Information extraction: Reading the Web

Vivi Nastase

Summer semester 2012, ICL, University of Heidelberg

Never Ending Language Learning (NELL)

Research Goal

A never-ending machine learning system for extracting structured information from unstructured Web pages. The end result should be a knowledge base that reflects the content of the Web.
http://rtw.ml.cmu.edu/rtw/overview

NELL approach

Input

(1) ontology with hundreds of categories (e.g. person, sportsTeam, emotion) and relations (e.g. playsOnTeam(athlete,sportsTeam), playsInstrument(musician,instrument)) that NELL is expected to read about.
(2) 10-15 examples of each category and relation
(3) data
collection of 500 million pages access to the rest of the Web

Process

- extract new instances of categories and relations to further populate a growing knowledge base of structured facts and knowledge
- learn to read better than the day before - from previous day's text sources, extract more information, more accurately

Assumptions

- Rely on redundancy of information on the Web - using different learning methods to extract complementary facets of this data
- Retrain using human feedback on the most blatant errors

Learning

Learning two types of knowledge

Learn categories which noun phrases refer to which semantic categories (e.g. cities, companies, teams)

Learn relations which pairs of noun phrases satisfy which semantic relations (e.g. hasOfficesIn(organization, location))

Approach

- use free-form text patterns for extracting knowledge from sentences
- learn to extract knowledge from semi-structured web data (e.g. tables, lists)
- learn morphological regularities of instances of categories
- learn probabilistic Horn clause rules for inferring new instances of relations from already learned relations

NELL architecture overview

Coupled semi-supervised learning for IE

Carlson et al., 2010 Coupled semi-supervised learning for information extraction Semi-supervised learning - a small number of labeled examples, a large volume of unannotated text.

Krzyzewski coaches the Blue Devils.

(A) A difficult semi-supervised learning problem

Kizyzewski coaches the Blue Devils.
(B) An easier semi-supervised learning problem

Significant improvements come from coupling the training of information extractors for many interrelated categories and relations (B), compared with the task of learning a single information extractor (A).

Issues with bootstrapping

Semantic drift:

```
Canada
Egypt
France
Germany
Iraq
```


war with X
ambassador to X
war in X
occupation of X invasion of X

A
planet Earth
Freetown
North Africa

Coupled training

(1) train classifiers using a small amount of labeled data
(2) use the classifiers to label unlabeled data
(3) the most confident new labels are added to the pool of data used to train the models

Coupling constraints for restricting allowable candidates

- output constraints: mutual exclusion - mutually exclusive predicates cannot both be satisfied by the same input x
- compositional constraints: relation argument type checking - the arguments of a relation to be learned must be of pre-declared types
- multi-view agreement constraints: unstructured and semi-structured text features - freeform textual context / HTML tags

Mutual exclusion

\(\left.$$
\begin{array}{lll}\text { Positives: } & \begin{array}{l}\text { war with } X \\
\text { ambassador to } X \\
\text { war in } X \\
\text { occupation of } X \\
\text { invasion of } X \\
\text { Egypt } \\
\text { France } \\
\text { Germany } \\
\text { Iraq }\end{array} & \end{array}
$$ \begin{array}{l}planet Earth

··· . .\end{array}\right)\)| Freetown |
| :--- |
| North Africa |

Subsystem components

These components each assign a probability for each proposed candidate, and a summary of its evidence.

- use subsystem components that make uncorrelated errors
- learn multiple types of inter-related knowledge:
- learn predicates from texts
- learn to infer new relations from learned relations
- use coupled semi-supervised learning methods to leverage constraints between predicates being learned
- categories and relations taxonomy (set-subset relations, mutually exclusive categories, categories as relations' expected arguments)
- distinguish high-confidence beliefs in the KB from lower-confidence candidates
- use a uniform KB representation to capture candidate facts and promoted beliefs of all types

Subsystem components - CPL

```
Algorithm 1: Coupled Pattern Learner (CPL)
    Input: An ontology \(\mathcal{O}\), and text corpus \(C\)
    Output: Trusted instances/contextual patterns for
        each predicate
    for \(i=1,2, \ldots, \infty\) do
        foreach predicate \(p \in \mathcal{O}\) do
            Extract new candidate instances/contextual
            patterns using recently promoted
            patterns/instances;
            Filter candidates that violate coupling;
            Rank candidate instances/patterns;
            Promote top candidates;
        end
    end
```


Subsystem components - CSEAL

```
Algorithm 2: Coupled SEAL (CSEAL)
    Input: An ontology }\mathcal{O}\mathrm{ , and text corpus C
    Output:Trusted instances/wrappers for each predicate
    for }i=1,2,\ldots,\infty d
        foreach predicate p}\in\mathcal{O}\mathrm{ do
            begin Call existing SEAL code to:
                Query for documents containing recently
            promoted instances;
            LEARN wrappers for each document returned;
            Extract new candidates using wrappers;
            end
            Filter wrappers that extract candidates that
            violate coupling;
            Rank candidate instances;
            Promote top candidates;
        end
    end
```


Subsystem components - CMC and RL

Coupled Morphological Classifier

- classify NPs based on morphological features (words, capitalizations, affixes, POS, etc.)
- it applies to predicates that have at least 100 (promoted) instances
- uses mutually exclusion relationships to identify negative instances

Rule Learner

- first-order relational learner - learns probabilistic Horn clauses athletePlaysSport $(x, y) \leftarrow$ athletePlaysForTeam $(x, z) \wedge$ teamPlaysSport (z, y)
- these rules are used to infer new relation instances from relation instances already in the KB
- connects previously uncoupled relation predicates

Extracted predicates

Predicate	Instance	Source(s)
ethnicGroup	Cubans	CSEAL
arthropod	spruce beetles	CPL, CSEAL
female	Kate Mara	CPL, CMC
sport	BMX bicycling	CSEAL, CMC
profession	legal assistants	CPL
magazine	Thrasher	CPL
bird	Buff-throated Warbler	CSEAL
river	Fording River	CPL, CMC
mediaType	chemistry books	CPL, CMC
cityInState	(troy, Michigan)	CSEAL
musicArtistGenre	(Nirvana, Grunge)	CPL
tvStationInCity	(WLS-TV, Chicago)	CPL, CSEAL
sportUsesEquip	(soccer, balls)	CPL
athleteInLeague	(Dan Fouts, NFL)	RL
starredIn	(Will Smith, Seven Pounds)	CPL
productType	(Acrobat Reader, FILE)	CPL
athletePlaysSport	(scott shields, baseball)	RL
cityInCountry	(Dublin Airport, Ireland)	CPL

More here: http://rtw.ml.cmu.edu/rtw/

Ontology extension

Goal

- Discover frequently stated relations among ontology categories
- Discover category subcategories

Approach

- For each pair of categories: co-cluster pairs of known instances and the contexts that connect them.
- when subclasses are extracted instead of instances, add subclass

Discovered relations

Category Pair	Name	Text contexts	Extracted Instances
MusicInstrument Musician	Master	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	sitar, George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton
Disease Disease	IsDueTo	ARG1 is due to ARG2 ARG1 is caused by ARG2 A	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia
CellType Chemical	ThatRelease	ARG1 that release ARG2 ARG2 releasing ARG1	epithelial cells, surfactant neurons, serotonin mast cells, histomine
Mammals Plant	Eat	ARG1 eat ARG2 ARG2 eating ARG1	koala bears, eucalyptus sheep, grasses goats, saplings
\ldots			

Discovered subcategories

| Original
 Category | | SubType
 discovered
 by reading |
| :---: | :---: | :---: | Extracted Instances

NELL now

Approx． 15 million candidate beliefs， 988,332 with high confidence．

Recently－Learned Facts
 twitter

instance
association of america s public tv stations is a professional organization
n1996 cricket world cup is a sporting event
kelvin sampson coaches a sports team
kevin wang is an author in the scientific field of machine learning
the benefactor is a TV show
system is a subpart of the body within colon
jaguar is a specific automobile maker dealer in houston
basketball is a sport played in the venue american airlines center
general motors is a company in the economic sector of manufacturing
milwaukee bucks is a sports team that plays the sport basketball
iteration date learned confidence
568 14－may－2012 93.9 新

572 20－may－2012 91．6 त्रु
569 15－may－2012 99.8 事
568 14－may－2012 92.4 बक्ष
569 15－may－2012 99.0 ब्रि
572 20－may－2012 99.8 领
572 20－may－2012 100.0 ब्ध
571 18－may－2012 96.9 ब्र
572 20－may－2012 96.9 त्व
572 20－may－2012
99.4 雨

Open Information Extraction at Web Scale: Machine Reading for KnowltAll

Oren Etzioni, Turing Center, University of Washington

Reading the Web

Human Reading

Machine Reading

■ High precision

- Broad scope
- Sentence-by-sentence
- High comprehension
- Background Knowledge.
- Single language

■ Slow

- Noisy
- Limited scope

■ Corpus-wide statistics

- Minimal reasoning
- Bottom up

■ General

- Very Fast!

Open vs. traditional IE

Traditional IE

Corpus + hand labeled data
Specified in advance

$$
\mathrm{O}(\mathrm{D} \times \mathrm{R})
$$

relation-specific
c

Open IE

Input:
Relations:
Complexity:
Output:

Corpus/Web + existing resc
Discovered automaticall

$$
O(D)
$$

relation independent

Extraction on a large scale

Banko et al., 2007 Open information extraction from the Web

TextRunner special features

(1) self-supervised learner
(2) single-pass extractor
(3) redundancy-based assessor

Self-supervised learner

Input A small corpus sample
Process (1) automatically label training data as positive/negative:
find all base NPs: e_{i}
for each $\left(e_{i}, e_{j}\right), i<j-$ extract the grammatical relation path between them as potential relation $r_{i j}$ label $t=\left(e_{i}, r_{i j}, e_{j}\right)$ as positive if $r_{i j}$ fulfill certain constraints (length, locality, type of e_{i}, e_{j})
(2) use labeled data to train a Naive Bayes classifier using domain independent features (later approaches - CRF):
the presence of POS tag sequences in $r_{i j}$,
$n r$. of tokens in $r_{i j}$,
n r. of stopwords in $r_{i j}$,
whether e_{i} / e_{j} is a proper noun,
the POS to the left of e_{i},
the POS to the right of e_{j}
Output relation tuples $t=\left(e_{i}, r_{i j}, e_{j}\right)$

Single-pass extractor

- one pass over the (large) corpus
- POS tag (most probable POS tag for each word)
- chunking for identifying NPs
- build candidate tuples (discard PPs, adverbs, etc) was originally developed by \rightarrow was developed by Scientists from many university are studying $\ldots \rightarrow$ Scientists are studying ...
- represent candidate tuples through the features defined for the SSL, and feed them to the classifier

Redundancy-based assessor

 assign a probability to each tuple t to express a certain relation based on the number of distinct sentences from which it was extracted (relations were normalized):t appears k times in n sentences that match a clue:

$$
P(t \in C \mid k, n)=\frac{\sum_{r \in \operatorname{num}(C)}\left(\frac{r}{s}\right)^{k}\left(1-\frac{r}{s}\right)^{n-k}}{\sum_{r^{\prime} \in \operatorname{num}(C \cup E)}\left(\frac{r^{\prime}}{s}\right)^{k}\left(1-\frac{r^{\prime}}{s}\right)^{n-k}}
$$

- C - set of unique target labels
- E - set of unique error labels (num (E) also Zipf distributed
- num (b) - the function giving the number of instances labeled $b \in C \cup E$
- num (C) - the multi-set giving the number of intances for each label b num (C) - Zipf distributed: if c_{i} is the $i^{\text {th }}$ most frequently repeated label in $C, \operatorname{num}\left(c_{i}\right) \propto i^{-z_{C}}\left(z_{C}\right.$ is the parameter of the curve)
- s is the total number of instances

Error analysis

Incoherence relations (13\%)

Sentence

The guide contains dead links and omits contains omits sites.
The Mark 14 was central to the torpedo was central torpedo scandal of the fleet.
They recalled that Nungesser began his ca- recalled began reer as a precinct leader
Uninformative relations (7\%)

Relation Examples

is	\ldots is an album by \ldots, \ldots is the author of \ldots
has	\ldots has a population of ..., ... has a cameo in ...
made	\ldots made a deal with ..., ... made a promise to ...
took	... took place in ..., ... took control over ...
gave	.. gave a talk at ..., ... gave new meaning to ...
got	... got tickets to see ..., ... got funding for ...

ReVerb

Fader et al., 2011 Identifying relations for open information extraction relation phrases $=$ phrases that express relations

Incoherent relations

the extracted phrase has no meaningful interpretation
... was central to the torpedo scandal ...
Remedy: syntactic and positional constraints

Uninformative relations

the extracted phrase contains only light verbs
... is the author of ...
Remedy: force a longer phrase by including nouns

Overly specific relations

is offering only modest greenhouse gas reduction targets at Remedy: argument variation constraints - minimal number of different arguments

Identifying relations from verbs

(1) Find longest phrase matching a syntactic constraint $(V \mid V W * P)$
$V=$ verb
$W=($ noun $|a d j| a d v \mid$ pron \mid det $)$
$P=$ (prep|particle|inf.marker)
(2) Constraint on arguments:
$\mid \operatorname{args}($ Relation $) \mid>k$

ReVerb relation phrases

			Binary Verbal Relation Phrases
85%	Satisfy Constraints		
8%	Non-Contiguous Phrase Structure Coordination: X is produced and maintained by Y Multiple Args: X was founded in 1995 by Y Phrasal Verbs: $\mathrm{X} \underline{\text { turned } \mathrm{Y} \text { off }}$		
4%	Relation Phrase Not Between Arguments Intro. Phrases: Discovered by $\mathrm{Y}, \mathrm{X} \ldots$ Relative Clauses: ... the Y that X discovered		
3%	Do Not Match POS Pattern Interrupting Modifiers: X has a lot of faith in Y Infinitives: X to attack Y		

Relation extraction with ReVerb

Features and their weights for assigning a confidence score to extracted relations (logistic regression)

Weight	Feature
1.16	(x, r, y) covers all words in s
0.50	The last preposition in r is for
0.49	The last preposition in r is on
0.46	The last preposition in r is $o f$
0.43	len $(s) \leq 10$ words
0.43	There is a WH-word to the left of r
0.42	r matches VW*P from Figure 1
0.39	The last preposition in r is $t o$
0.25	The last preposition in r is in
0.23	10 words < len $(s) \leq 20$ words
0.21	s begins with x
0.16	y is a proper noun
0.01	x is a proper noun
-0.30	There is an NP to the left of x in s
-0.43	20 words < len (s)
-0.61	r matches V from Figure 1
-0.65	There is a preposition to the left of x in s
-0.81	There is an NP to the right of y in s
-0.93	Coord. conjunction to the left of r in s

Filtering extractions by interestingness

Lin et al., Identifying interesting assertions from the Web Informative facts: ... the FDA banned ephedra ...

Less useful statements: ... the FDA banned products ...

Interestingness

Depends on the domain:

- social media feedback (click data, comments, ...)
- automated mathematical discovery plausibility + novelty + surprisingness + comprehensibility + complexity
- databases/data mining unexpectedness

Interestingness in IE

- specific (vs. general) assertions

Albert Einstein taught at Princeton
vs. Albert Einstein taught at a university
\rightarrow prefer assertions that contain named entities

- distinguishing assertions

Einstein was offered the presidency of Israel
vs. Einstein was a man

$$
\rightarrow \operatorname{AFOFRatio}(E)=\frac{\text { AssertionFrequency }(E)}{\operatorname{ObjectFrequency}(\operatorname{object}(E))+1}
$$

take assertions E for which $1<\operatorname{AFOFRation}(E) \leq 10$

- basic (definitional) assertions assertions similar to those chosen by Wikipedia editors to be included in Wikipedia infoboxes

KnowltAll now

