Introduction to Topic Models

Vivi Nastase

Summer semester 2012
ICL, University of Heidelberg
Course plan

Scheduling:

- Lecture: Thursdays, 14-16, here
- Office hours: Thursdays, 11-12 (Room 121)
- e-mail: nastase@cl.uni-heidelberg.de

Work:

- attend the lectures, and interact – bring pens and papers! I will rarely have slides
- a semester long project
- present and discuss an assigned paper
- oral exam
Goals

• understand the mathematical formalism behind topic models
• figure out the strengths and weaknesses of this type of approaches (the hunting joke is true!)
• look at some of the more interesting extensions of the vanilla LDA
• give you hands on experience in developing a topic model
Project: LDA with your favourite extension

Homework 1, due date May 17th:

- pick your favourite text collection from the ICL’s resources
- implement a system that splits the input data into fragments (sentences / paragraphs/ documents) – this should be a parameter
- represent the data in a structure that matches the split
- send me an archive with your code and documentation by May 17th
Why topic models?
• Observation: a collection of texts
• Assumption: the texts have been generated according to some model
• Output: the model that has generated the texts
Topic models

- Discover hidden topical patterns that pervade the collection through statistical regularities
- Annotate documents with these topics
- Use the topic annotations to organize, summarize, search texts ...
Topic examples

Figure 1. An illustration of four (out of 300) topics extracted from the TASA corpus.

Steyvers & Griffiths, 2006
LSA and topic models

LSA

\[
C = UDV^T
\]

- **documents**: \(C\)
- **words**: \(U\)
- **dims**: \(D\)
- **documents**: \(V^T\)

TOPIC MODEL

\[
C = \Phi \Theta
\]

- **documents**: \(C\)
- **words**: \(\Phi\)
- **topics**: \(\Theta\)

normalized co-occurrence matrix

mixture components

mixture weights

Steyvers & Griffiths, 2006
Topic models – intuition

- Find the latent structure of “topics” or “concepts” in a text corpus, which is obscured by “word choice” noise
- Deerwester et al (1990) – LSA – co-occurrence of terms in text documents can be used to recover this latent structure, without additional knowledge.
- Latent topic representations representations of text allow modelling linguistic phenomena, like **synonymy** and **polysemy**.
Each document is a mixture of topics:

$$\sum_k p(z_m = k) = \sum_k \theta_{m,k} = 1$$

Each word is drawn from one of its document’s topics:

$$p(w_{m,n}) = \sum_k p(w_{m,n} | z_{m,n} = k)p(z_{m,n} = k) = \sum_k \phi_k(w_{m,n})\theta_{m,k}$$
The **observations** are the documents: \(w_m, m \in 1, M \)

We need to infer the **model**, i.e. the underlying topic structure, i.e. the topic assignments \(z_{m,n} \), the topic \(\theta_m, m \in 1, M \) and word distributions \(\varphi_k, k \in 1, K \)

Priors:

\[\theta \sim \text{distribution with hyperparameter } \alpha \]
\[\varphi \sim \text{distribution with hyperparameter } \beta \]
Topic models – Latent Dirichlet Allocation

\[p(\theta | \alpha) = \frac{1}{B(\alpha)} \prod_k \theta_k^{\alpha_k - 1} \]

\[\sum_k \theta_{m,k} = 1 \]

\(\alpha \) controls the mean shape and sparsity of \(\theta \)

The topic proportions (\(\theta_m \)) are a K-dimensional Dirichlet

\(z_{m,n} \) are multinomial distributions from \(\theta_m \)

\[p(z_{m,n} | \theta_m) = \frac{N!}{\prod_{k=1}^{K} n_k!} \prod_{k=1}^{K} \theta_{m,k}^{n_k} \]
Topic models – Latent Dirichlet Allocation

\[p(\varphi | \beta) = \frac{1}{B(\beta)} \prod_v \varphi_v^{\beta_v - 1} \]

\[\sum_v \varphi_{k,v} = 1 \]

\(\beta \) controls the mean shape and sparsity of \(\varphi \)
The topics \((\varphi_k)\) are a \(V\)-dimensional Dirichlet

\(w_{m,n} \) are multinomial distributions from \(\varphi_{z_{m,n}} \)

\[p(w_{m,n} | \varphi_k) = \frac{V!}{\prod_{v=1}^{V} n_v!} \prod_{v=1}^{V} \varphi_{k,v}^{n_v} \]
Topic models – inference via Gibbs sampling
Topic models – inference via Gibbs sampling

\[p(x = 1|\mathcal{O}, \alpha_h, \alpha_t) = \frac{p(x = 1, \mathcal{O}|\alpha_h, \alpha_t)}{p(\mathcal{O}|\alpha_h, \alpha_t)} = \frac{n_h + \alpha_h}{N + \alpha_h + \alpha_t} \]
Topic examples

"Theoretical Physics"

- FORCE
- RELATIVITY
- LASER

"Neuroscience"

- OXYGEN
- NERVE
- NEURON
Object \equiv bag of words with labels
Basic components:

- A set of entities (e.g. documents, images, individuals, genes)
- A set of relations (e.g. citation, coauthor, co-tag, friends, pathways)
Topic models in machine learning

- generative – assume an underlying model (probability distribution, parameters) generated the observed data
- the class is a hidden variable
- can handle a large number of classes
- difference relative to discriminative models?
Topic models in machine learning

- generative – assume an underlying model (probability distribution, parameters) generated the observed data
- the class is a hidden variable
- can handle a large number of classes
- difference relative to discriminative models?

 discriminative: $P(Y|X)$
 generative: $P(Y, X)$
References

• *Probabilistic topic models*, Mark Steyvers, Tom Griffiths
• *Parameter estimation for text analysis*, Gregor Heinrich
• *Topic Models*, David Blei (tutorial, videolectures.net)
• Any of the many tutorials you can find on-line
Probabilities refresher
probability/probable

late 14c., from O.Fr. probable (14c.), from L. probabilis “provable,” from probare “to try, to test”

Wahrscheinlichkeit/wahrscheinlich

seems to be true
Probabilities refresher

An experiment whose outcome depends on chance

random variable X captures the outcome of the experiment

sample space S the set of all possible outcomes

 event $E \subseteq S$

X can be

 discrete if S is finite or countably infinite

continous

Examples?
Distributions and probabilities

The distribution function:

\[p : S \rightarrow [0, 1] \]

\[p(x) \geq 0, \forall x \in S \]

\[\sum_{x \in S} p(x) = 1 \]
Distributions and probabilities

The distribution function:

\[p : S \rightarrow [0, 1] \]

\[p(x) \geq 0, \forall x \in S \]

\[\sum_{x \in S} p(x) = 1 \]

Probability of an event:

\[P(E) = \sum_{x \in E} p(x) \]

\[P(\{x\}) = p(x) \]
A bit of practice

1. dice rolling
2. tossing two coins
Properties of probabilities

\[P(E) \geq 0, \forall E \subseteq S \]
Properties of probabilities

\[P(E) \geq 0, \forall E \subseteq S \]

\[P(S) = 1 \]
Properties of probabilities

\[P(E) \geq 0, \forall E \subseteq S \]

\[P(S) = 1 \]

\[E \subset F \subset S \rightarrow P(E) \leq P(F) \]
Properties of probabilities

\[P(E) \geq 0, \forall E \subseteq S \]

\[P(S) = 1 \]

\[E \subset F \subset S \rightarrow P(E) \leq P(F) \]

\[E \cap F = \emptyset \rightarrow P(E \cup F) = P(E) + P(F) \]
Properties of probabilities

\[P(E) \geq 0, \forall E \subseteq S \]

\[P(S) = 1 \]

\[E \subset F \subset S \rightarrow P(E) \leq P(F) \]

\[E \cap F = \emptyset \rightarrow P(E \cup F) = P(E) + P(F) \]

\[P(\bar{E}) = 1 - P(E) \]
Properties of probabilities

\[P(E) \geq 0, \forall E \subseteq S \]
\[P(S) = 1 \]
\[E \subset F \subset S \rightarrow P(E) \leq P(F) \]
\[E \cap F = \emptyset \rightarrow P(E \cup F) = P(E) + P(F) \]
\[P(\bar{E}) = 1 - P(E) \]

Proofs?
Examples of probabilities in language models

- the sample space
- the events
- distributions
Expected value

Discrete:

\[E(X) = \sum_{x \in S} xP(x) \]

Continuous:

\[E(X) = \int_{a}^{b} xp(x)dx \]
Common discrete distributions

Uniform(n) : \(|S| = n, n \text{ is finite}\)

\[P(X = x) = \frac{1}{n} \]
Common discrete distributions

Uniform(n) : $|S| = n$, n is finite

$$P(X = x) = \frac{1}{n}$$

Bernoulli(p) : $p \in [0, 1]$; $X \in 0, 1$:

$$P(X = 1) = p; \ P(X = 0) = 1 - p$$
Common discrete distributions

Uniform(n) : $|S| = n$, n is finite

$$P(X = x) = \frac{1}{n}$$

Bernoulli(p) : $p \in [0, 1]; X \in 0, 1$:

$$P(X = 1) = p; P(X = 0) = 1 - p$$

Binomial(p,n) : $p \in [0, 1]; X \in 0, 1, ..., n; n \in \mathbb{N}$

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$
Common discrete distributions

Uniform(n) : $|S| = n$, n is finite

$$P(X = x) = \frac{1}{n}$$

Bernoulli(p) : $p \in [0, 1]$; $X \in 0, 1$:

$$P(X = 1) = p; P(X = 0) = 1 - p$$

Binomial(p,n) : $p \in [0, 1]$; $X \in 0, 1, \ldots, n$; $n \in \mathbb{N}$

$$P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}$$

Multinomial($p_1, \ldots, p_k; x_1, \ldots, x_k; n$) : $\sum_i x_i = n$

$$P(X_1 = x_1, \ldots, X_k = x_k) = \frac{n!}{x_1! \ldots x_k!} p_1^{x_1} \ldots p_k^{x_k}$$

...
Common continuous distributions

\[P(X \leq x) = \int_{-\infty}^{x} p(y) \, dy \]
Common continuous distributions

\[P(X \leq x) = \int_{-\infty}^{x} p(y) \, dy \]

Uniform(a, b) : \(a, b \in \mathbb{R}, a < b, X \in [a, b] \)

\[p(x) = \frac{1}{b - a} \]
Common continuous distributions

\[P(X \leq x) = \int_{-\infty}^{x} p(y) dy \]

Uniform\((a,b)\) : \(a, b \in \mathbb{R}, a < b, X \in [a, b]\)

\[p(x) = \frac{1}{b - a} \]

Beta\((\alpha, \beta)\) : \(\alpha, \beta \in \mathbb{R}_{++}, X \in [0, 1]\)

\[p(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1 - x)^{\beta-1} \]
Common continuous distributions

\[P(X \leq x) = \int_{-\infty}^{x} p(y) \, dy \]

Uniform(a,b) : \(a, b \in \mathbb{R}, a < b, X \in [a, b] \)

\[p(x) = \frac{1}{b - a} \]

Beta(\(\alpha, \beta \)) : \(\alpha, \beta \in \mathbb{R}_{++}, X \in [0, 1] \)

\[p(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1}(1 - x)^{\beta-1} \]

Dirichlet(\(\alpha \)) : generalization of Beta(\(\alpha, \beta \))
Common continuous distributions

$$P(X \leq x) = \int_{-\infty}^{x} p(y)dy$$

Uniform(a,b) : \(a, b \in \mathbb{R}, a < b, X \in [a, b]\)

\[p(x) = \frac{1}{b - a}\]

Beta(\(\alpha, \beta\)) : \(\alpha, \beta \in \mathbb{R}_{++}, X \in [0, 1]\)

\[p(x; \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1 - x)^{\beta-1}\]

Dirichlet(\(\alpha\)) : generalization of Beta(\(\alpha, \beta\))

Normal(\(\mu, \sigma^2\)) : \(\mu \in \mathbb{R}, \sigma \in \mathbb{R}_{++}, X \in \mathbb{R}\)

\[p(x) = \frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]
Test
Two random variables
thought they were discrete
but I heard them continuously.
Next week sneak preview
Next week sneak preview

Bayes’ law and conjugate distributions