Introduction to Topic Models

Vivi Nastase

Summer semester 2012
ICL, University of Heidelberg

Course plan

Scheduling:

- Lecture: Thursdays, 14-16, here
- Office hours: Thursdays, 11-12 (Room 121)
- e-mail: nastase@cl.uni-heidelberg.de

Work:

- attend the lectures, and interact - bring pens and papers! I will rarely have slides
- a semester long project
- present and discuss an assigned paper
- oral exam

Goals

- understand the mathematical formalism behind topic models
- figure out the strengths and weaknesses of this type of approaches (the hunting joke is true!)
- look at some of the more interesting extensions of the vanilla LDA
- give you hands on experience in developing a topic model

Project: LDA with your favourite extension

Homework 1, due date May $17^{\text {th }}$:

- pick your favourite text collection from the ICL's resources
- implement a system that splits the input data into fragments (sentences / paragraphs/ documents) - this should be a parameter
- represent the data in a structure that matches the split
- send me an archive with your code and documentation by May $17^{\text {th }}$

Why topic models?

Topic models

from David Blei, KDD-11 tutorial

- Observation: a collection of texts
- Assumption: the texts have been generated according to some model
- Output: the model that has generated the texts

Topic models

- Discover hidden topical patterns that pervade the collection through statistical regularities
- Annotate documents with these topics
- Use the topic annotations to organize, summarize, search texts ...

Topic examples

Topic 247

word	prob.
DRUGS	.069
DRUG	.060
MEDICINE	.027
EFFECTS	.026
BODY	.023
MEDICINES	.019
PAIN	.016
PERSON	.014
MARIJUANA	.014
LABEL	.012
ALCOHOL	.012
DANGEROUS	.011
ABUSE	.009
EFFECT	.009
KNOWN	.008
PILLS	.008

Topic 5

word	prob.
RED	.202
BLUE	.099
GREEN	.096
YELLOW	.073
WHITE	.048
COLOR	.048
BRIGHT	.030
COLORS	.029
ORANGE	.027
BROWN	.027
PINK	.017
LOOK	.017
BLACK	.016
PURPLE	.015
CROSS	.011
COLORED	.009

Topic 43

word	prob.
MIND	.081
THOUGHT	.066
REMEMBER	.064
MEMORY	.037
THINKING	.030
PROFESSOR	.028
FELT	.025
REMEMBERED	.022
THOUGHTS	.020
FORGOTTEN	.020
MOMENT	.020
THINK	.019
THING	.016
WONDER	.014
FORGET	.012
RECALL	.012

Topic 56

word	prob.
DOCTOR	.074
DR.	.063
PATIENT	.061
HOSPITAL	.049
CARE	.046
MEDICAL	.042
NURSE	.031
PATIENTS	.029
DOCTORS	.028
HEALTH	.025
MEDICINE	.017
NURSING	.017
DENTAL	.015
NURSES	.013
PHYSICIAN	.012
HOSPITALS	.011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

LSA and topic models

Topic models - intuition

Seeking Life's Bare (Genetic) Necessities

ing. Cold Spring Harbor, New York May 8 to 12 .

SCIENCE • VOL 272 • 24 MAY 1996

- Find the latent structure of "topics" or "concepts" in a text corpus, which is obscured by "word choice" noise
- Deerwester et al (1990) - LSA - co-occurrence of terms in text documents can be used to recover this latent structure, without additional knowledge.
- Latent topic representations representations of text allow modelling linguistic phenomena, like synonymy and polysemy.

Topic models

Documents
Topic proportions and assignments

Each document is a mixture of topics:

$$
\sum_{k} p\left(z_{m}=k\right)=\sum_{k} \theta_{m, k}=1
$$

Each word is drawn from one of its document's topics:

$$
p\left(w_{m, n}\right)=\sum_{k} p\left(w_{m, n} \mid z_{m, n}=k\right) p\left(z_{m, n}=k\right)=\sum_{k} \varphi_{k}\left(w_{m, n}\right) \theta_{m, k}
$$

Topic models

The observations are the documents: $\mathbf{w}_{\mathbf{m}}, m \in 1, M$
We need to infer the model, i.e the underlying topic structure, i.e. the topic assignments $z_{m, n}$, the topic $\theta_{m}, \quad m \in 1, M$ and word distributions $\varphi_{k}, \quad k \in 1, K$

Priors:

$\theta \sim$ distribution with hyperparameter α
$\varphi \sim$ distribution with hyperparameter β

Topic models - Latent Dirichlet Allocation

$$
\begin{gathered}
p(\theta \mid \alpha)=\frac{1}{B(\alpha)} \prod_{k} \theta_{k}^{\alpha_{k}-1} \\
\sum_{k} \theta_{m, k}=1
\end{gathered}
$$

α controls the mean shape and sparsity of θ
The topic proportions $\left(\theta_{m}\right)$ are a K-dimensional Dirichlet $z_{m, n}$ are multinomial distributions from θ_{m}

$$
p\left(z_{m, n} \mid \theta_{m}\right)=\frac{N!}{\prod_{k=1}^{K} n_{k}!} \prod_{k=1}^{K} \theta_{m, k}^{n_{k}}
$$

Topic models - Latent Dirichlet Allocation

$$
\begin{gathered}
p(\varphi \mid \beta)=\frac{1}{B(\beta)} \prod_{v} \varphi_{v}^{\beta_{v}-1} \\
\sum_{v} \varphi_{k, v}=1
\end{gathered}
$$

β controls the mean shape and sparsity of φ
The topics $\left(\varphi_{k}\right)$ are a V-dimensional Dirichlet $w_{m, n}$ are multinomial distributions from $\varphi_{z_{m, n}}$

$$
p\left(w_{m, n} \mid \varphi_{k}\right)=\frac{V!}{\prod_{v=1}^{V} n_{v}!} \prod_{v=1}^{V} \varphi_{k, v}^{n_{v}}
$$

Topic models - inference via Gibbs sampling

	River	Stream	Bank	Money	Loan
1			ee*	--cecee	$00 e e \bullet \theta$ eeec
3			-ceeece	-	
4			- ${ }^{\text {ceceer }}$	-6eee	$0 \cdot$
5			-90		cereece
6			-ccercee	\bullet	
7	\bigcirc		$\bullet \bullet \bullet$	-	
8	\bigcirc	∞	- 0		
9	\bigcirc	∞	-	-0e*	
10	∞	∞	0eees	-	-000
11	∞	$\infty 00$	000000	\cdots	
12	∞	000000	- 00	\bullet	
13	000000	000	- 00000		-
14	∞	00000000	000000		
15	0000	0000000	00000		
16	00000	0000000	0000		

Topic models - inference via Gibbs sampling

	River	Stream	Bank	Money	Loan
1			0600	09890.	-0eser
2 3			-000.0en	-6eeee	000
4			-090ese	-0ecee	
5			090		000609
6			-96ecerer	060	
7	\bigcirc		$0 \cdot 0$	-9000e	
8	\bigcirc	00	- 0	0000	
9	\bigcirc	000	-	-000	
10	∞	000	-0ee*	-	*ee
11	∞	000	-	-00	
12	∞	000000	- $0 \bullet$	-	
13	000000	OOO	- 0000		-
14	∞	00000000	000000		
15	0000	0000000	00000		
16	00000	0000000	0000		

$$
p\left(x=1 \mid \mathcal{O}, \alpha_{h}, \alpha_{t}\right)=\frac{p\left(x=1, \mathcal{O} \mid \alpha_{h}, \alpha_{t}\right)}{p\left(\mathcal{O} \mid \alpha_{h}, \alpha_{t}\right)}=\frac{n_{h}+\alpha_{h}}{N+\alpha_{h}+\alpha_{t}}
$$

Topic examples

"Theoretical Physics"

"Neuroscience"

Topic examples

Object \equiv bag of words with labels

Topic examples

Basic components:

- A set of entities (e.g. documents, images, individuals, genes)
- A set of relations (e.g. citation, coauthor, co-tag, friends, pathways)

Topic models in machine learning

- generative - assume an underlying model (probability distribution, parameters) generated the observed data
- the class is a hidden variable
- can handle a large number of classes
- difference relative to discriminative models?

Topic models in machine learning

- generative - assume an underlying model (probability distribution, parameters) generated the observed data
- the class is a hidden variable
- can handle a large number of classes
- difference relative to discriminative models?

$$
\begin{aligned}
& \text { discriminative: } P(Y \mid X) \\
& \text { generative: } P(Y, X)
\end{aligned}
$$

References

- Probabilistic topic models, Mark Steyvers, Tom Griffiths
- Parameter estimation for text analysis, Gregor Heinrich
- Topic Models, David Blei (tutorial, videolectures.net)
- Any of the many tutorials you can find on-line

Probabilities refresher

probability/probable
late 14c., from O.Fr. probable (14c.), from L. probabilis "provable," from probare "to try, to test"

Wahrsheinlichkeit/wahrsheinlich
seems to be true

Probabilities refresher

An experiment whose outcome depends on chance random variable \mathbf{X} captures the outcome of the experiment sample space S the set of all possible outcomes event $E \subseteq S$

X can be
discrete if S is finite or countably infinite continuous

Examples?

Distributions and probabilities

The distribution function:

$$
\begin{gathered}
p: S \rightarrow[0,1] \\
p(x) \geq 0, \forall x \in S \\
\sum_{x \in S} p(x)=1
\end{gathered}
$$

Distributions and probabilities

The distribution function:

$$
\begin{gathered}
p: S \rightarrow[0,1] \\
p(x) \geq 0, \forall x \in S \\
\sum_{x \in S} p(x)=1
\end{gathered}
$$

Probability of an event:

$$
\begin{gathered}
P(E)=\sum_{x \in E} p(x) \\
P(\{x\})=p(x)
\end{gathered}
$$

A bit of practice

1. dice rolling
2. tossing two coins

Properties of probabilities

$$
P(E) \geq 0, \forall E \subseteq S
$$

Properties of probabilities

$$
\begin{gathered}
P(E) \geq 0, \forall E \subseteq S \\
P(S)=1
\end{gathered}
$$

Properties of probabilities

$$
\begin{gathered}
P(E) \geq 0, \forall E \subseteq S \\
P(S)=1 \\
E \subset F \subset S \rightarrow P(E) \leq P(F)
\end{gathered}
$$

Properties of probabilities

$$
\begin{gathered}
P(E) \geq 0, \forall E \subseteq S \\
P(S)=1 \\
E \subset F \subset S \rightarrow P(E) \leq P(F) \\
E \cap F=\emptyset \rightarrow P(E \cup F)=P(E)+P(F)
\end{gathered}
$$

Properties of probabilities

$$
\begin{gathered}
P(E) \geq 0, \forall E \subseteq S \\
P(S)=1 \\
E \subset F \subset S \rightarrow P(E) \leq P(F) \\
E \cap F=\emptyset \rightarrow P(E \cup F)=P(E)+P(F) \\
P(\overline{\mathrm{E}})=1-P(E)
\end{gathered}
$$

Properties of probabilities

$$
\begin{gathered}
P(E) \geq 0, \forall E \subseteq S \\
P(S)=1 \\
E \subset F \subset S \rightarrow P(E) \leq P(F) \\
E \cap F=\emptyset \rightarrow P(E \cup F)=P(E)+P(F) \\
P(\overline{\mathrm{E}})=1-P(E)
\end{gathered}
$$

Proofs?

Examples of probabilities in language models

- the sample space
- the events
- distributions

Expected value

Discrete:

$$
E(X)=\sum_{x \in S} x P(x)
$$

Continuous:

$$
E(X)=\int_{a}^{b} x p(x) d x
$$

Common discrete distributions

Uniform(n) : $|S|=n, \mathrm{n}$ is finite

$$
P(X=x)=\frac{1}{n}
$$

Common discrete distributions

Uniform(n) : $|S|=n, \mathrm{n}$ is finite

$$
P(X=x)=\frac{1}{n}
$$

Bernoulli(p) : $p \in[0,1] ; X \in 0,1$:

$$
P(X=1)=p ; P(X=0)=1-p
$$

Common discrete distributions

Uniform(n) : $|S|=n, \mathrm{n}$ is finite

$$
P(X=x)=\frac{1}{n}
$$

Bernoulli(p) : $p \in[0,1] ; X \in 0,1$:

$$
P(X=1)=p ; P(X=0)=1-p
$$

Binomial(p,n) : $p \in[0,1] ; X \in 0,1, \ldots, n ; n \in \mathbb{N}$

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

Common discrete distributions

Uniform(n) : $|S|=n, \mathrm{n}$ is finite

$$
P(X=x)=\frac{1}{n}
$$

Bernoulli(p) : $p \in[0,1] ; X \in 0,1$:

$$
P(X=1)=p ; P(X=0)=1-p
$$

$\operatorname{Binomial}(\mathrm{p}, \mathrm{n}): p \in[0,1] ; X \in 0,1, \ldots, n ; n \in \mathbb{N}$

$$
P(X=x)=\binom{n}{x} p^{x}(1-p)^{(n-x)}
$$

$\operatorname{Multinomial}\left(p_{1}, \ldots, p_{k} ; x_{1}, \ldots, x_{k} ; n\right): \sum_{i} x_{i}=n$

$$
P\left(X_{1}=x_{1}, \ldots, X_{k}=x_{k}\right)=\frac{n!}{x_{1}!\ldots x_{k}!} p_{1}^{x_{1}} \ldots p_{k}^{x_{k}}
$$

Common continuous distributions

$$
P(X \leq x)=\int_{-\infty}^{x} p(y) d y
$$

Common continuous distributions

$$
P(X \leq x)=\int_{-\infty}^{x} p(y) d y
$$

Uniform $(a, b): a, b \in \mathbb{R}, a<b, X \in[a, b]$

$$
p(x)=\frac{1}{b-a}
$$

Common continuous distributions

$$
P(X \leq x)=\int_{-\infty}^{x} p(y) d y
$$

Uniform $(\mathrm{a}, \mathrm{b}): a, b \in \mathbb{R}, a<b, X \in[a, b]$

$$
p(x)=\frac{1}{b-a}
$$

$\operatorname{Beta}(\alpha, \beta): \alpha, \beta \in \mathbb{R}_{++}, X \in[0,1]$

$$
p(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Common continuous distributions

$$
P(X \leq x)=\int_{-\infty}^{x} p(y) d y
$$

Uniform $(\mathrm{a}, \mathrm{b}): a, b \in \mathbb{R}, a<b, X \in[a, b]$

$$
p(x)=\frac{1}{b-a}
$$

$\operatorname{Beta}(\alpha, \beta): \alpha, \beta \in \mathbb{R}_{++}, X \in[0,1]$

$$
p(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Dirichlet (α) : generalization of $\operatorname{Beta}(\alpha, \beta)$

Common continuous distributions

$$
P(X \leq x)=\int_{-\infty}^{x} p(y) d y
$$

Uniform $(\mathrm{a}, \mathrm{b}): a, b \in \mathbb{R}, a<b, X \in[a, b]$

$$
p(x)=\frac{1}{b-a}
$$

$\operatorname{Beta}(\alpha, \beta): \alpha, \beta \in \mathbb{R}_{++}, X \in[0,1]$

$$
p(x ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

Dirichlet (α) : generalization of $\operatorname{Beta}(\alpha, \beta)$
$\operatorname{Normal}\left(\mu, \sigma^{2}\right): \mu \in \mathbb{R}, \sigma \in \mathbb{R}_{++}, X \in \mathbb{R}$

$$
p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Test

Test

Two random variables thought they were discrete but I heard them continuously.

Next week sneak preview

Next week sneak preview

Bayes' law and conjugate distributions

