

Distinguishing between Instances and Classes in the Wikipedia Taxonomy

Cäcilia Zirn

A Wikipedia Ontology?

Wikipedia Ontology

The big goal:

Deriving an ontology from Wikipedia automatically

Necessary steps:

- 1. derive a **taxonomy** from Wikipedia (identify ISA relations), Ponzetto & Strube (AAAI 2007)
- 2. distinguish between **instances** and **classes** (work presented now)
- 3. interpret remaining **relations**, Nastase & Strube (AAAI 2008)

Outline

- 1. Deriving a taxonomy from Wikipedia
- 2. Instances and classes
- 3. Methods
- 4. Evaluation
- 5. Conclusions

Prerequisites: Category Network

Deriving a taxonomy

Deriving a taxonomy

Outline

- 1. Deriving a taxonomy from Wikipedia
- 2. Instances and classes
- 3. Methods
- 4. Evaluation
- 5. Conclusions

Instances

TENERIFE, TEIDE, 2008

- are unique entities in the world
- in reasoning, they are mapped to objects

Classes

MUNICIPALITIES IN SANTA CRUZ DE TENERIFE, VOLCANOES OF SPAIN

- concepts that subsume classes or individuals
- in reasoning, they are mapped to predicates

Distinction between instances and classes...

- can be found in WordNet and Cyc
- was done manually there
- agreement coefficient on this task on WordNet data $\kappa = 0.75$ (Miller & Hristea, Computational Linguistics 2006)
- high cost!

Distinction between instances and classes...

- can be found in WordNet and Cyc
- was done manually there
- agreement coefficient on this task
 on WordNet data κ = 0.75
 (Miller & Hristea, Computational Linguistics 2006)
- high cost!

develop heuristics to distinguish between instances and classes **fully automatically**

- intuitively all Wikipedia categories seem to be classes
- not the case
 - instances also used as categories to organize related concepts

Outline

- 1. Deriving a taxonomy from Wikipedia
- 2. Instances and classes
- 3. Methods
- 4. Evaluation
- 5. Conclusions

Methods

- development of 5 methods
 - Structure-based method
 - NER (Named entity recognition)
 - Capitalization
 - Plural
 - Page
- all are heuristics
- use NLP techniques
- based on category network

Methods

- development of 5 methods
 - Structure-based method
 - NER (Named entity recognition)
 - Capitalization
 - Plural
 - Page

Structure-based method (1)

Only classes can have instances and classes.

TENERIFE, TENERIFE NORTH AIRPORT

Structure-based method (1)

Only classes can have instances and classes.

TENERIFE, TENERIFE NORTH AIRPORT

- if a category has hyponyms, it has to be a class
- count hyponyms (incoming ISA-links)

Structure-based method (2)

- if a category has more than one hyponym:
 - the category is labeled as **Class**
- if a category has **no** hyponym:
 - the category is labeled as Instance

Structure-based method (3)

Only classes can have instances and classes.

TENERIFE, TENERIFE NORTH AIRPORT

Structure-based method (3)

Only classes can have instances and classes.

TENERIFE, TENERIFE NORTH AIRPORT

- labeling of the ISA-links has been done automatically
- possible that links are classified erroneously
- tolerate one erroneous link

Structure-based method (4)

- if a category has exactly one hyponym:
 - if the hyponym has a hyponym itself:
 - the category is labeled as **Class**
 - if the hyponym has no hyponym:
 - the category is labeled as Instance

Methods

- development of 5 methods
 - Structure-based method
 - NER (Named entity recognition)
 - Capitalization
 - Plural
 - Page

Method: NER (1)

Instances correspond to unique entities in the world and are therefore named entities.

Method: NER (1)

Instances correspond to unique entities in the world and are therefore named entities.

- idea: use a named entity recognizer
 - we use CRFClassifier (Stanford)
 - Person, Location, Organization for named entities
 - Other for the rest

Method: NER (2)

Instances correspond to unique entities in the world and are therefore named entities.

Method: NER (2)

Instances correspond to unique entities in the world and are therefore named entities.

- some names consist of complex noun structures:
 AUTONOMOUS COMMUNITIES OF SPAIN
 - only lexical heads are passed to named entity recognizer
 - lexical heads are extracted using Stanford Parser

Utility: Lexical head finder

- lexical heads: determine the syntactic properties of a phrase
- in a noun phrase: the noun

Method: NER (3)

- if the named entity recognizer returns one of the labels: Person, Location, Organization:
 - the category is labeled as Instance
- if the named entity recognizer returns the label Other:
 - the category is labeled as Class

Method: NER (3)

- if the named entity recognizer returns one of the labels: Person, Location, Organization:
 - the category is labeled as **Instance**
- if the named entity recognizer returns the label Other:
 - the category is labeled as **Class**

the parser sometimes returns several heads

- if the majority of returned labels is Other:
 - the category is labeled as Class
- otherwise:
 - the category is labeled as Instance

Methods

- development of 5 methods
 - Structure-based method
 - NER (Named entity recognition)
 - Capitalization
 - Plural
 - Page

Method: Capitalization (1)

Content words belonging to a named entity are capitalized.

Convention for Wikipedia titles.

TENERIFE LADIES OPEN

and

AUTONOMOUS COMMUNITIES OF SPAIN

Method: Capitalization (1)

Content words belonging to a named entity are capitalized.

Convention for Wikipedia titles.

TENERIFE LADIES OPEN

and

AUTONOMOUS COMMUNITIES OF SPAIN

- Bunescu & Paşca (2006) developed a heuristic to process
 Wikipedia page titles:
 - "If all content words of a page title are capitalized, it corresponds to a named entity"
- we apply this heuristic to category titles

Method: Capitalization (2)

- 1. preprocess first word
 - first word is always capitalized
 - pass it to CRFClassifier
 - if it is not recognized as a named entity: lowercase the word
- 2. filter out function words
- 3. analyze remaining words
 - if all words are capitalized:
 - the category is labeled as Instance
 - otherwise:
 - the category is labeled as Class

Methods

- development of 5 methods
 - Structure-based method
 - NER (Named entity recognition)
 - Capitalization
 - Plural
 - Page

Method: Plural (1)

Instances are unique penerally used in singular form.

TENERIFE, SPAIN

and

AUTONOMOUS COMMUNITIES OF SPAIN

Method: Plural (1)

Instances are unique penerally used in singular form.

TENERIFE, SPAIN

and

AUTONOMOUS COMMUNITIES OF SPAIN

 exceptions: "The Millers are coming to our party" not to be expected in Wikipedia category titles

Method: Plural (2)

Instances are unique penerally used in singular form.

TENERIFE, SPAIN

and

AUTONOMOUS COMMUNITIES OF SPAIN

Method: Plural (2)

Instances are unique penerally used in singular form.

TENERIFE, SPAIN

and

AUTONOMOUS COMMUNITIES OF SPAIN

- the grammatical number of the lexical head is the same as the number of the category title
- we parse the category title with the Stanford Parser, obtaining:
 - the lexical head(s)
 - the part-of-speech tags

Method: Plural (3)

Instances are unique penerally used in singular form.

TENERIFE, SPAIN

and

AUTONOMOUS COMMUNITIES OF SPAIN

Method: Plural (3)

Instances are unique penerally used in singular form.

TENERIFE, SPAIN

and

AUTONOMOUS COMMUNITIES OF SPAIN

- tags of interest:
 - NNPS = noun, proper, plural
 - NNS = noun, common, plural
 - NNP = noun, proper, singular

Autonomous/JJ communities/NNS of/IN Spain/NNP

Method: Plural (3)

- if the lexical head of a phrase is tagged as plural noun (NNS, NNPS):
 - the category is labeled as Class
- otherwise:
 - the category is labeled as Instance

Methods

- development of 5 methods
 - Structure-based method
 - NER (Named entity recognition)
 - Capitalization
 - Plural
 - Page

Method: Page (1)

Articles should be placed in categories with the same name.

Advice for authors in Wikipedia.

SPAIN, TENERIFE

Method: Page (1)

Articles should be placed in categories with the same name.

Advice for authors in Wikipedia.

SPAIN, TENERIFE

- a number of articles have homonymous categories
- most articles refer to unique entities
- heuristic: a category containing a page with the same name is an instance

Method: Page (2)

- if a page with homonymous title exists:
 - the category is labeled as **Instance**
- otherwise:
 - the category is labeled as **Class**

Implementation

- working on Wikipedia derived taxonomy
- containing 127,124 nodes and 106,258 (ISA) links
- data accessed via Wikipedia dump
- own Wikipedia-API (in Java)

Outline

- 1. Deriving a taxonomy from Wikipedia
- 2. Instances and classes
- 3. Methods
- 4. Evaluation
- 5. Conclusions

Data (1)

Use ResearchCyc as gold standard.

ResearchCyc

- distinguishes between #\$Individual and #\$SetOrCollection
- distinction is done manually
- overlap Wikipedia / ResearchCyc:
 - 7860 concepts
 - 44.35%(3486)#\$Individual
 - 55.65%(4374)#\$SetOrCollection

Data (2)

Use ResearchCyc as gold standard.

Measures (1)

$T_{instances}$	$oxed{F_{classes}}$
$F_{instances}$	$T_{classes}$

$$Prec_{instances} = \frac{T_{instances}}{T_{instances} + F_{instances}}$$

 $T_{instances}$: Instance in Wiki & Individual in Cyc

 $F_{instances}$: Instance in Wiki but **not** Individual in Cyc

 $T_{classes}$: Class in Wiki & SetOrCollection in Cyc

 $F_{classes}$: Class in Wiki but **not** SetOrCollection in Cyc

Measures (2)

$$oxed{T_{instances} | F_{classes} |} \ F_{instances} | oxed{T_{classes}}$$

$$\operatorname{Prec}_{classes} = \frac{T_{classes}}{T_{classes} + F_{classes}}$$

 $T_{instances}$: Instance in Wiki & Individual in Cyc

 $F_{instances}$: Instance in Wiki but **not** Individual in Cyc

 $T_{classes}$: Class in Wiki & SetOrCollection in Cyc

 $F_{classes}$: Class in Wiki but **not** SetOrCollection in Cyc

Measures (3)

$$\textbf{Accuracy} = \frac{T_{instances} + T_{classes}}{T_{instances} + F_{instances} + T_{classes} + F_{classes}}$$

 $T_{instances}$: Instance in Wiki & Individual in Cyc

 $F_{instances}$: Instance in Wiki but **not** Individual in Cyc

 $T_{classes}$: Class in Wiki & SetOrCollection in Cyc

 $F_{classes}$: Class in Wiki but **not** SetOrCollection in Cyc

Evaluate every method separately

Method	$ Prec_{instances} $	$Prec_{classes}$
NER	85.23	76.84
page	66.1	91.5
capitalization	85.99	82.44
plural	66.44	87.99
structure	56.17	87.21

Evaluate every method separately

Method	$oxed{Prec_{instances}}$	$Prec_{classes}$	Accuracy
NER	85.23	76.84	79.69
page	66.1	91.5	75.74
capitalization	85.99	82.44	83.82
plural	66.44	87.99	75.24
structure	56.17	87.21	64.71

Classification schemes

- A) Accuracy scheme
 - method with best accuracy: capitalization
 - (regard scheme as baseline)

Classification schemes

B) Precision scheme

 order methods according to their precision (Prec_{instances} or Prec_{classes})

class

- 2. plural class
- 3. structure class
- 4. capitalization instance
- 5. remaining categories class

Classification schemes

- C) Voting scheme
 - page & plural
 - 2. capitalization & NER
 - 3. remaining categories
- class

instance

precision scheme

Classification schemes

- A) Accuracy scheme
- B) Precision scheme
- C) Voting scheme

special form of cross-validation:

- 5 rounds of binary random splits
- maintain the #\$Individual / #\$SetOrCollection distribution
- evaluate on the resulting 10 data sets

Final results

Method	Precision _{instances}	$Precision_{classes}$	Accuracy
A) Accuracy sc.	85.99±0.54	82.44±0.63	82.82±0.5
B) Precision sc.	90.92±0.41	77.36 ± 0.52	81.64±0.42
C) Voting sc.	89.21 ± 0.46	81.82 ± 0.52	84.52±0.34

Discussion

- preprocessing errors, e.g. wrong parsing results (...AND YOU WILL KNOW US BY THE TRAIL OF DEAD ALBUMS)
- recognizing named entities:
 BEE TRAIN
 If components of a named entity are not named entities, it is not recognized
- classification in gold standard:
 Inter-agreement between judges is not 100%
 different possible judgements

Outline

- 1. Deriving a taxonomy from Wikipedia
- 2. Instances and classes
- 3. Methods
- 4. Evaluation
- 5. Conclusions

Conclusions

- automatic distinction between instances and classes is possible with a high accuracy (84.52%)
- combining the methods with machine learning could improve performance even more
- next step: introducing distinction between instances and classes to Wikipedia articles
- methods can easily be applied to other languages

The resulting resource

- we applied classification scheme C
 to the 127,124 nodes in the Wikipedia taxonomy
 - 15,472 nodes were classified as instance
 - 111,652 nodes were classified as class
- we converted the data into RDF Schema file (using the Jena Semantic Web Framework)
- the result is freely available

Thanks!

Acknowledgements

- Michael Strube and Vivi Nastase
- Anette Frank for supervising my bachelor thesis
- Simone Ponzetto for his work in deriving the taxonomy
- Klaus Tschira Foundation

Check out

... the results (RDF Schema)

www.eml-research.de/nlp/download/wikitaxonomy.php

... more papers on Wikipedia

www.eml-research.de/~strube