Introduction to Topic Models

Vivi Nastase

Summer semester 2012 ICL, University of Heidelberg

Course plan

Scheduling:

- Lecture: Thursdays, 14-16, here
- Office hours: Thursdays, 11-12 (Room 121)
- e-mail: nastase@cl.uni-heidelberg.de

Work:

- attend the lectures, and interact bring pens and papers! I will rarely have slides
- a semester long project
- present and discuss an assigned paper
- oral exam

Goals

- understand the mathematical formalism behind topic models
- figure out the strengths and weaknesses of this type of approaches (the hunting joke is true!)
- look at some of the more interesting extensions of the vanilla LDA
- give you hands on experience in developing a topic model

Project: LDA with your favourite extension

Homework 1, due date May 17th:

- pick your favourite text collection from the ICL's resources
- implement a system that splits the input data into fragments (sentences / paragraphs/ documents) – this should be a parameter
- represent the data in a structure that matches the split
- send me an archive with your code and documentation by May 17th

Why topic models?

Topic models

from David Blei, KDD-11 tutorial

- Observation: a collection of texts
- Assumption: the texts have been generated according to some model
- Output: the model that has generated the texts

Topic models

- Discover hidden topical patterns that pervade the collection through statistical regularities
- Annotate documents with these topics
- Use the topic annotations to organize, summarize, search texts ...

Topic 43

Topic 5

Topic 247

ropic z		10pt 0		ropie io		1 op it v o	
word	prob.	word	prob.	wor	i prob.	word	prob.
DRUGS	.069	RED	.202	MINI	0.081	DOCTOR	.074
DRUG	.060	BLUE	.099	THOUGH	G .066	DR.	.063
MEDICINE	.027	GREEN	.096	REMEMBEI	.064	PATIENT	.061
EFFECTS	.026	YELLOW	.073	MEMORY	.037	HOSPITAL	.049
BODY	.023	WHITE	.048	THINKING	3 .030	CARE	.046
MEDICINES	.019	COLOR	.048	PROFESSO	.028	MEDICAL	.042
PAIN	.016	BRIGHT	.030	FEL	Г.025	NURSE	.031
PERSON	.0103	COLORS	.029	REMEMBEREI	.022	PATIENTS	.029
MARIJUANA	.014	ORANGE	.027	THOUGHT	5 .020	DOCTORS	.028
LABEL	.012	BROWN	.027	FORGOTTEN	J .020	HEALTH	.025
ALCOHOL	.012	PINK	.017	MOMEN	Г.020	MEDICINE	.017
DANGEROUS	.011	LOOK	.017	THINE	.019	NURSING	.017
ABUSE	.009	BLACK	.016	THIN	6 .016	DENTAL	.015
EFFECT	.009	PURPLE	.015	WONDER	R .014	NURSES	.013
KNOWN	.008	CROSS	.011	FORGE	Г.012	PHYSICIAN	.012
PILLS	.008	COLORED	.009	RECAL	.012	HOSPITALS	.011

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

Steyvers & Griffiths, 2006

Topic 56

LSA and topic models

Steyvers & Griffiths, 2006

Topic models – intuition

Seeking Life's Bare (Genetic) Necessities

SCIENCE • VOL. 272 • 24 MAY 1996

• Find the latent structure of "topics" or "concepts" in a text corpus, which is obscured by "word choice" noise

- Deerwester et al (1990) LSA co-occurrence of terms in text documents can be used to recover this latent structure, without additional knowledge.
- Latent topic representations representations of text allow modelling linguistic phenomena, like synonymy and polysemy.

Topic models

Each document is a mixture of topics:

$$\sum_{k} p(z_m = k) = \sum_{k} \theta_{m,k} = 1$$

Each word is drawn from one of its document's topics:

$$p(w_{m,n}) = \sum_{k} p(w_{m,n}|z_{m,n}=k) p(z_{m,n}=k) = \sum_{k} \varphi_k(w_{m,n}) \theta_{m,k}$$

Topic models

The **observations** are the documents: $\mathbf{w}_{\mathbf{m}}, m \in 1, M$ We need to infer the **model**, i.e the underlying topic structure, i.e. the topic assignments $z_{m,n}$, the topic $\theta_m, m \in 1, M$ and word distributions $\varphi_k, k \in 1, K$ **Priors**:

 $\theta \sim$ distribution with hyperparameter α $\varphi \sim$ distribution with hyperparameter β

Topic models – Latent Dirichlet Allocation

$$p(heta|lpha) = rac{1}{B(lpha)} \prod_k heta_k^{lpha_k-1} \ \sum_k heta_{m,k} = 1$$

 α controls the mean shape and sparsity of θ The topic proportions (θ_m) are a K-dimensional Dirichlet $z_{m,n}$ are multinomial distributions from θ_m

$$p(z_{m,n}|\theta_m) = \frac{N!}{\prod_{k=1}^{K} n_k!} \prod_{k=1}^{K} \theta_{m,k}^{n_k}$$

Topic models – Latent Dirichlet Allocation

$$egin{aligned} p(arphi|eta) &= rac{1}{B(eta)} & \prod_{v} arphi_{v}^{eta_{v}-1} \ &\sum_{v} arphi_{k,v} = 1 \end{aligned}$$

 β controls the mean shape and sparsity of φ The topics (φ_k) are a V-dimensional Dirichlet $w_{m,n}$ are multinomial distributions from $\varphi_{z_{m,n}}$

$$p(w_{m,n}|\varphi_k) = \frac{V!}{\prod_{\nu=1}^V n_{\nu}!} \prod_{\nu=1}^V \varphi_{k,\nu}^{n_{\nu}}$$

Topic models – inference via Gibbs sampling

	River	Stream	Bank	Money	Loan
1			0000	0000€0	00 00
2 3			00000		. ●00 ●
			0000000	0000	0000
4 5			0000000	000000	000
5				●○	0000000
6 7 0				000	0000
7				00 00 0 0	00000
8 •		.	00000	0000	. .
9 🔸		000	000000	••••	. O
10 💿			00000	•	. ●○ ○●
1 .●			0000000		•
2 000)	0000000	• • • • •		
13 000		00 0	000000		
14 00		00000000	00000		
15 🛛 🕶	•	••••	●○●○●		
16 🔹) •	000000	000		

	River	Stream	Bank	Money	Loan
12345678	0	00		000000 000000 00000 00 00 000 000 0000	
9 10 11 12 13 14 15 16	0 00 000 000000 000000 0000 0000	000 000 000 0000000 0000000 0000000 0000		••••	•

Topic models – inference via Gibbs sampling

	River	Stream	Bank	Money	Loan
1 [0000	00000	60 000
2 3			00000	000000 0	●○○●
			0000000	0000	0000
4 5			0000000	000000	000
5				 O 	0000000
6				000	0000
7				00 00 0 0	0000
8	•	○●	00000	0 00 0	
9	•	000	000000		_ ●
10	•	60 0	00000	•	000
11	•		0000000		•
12		000000	• •••••		
13	000000	000	000000		
14		0000000	00000		
15			••••		
16	0.000	600000	000		

	River	Stream	Bank	Money	Loan
1 2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11	River	00 000 <	Bank	Money	Loan
15 16	00000	00000000	000000		

$$p(x = 1 | \overline{\mathcal{O}}, \alpha_h, \alpha_t) = \frac{p(x = 1, \mathcal{O} | \alpha_h, \alpha_t)}{p(\mathcal{O} | \alpha_h, \alpha_t)} = \frac{n_h + \alpha_h}{N + \alpha_h + \alpha_t}$$

SKY WATER TREE MOUNTAIN PEOPLE

SCOTLAND WATER FLOWER HILLS TREE

SKY WATER BUILDING PEOPLE WATER

FISH WATER OCEAN TREE CORAL

PEOPLE MARKET PATTERN TEXTILE DISPLAY

BIRDS NEST TREE BRANCH LEAVES

 $\mathsf{Object} \equiv \mathsf{bag} \mathsf{ of words with \ labels}$

Basic components:

- A set of entities (e.g. documents, images, individuals, genes)
- A set of relations (e.g. citation, coauthor, co-tag, friends, pathways)

Topic models in machine learning

- generative assume an underlying model (probability distribution, parameters) generated the observed data
- the class is a hidden variable
- can handle a large number of classes
- difference relative to discriminative models?

Topic models in machine learning

- generative assume an underlying model (probability distribution, parameters) generated the observed data
- the class is a hidden variable
- can handle a large number of classes
- difference relative to discriminative models?

```
discriminative: P(Y|X)
generative: P(Y,X)
```

References

- Probabilistic topic models, Mark Steyvers, Tom Griffiths
- Parameter estimation for text analysis, Gregor Heinrich
- Topic Models, David Blei (tutorial, videolectures.net)
- Any of the many tutorials you can find on-line

Probabilities refresher

probability/probable

late 14c., from O.Fr. probable (14c.), from L. probabilis "provable," from probare "to try, to test"

Wahrsheinlichkeit/wahrsheinlich

seems to be true

Probabilities refresher

```
An experiment whose outcome depends on chance
random variable X captures the outcome of the experiment
sample space S the set of all possible outcomes
event E \subseteq S
X can be
discrete if S is finite or countably infinite
```

continuous

Examples?

Distributions and probabilities

The distribution function:

$$egin{aligned} p &: S o [0,1] \ p(x) &\geq 0, orall x \in S \ &\sum_{x \in S} p(x) = 1 \end{aligned}$$

Distributions and probabilities

The distribution function:

$$egin{aligned} p &: S o [0,1] \ p(x) \geq 0, orall x \in S \ &\sum_{x \in S} p(x) = 1 \end{aligned}$$

Probability of an event:

$$P(E) = \sum_{x \in E} p(x)$$
$$P(\{x\}) = p(x)$$

A bit of practice

- 1. dice rolling
- 2. tossing two coins

 $P(E) \ge 0, \forall E \subseteq S$

 $P(E) \ge 0, \forall E \subseteq S$ P(S) = 1

$$P(E) \ge 0, \forall E \subseteq S$$

 $P(S) = 1$
 $E \subset F \subset S
ightarrow P(E) \le P(F)$

$$P(E) \ge 0, \forall E \subseteq S$$
$$P(S) = 1$$
$$E \subset F \subset S \rightarrow P(E) \le P(F)$$
$$E \cap F = \emptyset \rightarrow P(E \cup F) = P(E) + P(F)$$

$$P(E) \ge 0, \forall E \subseteq S$$

$$P(S) = 1$$

$$E \subset F \subset S \rightarrow P(E) \le P(F)$$

$$E \cap F = \emptyset \rightarrow P(E \cup F) = P(E) + P(F)$$

$$P(\overline{E}) = 1 - P(E)$$

$$P(E) \ge 0, \forall E \subseteq S$$

$$P(S) = 1$$

$$E \subset F \subset S \rightarrow P(E) \le P(F)$$

$$E \cap F = \emptyset \rightarrow P(E \cup F) = P(E) + P(F)$$

$$P(\overline{E}) = 1 - P(E)$$

Proofs?

Examples of probabilities in language models

- the sample space
- the events
- distributions

Expected value

Discrete:

$$E(X) = \sum_{x \in S} x P(x)$$

Continuous:

$$E(X) = \int_{a}^{b} x p(x) dx$$

Uniform(n) : |S| = n, n is finite

$$P(X=x)=\frac{1}{n}$$

Uniform(n) : |S| = n, n is finite

$$P(X=x)=\frac{1}{n}$$

 $\mathsf{Bernoulli}(\mathsf{p}) \ : \ \mathsf{p} \in [0,1]; X \in \mathsf{0}, 1:$

$$P(X = 1) = p; P(X = 0) = 1 - p$$

Uniform(n) : |S| = n, n is finite

$$P(X=x)=\frac{1}{n}$$

 $\mathsf{Bernoulli}(\mathsf{p}) \ : \ \mathsf{p} \in [0,1]; X \in \mathsf{0}, 1:$

$$P(X = 1) = p; P(X = 0) = 1 - p$$

Binomial(p,n) : $p \in [0, 1]; X \in 0, 1, ..., n; n \in \mathbb{N}$

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{(n-x)}$$

Uniform(n) : |S| = n, n is finite

$$P(X=x)=\frac{1}{n}$$

Bernoulli(p) : $p \in [0, 1]; X \in 0, 1$:

$$P(X = 1) = p; P(X = 0) = 1 - p$$

Binomial(p,n) : $p \in [0, 1]; X \in 0, 1, ..., n; n \in \mathbb{N}$
$$P(X = x) = \binom{n}{2} p^{x} (1 - p)^{(n-x)}$$

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{(n-x)}$$

Multinomial $(p_1, ..., p_k; x_1, ..., x_k; n)$: $\sum_i x_i = n$

$$P(X_1 = x_1, ..., X_k = x_k) = \frac{n!}{x_1! ... x_k!} p_1^{x_1} ... p_k^{x_k}$$

$$P(X \le x) = \int_{-\infty}^{x} p(y) dy$$

$$P(X \le x) = \int_{-\infty}^{x} p(y) dy$$

Uniform(a,b) : $a, b \in \mathbb{R}, a < b, X \in [a, b]$ $p(x) = \frac{1}{b-a}$

$$P(X \le x) = \int_{-\infty}^{x} p(y) dy$$

Uniform(a,b) : $a, b \in \mathbb{R}, a < b, X \in [a, b]$
$$p(x) = \frac{1}{b-a}$$

Beta(α, β) : $\alpha, \beta \in \mathbb{R}_{++}, X \in [0, 1]$
$$p(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

$$P(X \le x) = \int_{-\infty}^{x} p(y) dy$$

Uniform(a,b) : $a, b \in \mathbb{R}, a < b, X \in [a, b]$
$$p(x) = \frac{1}{b-a}$$

Beta(α, β) : $\alpha, \beta \in \mathbb{R}_{++}, X \in [0, 1]$
$$p(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

 $Dirichlet(\alpha)$: generalization of $Beta(\alpha, \beta)$

$$P(X \le x) = \int_{-\infty}^{x} p(y) dy$$

Uniform(a,b) : $a, b \in \mathbb{R}, a < b, X \in [a, b]$
$$p(x) = \frac{1}{b-a}$$

Beta(α, β) : $\alpha, \beta \in \mathbb{R}_{++}, X \in [0, 1]$
$$p(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

Dirichlet(α) : generalization of $Beta(\alpha, \beta)$
Normal(μ, σ^2) : $\mu \in \mathbb{R}, \sigma \in \mathbb{R}_{++}, X \in \mathbb{R}$
$$p(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Test

Test

Two random variables thought they were discrete but I heard them continuously.

Next week sneak preview

Next week sneak preview

Bayes' law and conjugate distributions