

• Results:

– Co-click information could be shown to correlate well with human judgments – Co-click information could be shown to correlate well with human judgments 

on rewrite quality

– Large-scale experiment finds robust learner in multipartiee-ranking SVM

• TODO:

– More support needed from extrinsic evaluation / live search experiment!
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