Information extraction: Reading the Web

Vivi Nastase

Summer semester 2012, ICL, University of Heidelberg

Never Ending Language Learning (NELL)

Research Goal

A never-ending machine learning system for extracting structured information from unstructured Web pages. The end result should be a knowledge base that reflects the content of the Web.

http://rtw.ml.cmu.edu/rtw/overview

NELL approach

Input

- ontology with hundreds of categories (e.g. person, sportsTeam, emotion) and relations (e.g. playsOnTeam(athlete,sportsTeam), playsInstrument(musician,instrument)) that NELL is expected to read about.
- I0-15 examples of each category and relation
- data
 - collection of 500 million pages
 - access to the rest of the Web

Process

- extract new instances of categories and relations to further populate a growing knowledge base of structured facts and knowledge
- learn to read better than the day before from previous day's text sources, extract more information, more accurately

Assumptions

- Rely on redundancy of information on the Web using different learning methods to extract complementary facets of this data
- Retrain using human feedback on the most blatant errors

Learning

Learning two types of knowledge

Learn categories which noun phrases refer to which semantic categories (e.g. *cities, companies, teams*)

Learn relations which pairs of noun phrases satisfy which semantic relations (e.g. *hasOfficesIn(organization, location)*)

Approach

- use free-form text patterns for extracting knowledge from sentences
- learn to extract knowledge from semi-structured web data (e.g. tables, lists)
- learn morphological regularities of instances of categories
- learn probabilistic Horn clause rules for inferring new instances of relations from already learned relations

NELL architecture overview

Coupled semi-supervised learning for IE

Carlson et al., 2010 *Coupled semi-supervised learning for information extraction* Semi-supervised learning – a small number of labeled examples, a large volume of unannotated text.

Significant improvements come from coupling the training of information extractors for many interrelated categories and relations (B), compared with the task of learning a single information extractor (A).

Issues with bootstrapping

Semantic drift:

North Africa

Coupled training

- train classifiers using a small amount of labeled data
- use the classifiers to label unlabeled data
- the most confident new labels are added to the pool of data used to train the models

Coupling constraints for restricting allowable candidates

- output constraints: *mutual exclusion* mutually exclusive predicates cannot both be satisfied by the same input *x*
- compositional constraints: relation argument type checking the arguments of a relation to be learned must be of pre-declared types
- multi-view agreement constraints: unstructured and semi-structured text features – freeform textual context / HTML tags

Mutual exclusion

Subsystem components

These components each assign a probability for each proposed candidate, and a summary of its evidence.

- use subsystem components that make uncorrelated errors
- learn multiple types of inter-related knowledge:
 - learn predicates from texts
 - learn to infer new relations from learned relations
- use coupled semi-supervised learning methods to leverage constraints between predicates being learned
 - categories and relations taxonomy (set-subset relations, mutually exclusive categories, categories as relations' expected arguments)
- distinguish high-confidence beliefs in the KB from lower-confidence candidates
- use a uniform KB representation to capture candidate facts and promoted beliefs of all types

Subsystem components – CPL

Algorithm 1: Coupled Pattern Learner (CPL)

Input: An ontology \mathcal{O} , and text corpus C **Output**: Trusted instances/contextual patterns for each predicate for $i = 1, 2, \ldots, \infty$ do foreach predicate $p \in \mathcal{O}$ do EXTRACT new candidate instances/contextual patterns using recently promoted patterns/instances; FILTER candidates that violate coupling; RANK candidate instances/patterns; **PROMOTE** top candidates; end end

Subsystem components – CSEAL

Algorithm 2: Coupled SEAL (CSEAL) **Input**: An ontology \mathcal{O} , and text corpus C**Output:** Trusted instances/wrappers for each predicate for $i = 1, 2, ..., \infty$ do for each *predicate* $p \in \mathcal{O}$ do begin Call existing SEAL code to: QUERY for documents containing recently promoted instances; LEARN wrappers for each document returned; EXTRACT new candidates using wrappers; end FILTER wrappers that extract candidates that violate coupling; RANK candidate instances; **PROMOTE** top candidates; end end

Subsystem components – CMC and RL

Coupled Morphological Classifier

- classify NPs based on morphological features (words, capitalizations, affixes, POS, etc.)
- it applies to predicates that have at least 100 (promoted) instances
- uses mutually exclusion relationships to identify negative instances

Rule Learner

- first-order relational learner learns probabilistic Horn clauses athletePlaysSport(x, y) ← athletePlaysForTeam(x, z) ∧ teamPlaysSport(z, y)
- these rules are used to infer new relation instances from relation instances already in the KB
- connects previously uncoupled relation predicates

Extracted predicates

Predicate	Instance	Source(s)
ethnicGroup arthropod female sport profession magazine bird river	Cubans spruce beetles Kate Mara BMX bicycling legal assistants Thrasher Buff-throated Warbler Fording River	CSEAL CPL, CSEAL CPL, CMC CSEAL, CMC CPL CPL CPL CSEAL CPL, CMC
mediaType cityInState musicArtistGenre tvStationInCity sportUsesEquip athleteInLeague starredIn productType athletePlaysSport cityInCountry	chemistry books (troy, Michigan) (Nirvana, Grunge) (WLS-TV, Chicago) (soccer, balls) (Dan Fouts, NFL) (Will Smith, Seven Pounds) (Acrobat Reader, FILE) (scott shields, baseball) (Dublin Airport, Ireland)	CPL, CMC CSEAL CPL CPL, CSEAL CPL RL CPL CPL RL CPL CPL

More here: http://rtw.ml.cmu.edu/rtw/

Ontology extension

Goal

- Discover frequently stated relations among ontology categories
- Discover category subcategories

Approach

- For each pair of categories: co-cluster pairs of known instances and the contexts that connect them.
- when subclasses are extracted instead of instances, add subclass

Discovered relations

Category Pair	Name	Text contexts	Extracted Instances
MusicInstrument Musician	Master	ARG1 master ARG2 ARG1 virtuoso ARG2 ARG1 legend ARG2 ARG2 plays ARG1	sitar , George Harrison tenor sax, Stan Getz trombone, Tommy Dorsey vibes, Lionel Hampton
Disease Disease	IsDueTo	ARG1 is due to ARG2 ARG1 is caused by ARG2 ┟	pinched nerve, herniated disk tennis elbow, tendonitis blepharospasm, dystonia
CellType Chemical	ThatRelease	ARG1 that release ARG2 ARG2 releasing ARG1	epithelial cells, surfactant neurons, serotonin mast cells, histomine
Mammals Plant	Eat	ARG1 eat ARG2 ARG2 eating ARG1	koala bears, eucalyptus sheep, grasses goats, saplings

Discovered subcategories

Original Category	SubType discovered by reading	Extracted Instances
Chemical	Gases	amonia, carbon_dioxide, carbon_monoxide, methane, sulphur, oxides, nitrous_oxides, water_vapor, ozone, nitrogen
Animal	LiveStock	chickens, cows, sheep, goats, pigs
Profession	Professionals	surgeons, chiropractors, dentists, engineers, medical staff, midvives, professors, scientists, specialists, technologists, aides

NELL now

Approx. 15 million candidate beliefs, 988,332 with high confidence.

instance	iteration	date learned	confidence
association of america s public tv stations is a professional organization	568	14-may-2012	93.9 🍰 🤻
n1996 cricket world cup is a sporting event	572	20-may-2012	91.6 🍰 🕄
<u>kelvin_sampson</u> <u>coaches</u> a sports team	569	15-may-2012	99.8 🍰 🎙
kevin wang is an author in the scientific field of machine learning	568	14-may-2012	92.4 🍃 🔍
the benefactor is a <u>TV show</u>	569	15-may-2012	99.0 🍰 🤻
system is a <u>subpart</u> of the body within <u>colon</u>	572	20-may-2012	99.8 🍰 🤻
i <u>aguar</u> is a specific automobile maker dealer <u>in houston</u>	572	20-may-2012	100.0 🍰 🔍
basketball is a sport played in the venue american airlines center	571	18-may-2012	96.9 🖾 🤻
general motors is a company in the economic sector of manufacturing	572	20-may-2012	96.9 🍰 🤻
milwaukee bucks is a sports team that plays the sport basketball	572	20-may-2012	99.4 🍃 🔍

Open Information Extraction at Web Scale: Machine Reading for KnowItAll

Oren Etzioni, Turing Center, University of Washington

Reading the Web

Human Reading

Machine Reading

- High precision
- Broad scope
- Sentence-by-sentence
- High comprehension
- Background Knowledge.
- Single language
- Slow

- Noisy
- Limited scope
- Corpus-wide statistics
- Minimal reasoning
- Bottom up
- General
- Very Fast!

Open vs. traditional IE

Traditional IEOpen IEInput:Corpus + hand labeled dataCorpus/Web + existing resoRelations:Specified in advanceDiscovered automaticalComplexity: $O(D \times R)$ O(D)Output:relation-specificrelation independent

Extraction on a large scale

Banko et al., 2007 Open information extraction from the Web

TextRunner special features

- self-supervised learner
- estingle-pass extractor
- In the second second

Self-supervised learner

Input A small corpus sample	
 Process automatically label training data as positive/negative find all base NPs: e_i for each (e_i, e_j), i < j - extract the grammatical path between them as potential relation r_{ij} label t = (e_i, r_{ij}, e_j) as positive if r_{ij} fulfill certain constraints (length, locality, type of e_i, e_i) 	relation
 use labeled data to train a Naive Bayes classifier domain independent features (later approaches – the presence of POS tag sequences in r_{ij}, nr. of tokens in r_{ij}, nr. of stopwords in r_{ij}, whether e_i/e_j is a proper noun, the POS to the left of e_i, 	
• the POS to the right of e_j Output relation tuples $t = (e_i, r_{ij}, e_j)$	

Single-pass extractor

- one pass over the (large) corpus
- POS tag (most probable POS tag for each word)
- chunking for identifying NPs
- build candidate tuples (discard PPs, adverbs, etc) was originally developed by → was developed by Scientists from many university are studying ... → Scientists are studying ...
- represent candidate tuples through the features defined for the SSL, and feed them to the classifier

Redundancy-based assessor

assign a probability to each tuple t to express a certain relation based on the number of distinct sentences from which it was extracted (relations were normalized):

t appears k times in n sentences that match a clue:

$$P(t \in C|k, n) = \frac{\sum_{r \in num(C)} \left(\frac{r}{s}\right)^k \left(1 - \frac{r}{s}\right)^{n-k}}{\sum_{r' \in num(C \cup E)} \left(\frac{r'}{s}\right)^k \left(1 - \frac{r'}{s}\right)^{n-k}}$$

- C set of unique target labels
- E set of unique error labels (num(E) also Zipf distributed)
- num(b) the function giving the number of instances labeled
 b ∈ C ∪ E
- num(C) the multi-set giving the number of intances for each label bnum(C) – Zipf distributed: if c_i is the i^{th} most frequently repeated label in C, $num(c_i) \propto i^{-z_c}$ (z_c is the parameter of the curve)
- s is the total number of instances

Error analysis

Sentence

Incoherence relations (13%)

Incoherent relation

The guide *contains* dead links and *omits* contains omits sites.

The Mark 14 *was central* to the *torpedo* was central torpedo scandal of the fleet.

They *recalled* that Nungesser *began* his carecalled began reer as a precinct leader

Uninformative relations (7%)

Relation Examples

is	<i>is</i> an album by, <i>is</i> the author of
has	has a population of, has a cameo in
made	made a deal with, made a promise to
took	took place in, took control over
gave	gave a talk at, gave new meaning to
got	got tickets to see, got funding for

ReVerb

Fader et al., 2011 *Identifying relations for open information extraction relation phrases* = phrases that express relations

Incoherent relations

the extracted phrase has no meaningful interpretation ... was central to the torpedo scandal ...

Remedy: syntactic and positional constraints

Uninformative relations

the extracted phrase contains only light verbs ... *is* the author of ... **Remedy**: force a longer phrase by including nouns

Overly specific relations

is offering only modest greenhouse gas reduction targets at **Remedy**: argument variation constraints – minimal number of different arguments

Identifying relations from verbs

- Find longest phrase matching a syntactic constraint (V|VW * P) V = verb W = (noun|adj|adv|pron|det) P = (prep|particle|inf.marker)
 Constraint on arguments:
 - |args(Relation)| > k

ReVerb relation phrases

	Binary Verbal Relation Phrases
85%	Satisfy Constraints
8%	Non-Contiguous Phrase Structure
	Coordination: X is produced and maintained by Y
	Multiple Args: X was founded in 1995 by Y
	Phrasal Verbs: X turned Y off
4%	Relation Phrase Not Between Arguments
	Intro. Phrases: Discovered by Y, X
	Relative Clauses: the Y that X discovered
3%	Do Not Match POS Pattern
	Interrupting Modifiers: X has a lot of faith in Y
	Infinitives: X to attack Y

Relation extraction with ReVerb

Features and their weights for assigning a confidence score to extracted relations (logistic regression)

Weight	Feature
1.16	(x, r, y) covers all words in s
0.50	The last preposition in r is for
0.49	The last preposition in r is on
0.46	The last preposition in r is of
0.43	$len(s) \leq 10$ words
0.43	There is a WH-word to the left of r
0.42	r matches VW*P from Figure 1
0.39	The last preposition in r is to
0.25	The last preposition in r is <i>in</i>
0.23	10 words $< len(s) \le 20$ words
0.21	s begins with x
0.16	y is a proper noun
0.01	x is a proper noun
-0.30	There is an NP to the left of x in s
-0.43	20 words < len(s)
-0.61	r matches V from Figure 1
-0.65	There is a preposition to the left of x in s
-0.81	There is an NP to the right of y in s
-0.93	Coord. conjunction to the left of r in s

Filtering extractions by interestingness

Lin et al., *Identifying interesting assertions from the Web* Informative facts: ... the FDA banned ephedra ...

Less useful statements: ... the FDA banned products ...

Depends on the domain:

- social media feedback (click data, comments, ...)
- automated mathematical discovery plausibility + novelty + surprisingness + comprehensibility + complexity
- databases/data mining unexpectedness

Interestingness in IE

- specific (vs. general) assertions
 Albert Einstein taught at Princeton
 vs. Albert Einstein taught at a university
 → prefer assertions that contain named entities
- distinguishing assertions
 Einstein was offered the presidency of Israel
 vs. Einstein was a man

$$ightarrow$$
 AFOFRatio(E) = $rac{AssertionFrequency(E)}{ObjectFrequency(object(E))+1}$

take assertions *E* for which $1 < AFOFRation(E) \le 10$

 basic (definitional) assertions assertions similar to those chosen by Wikipedia editors to be included in Wikipedia infoboxes

KnowItAll now

🥹 TextRunner Search Results - Mozilla Firefox	_ 8 ×
Eile Edit Yiew Higtory Rookmarks Tools Help	
< - 🔄 - 🧭 🛞 🏠 🗈 http://turinge.cs/washington.edu/?125/TextRummer/cgi-binds.pl 🔹 🕨 💽 - Google	Q
🔋 15-681 and 15-781 M 📄 CitySearch Seattle mo 📄 Crafting Papers on Ma 📄 Customize Links 📄 DBLP Gary G. Hendriz 📄 Free Hotmail 📄 http://www.stanford.ed	**

Retrieved 1608 results for What kills bacteria?

Grouping results by predicate. Group by: argument 1 | argument 2

kills - 44 results	Search again:
antibiotics (103), Antibiotics (70), Benzoyl peroxide (53), 177 more kills bacteria	What kills bacteria?
Ultraviolet disinfection devices (3), iodine (2), Chlorine (2), 9 more will kill bacteria and viruses	Search
Levaquin (21), Alatrofloxacin (1) kills a variety of bacteria	
too many antibiotics (5), Antibiotics (2), the " bad " bacteria (2) can kill the " good " bacteria	Jump to:
INH (4), the medicine (4) kills the TB bacteria	
SILVER (4), our disinfectant solution (2), Garlic (1) kills almost all known bacteria	kills (44) does not kill (2)
Infact Doxy (4), only the Doxy (2) kills a whole bunch of various bacteria	helps kill (3)
Doxycycline (5) kills bacteria and protozoa	kill not only (1)
Penicillin treatment (2), Treatment (2) will kill the syphilis bacterium	does n't kill (1)
boiling (2), boil-water alerts (2) will kill bacteria and parasites	wo n't kill (1) will not kill (1)
Anti-bacterial cleaners (4) kills 99.9 % of bacteria Cleans appliances	not only kill (1)
Appropriate treatment (4) kills the Shigella bacteria	would kill (1)
artemisinin (3) can kill other parasites and bacteria	are not killing (1) also killed off (1)
this mouthwash (3) kills germs and bacteria	are killing (1)
those drugs (3) killed Andrew 's normal gut-protective bacteria	not only kill off (1) may also kill off (1)
Proper cooking (3) kills food poisoning bacteria	kill only (1)
Stabilized Oxygen (2) kills coliform bacteria	kills so (1)