Information extraction: Conceptual hierarchies and relations

Vivi Nastase

with material from Marius Pasca's CIKM-2011 tutorial on IE Summer semester 2012, ICL, University of Heidelberg

Bootstrapping in general - reminder

Seokhwan Kim et al., 2011 Semi-supervised Information Extraction

Bootstrapping for relation extraction

Start either with a non-empty set $S = (n_{i1}, n_{i2})$ of seed pair examples or a non-empty set P of patterns (let's assume examples):

- **(**) find all occurrences of the examples (n_{i1}, n_{i2}) in the text collection
- extract [and rank] patterns joining the terms in each pair: n_{i1}w₁...w_kn_{i2}
- add the [highest ranking] extracted patterns to P
- use the patterns in P to find additional pairs
- \bullet add the [highest ranking] extracted pairs to S, go to step 1

Extracting taxonomical relations

Hearst, 1992: Automatic acquisition of hyponyms from large text corpora

NP such as NP, NP, ...

The bow lute, such as the Bambara ndang

such NP as $\{NP,\}*\{(or and)\}$ NP	works by <i>such</i> authors <i>as</i> Herrick,
	Goldsmith, and Shakespeare.
NP{, NP}*{, (or and) other NP	temples, treasuries, and other impor-
	tant civic buildings
NP{,} (including especially)	most European countries, especially
{NP,}* (<i>or</i> <i>and</i>) NP	France, England and Spain.

Adding pattern evaluation

Brin, 1998 Extracting patterns and relations from the World Wide Web

 $specificity(p) \approx -log(P(X \in M_D(p)))$

 $M_D(p)$ is the set of tuples that match the pattern p in the document set D, and X is a random variable uniformly distributed over the domain of tuples for the mined relation R. (In practice, the specificity of the pattern is measured based on the length of the pattern.) And different style patterns:

URL Pattern	Text Pattern
www.sff.net/locus/c.*	title by author
dns.city-net.com/ lmann/awards/hugos/1984.html	<i><i>title</i></i> by <i>author</i>

Conceptual hierarchies

Kozareva & Hovy, 2010 A semi-supervised method to learn and construct taxonomies using the Web

- a semi-supervised algorithm that learns hyponym-hypernym pairs subordinated to a root concept
- Web-based concept positioning procedure used to validate extracted relations
- I a graph algorithm that derives the taxonomy

Extracting hyponym-hypernym relations

Input root concept for the target hierarchy, specified as one-seed instance: lions for animals, cucumbers for plants, ... Data source Web documents

Extracting hyponym-hypernym relations - steps

gather hyponyms

- **()** fill in extraction pattern **C** such as **I** and * from known pairs
- Onvert patterns to queries, fetch Web documents
- gather all terms that instantiate *
- If new terms have been extracted, go to step 1

gather hypernyms

- filter concepts based on $outDegree(v) = \frac{\sum_{(v,x)} w(v,x)}{|V|-1}$
- **2** fill in pattern * such as t_1 and t_2
- Sonvert pattern to query, fetch documents
- gather all terms that instantiate *

§ rank terms by *inDegree* =
$$\sum_{(t_1-t_2,h)} w(t_1-t_2,h)$$

Organize extracted pairs into a hierarchy

- for each pair, determine the most specific concept based on instantiated pattern counts X such as Y, X including Y
- eliminate edge cycles and transitive closures

Issues in relation extraction

concepts : what terms to link

relation types : what types of relations to target

- *is-a* (taxonomical relations)
- part-of
- other relations

Learning from infoboxes

Dr. Henry Walton "Indiana" Jones, Jr., Ph.D. ^[12] is a fitcional character and the protagonist of the Indiana Jones franchise. George Lucas and Steven Spielberg created the character in homage to the action heroes of 1930s film serials. The character first appeared in the 1981 film Raiders of the Lost Ark, to be followed by Indiana Jones and the Temple of Doorn in 1984. Indiana Jones and the Last Crussed in 1989, The Young Indiana Jones Chronicles from 1992 to 1996, and Indiana Jones and the Kingdom of the Crystal Skull in 2008. Alongside the more widely known films and television programs, the character is also featured in novels, comics, video games, and other media. Jones is also featured in novel Diskyol binerykos.

Jones is most famously played by Harrison Ford and has also been portrayed by River Phoenix (as the young Jones in The Last Curade), and in the television series The Young Indina Jones Chronicles by Corey Cartler, Sean Patrick Flanery, and George Hall. Doug Lee has supplied Jones's voice to two LucasArts video games, Indina Jones and the Fate of Atlantis and Indina Jones and the Infernal Machine, while David Esch supplied his voice to Indiana Jones and the Emperor's Tomic

Particularly notable facets of the character include his iconic look (bullwhip, fedora, and leather jacket), sense of humor, deep knowledge of many ancient civilizations and languages, and fear of snakes.

Indiana jones remains one of cinema's most revered movie characters. In 2003, he was ranked as the second greatest movie here of all time by the American film institute.¹³¹ He was also named the sixth greatest movie here that *Explore* magazine.¹⁴⁴ Entertainment Weekly ranked indy 2nd on their list of *The All-Time Coolest Hereose* in *Pop Culture*.¹¹⁵ Premiere magazine also placed indy at number 7 on their list of *The All-Time Coolest Hereose* in *Pop Culture*.¹¹⁶ Premiere and the sixth greatest movie characters of *All Time*.¹¹⁶¹ Since his first appearance in *Raiders of the Lost Ark*, he has become a worldwide star. On their list of the *Lost Ark*. The has become a worldwide star. On their list of the *Lost Ark*. The master star contain and they at number 10¹¹⁷ In 2010, he ranked #2 on *Time* Magazine's list of the greatest fictional characters.

Henry Jones, Jr.

Harmon ford as Indians Jones in Ruder's of the Leaf Ark Pirst Raiders of the Lost Ark appearance Created by George Lucas Steven Spielberg Portrayed by Films: Harrison ford (opes 6-59) River Phoneix (ope 13) Ty series:

Contents [hide]

- they provide examples of relations of interest
- the associated articles provide (free and annotated!) training for these relations
- (reused) infobox templates

Creating missing infoboxes

Wu & Weld, 2007 Autonomously semantifying Wikiepdia

Creating missing infoboxes

- Preprocessor
 - identify relevant attributes from articles with the same infobox template
 - generate training data for classification and extraction
- Document classifier
 - determine whether an article belongs to a certain class
 - one classifier per class of articles
- Sentence classifier
 - determine whether a sentence contains the value of an attribute
 - one classifier per attribute per infobox template
- Extractors
 - extract a value from a (marked) sentence
 - aggregate across sentences, return values for attributes

Sentence classifier

Training data

For each article with an infobox:

- split document in sentences
- for each attribute value find a (unique) correspoding sentence in the article (positive training example)
- take other sentences as negative training examples

Features

- sentence tokens
- tokens' POS tags

Multi-class classification - Maximum Entropy model

Learning extractors

Feature Description	Example
First token of sentence	Hello world
In first half of sentence	Hello world
In second half of sentence	Hello world
Start with capital	Hawaii
Start with capital, end with period	Mr.
Single capital	A
All capital, end with period	CORP.
Contains at least one digit	AB3
Made up of two digits	99
Made up of four digits	1999
Contains a dollar sign	20\$
Contains an underline symbol	km_square
Contains an percentage symbol	20%
Stop word	the; a; of
Purely numeric	1929
Number type	1932; 1,234; 5.6
Part of Speech tag	
Token itself	
NP chunking tag	
String normalization:	
capital to "A", lowercase to "a",	
digit to "1", others to "0"	$TF - 1 \Longrightarrow AA01$
Part of anchor text	Machine Learning
Beginning of anchor text	Machine Learning
Previous tokens (window size 5)	
Following tokens (window size 5)	
Previous token anchored	Machine Learning
Next token anchored	Machine Learning

Moving to the Web through Wikipedia

Wu & Weld, 2010 Open information extraction using Wikipedia

• Data

- Wikipedia articles for acquiring positive examples
- Web document for finding new relation instances
- **Output**: relational tuples (Arg1-relation-Arg2)

Extraction components

Preprocessing Wikipedia articles

- sentence splitting
- POS tagging
- syntactic parsing

Infobox entries matcher

- $\bullet\,$ find sentences that contains the article title (Arg1) and the value of the infobox attribute (Arg2)
- apply filters and heuristics to improve matching accuracy

Extraction components - continued

Learner

- deep extract the syntactic path that connects Arg1 and Arg2 from each matching sentence
 - collect and generalize unlexicalized patterns

shallow collect and generalize POS and lexical context

exploit deep (with parsing) and shallow (no parsing) patterns to extract tuples from Web documents

Learning patterns from Wikipedia

Relation extraction from the Web

Pantel & Pennacchiotti, 2006 Espresso: Leveraging generic patterns for automatically harvesting semantic relations

- Input: target relation, as small sets of seed pairs
 - (nitrogen, element), (wheat, crop) for IsA
 - (city, region), (hand, body) for PartOf
- Data sources: corpora / Web documents
- Output: ranked lists of relations
- Approach: bootstrapping

Relation extraction from the Web

(Courtesy Pantel & Pennacchiotti)

Pattern Induction

Sentence retrieval

match input seed relations to sentences

Sentence generalization

"Because/IN HF/NNP is/VBZ a/DT weak/JJ acid/NN and/CC ..." "Because/IN $<\!TR\!>$ is/VBZ a/DT $<\!TR\!>$ and/CC ..."

Frequency count

count frequency of occurrence of each pattern

Pattern ranking

Rank patterns according to reliability

- match patterns to sentences in the document collection
- if low-redundancy matches, expand:
 - convert patterns to queries:

 $\left. \begin{array}{c} (\textbf{italy,country}) \\ C \text{ such as } I \end{array} \right\} \rightarrow \textbf{country such as } * \\ (\textbf{european country, location}) \rightarrow (\textbf{country, location}) \end{array}$

Rank extracted relations

Select top relations

Fact extraction from queries

Pasca, 2007 Organizing and searching the World Wide Web of facts - Step two: harnessing the wisdom of the crowds

- Input
 - target classes, as sets of seeds: e.g. for Company Honda, Oracle, Reuters, ...
 - seed attributes: e.g. for Company headquarters, stock price, ceo,
- Data anonymized search queries and their frequencies
- Output ranked list of attributes, one per class

Extraction from queries

- select candidate attributes from queries containing an instance
- Create internal representation of candidate attributes, from queries containing an instance and a candidate attribute
- Irank candidate attributes, from similarity between internal representation of a candidate attribute and combined internal representation of all seed attributes

Example attributes

actor	awards, height, age, date of birth, weight,	
aircraft model	weight, length, history, fuel consumption,	
award	recipients, date, winners list, result, gossip, printable ballot	
basic food	calories, color, size, allergies, taste, carbs, nutri- tional information,	

Extreme knowledge acquisition

Davidov & Rappaport, 2008 Unsupervised Discovery of Generic Relationships Using Pattern Clusters and its Evaluation by Automatically Generated SAT Analogy Questions

Idea

- CW: content words frequency $< F_C$
- HFW: high frequency words frequency > F_H
 [Prefix] CW₁ [Infix] CW₂ [Postfix]
- Prefix, Infix, PostFix \sim *HFW*+

Focusing the extraction

- one of CW_i is a hook (seed) word, the other is the target
- filter documents to those that contain the hook word (hook corpus)
- sort targets by PMI relative to the hook
- use various hook words

Pattern clustering

- cluster patterns that share both CW_is
- 2 merge clusters that share x% of their patterns
- I remove patterns generated from a single hook corpus (force generality)
- iteratively merge clusters by looking at shared patterns (P_{core})
- S remove clusters that don't share patterns (contain only Punconf)

Cluster labels - top 5 pairs according to:

 $Hits(C, (w_1, w_2)) =$

$$\frac{|\{p; (w_1, w_2) \text{ appears in } p \in P_{core}\}|}{|P_{core}|} + \alpha \frac{|\{p; (w_1, w_2) \text{ appears in } p \in P_{unconf}\}|}{|P_{unconf}|}$$

Clusters and labels

such X as Y	(pets, dogs)
X such as Y	
Y and other X	
buy Y accessory for X!	(phone, charger)
shipping Y for X	

Next week: large scale knowledge acquisition from the web

- Never Ending Language Learning (NELL) (CMU)
- KnowItAll by Machine Reading the World Wide Web (UofW)