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Course plan

Scheduling:

• Lecture: Thursdays, 14-16, here

• Office hours: Thursdays, 11-12 (Room 121)

• e-mail: nastase@cl.uni-heidelberg.de

Work:

• attend the lectures, and interact – bring pens and papers! I
will rarely have slides

• a semester long project

• present and discuss an assigned paper

• oral exam
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Goals

• understand the mathematical formalism behind topic models

• figure out the strengths and weaknesses of this type of
approaches (the hunting joke is true!)

• look at some of the more interesting extensions of the vanilla
LDA

• give you hands on experience in developing a topic model
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Project: LDA with your favourite extension

Homework 1, due date May 17th:

• pick your favourite text collection from the ICL’s resources

• implement a system that splits the input data into fragments
(sentences / paragraphs/ documents) – this should be a
parameter

• represent the data in a structure that matches the split

• send me an archive with your code and documentation by
May 17th
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Why topic models?
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Topic models

from David Blei, KDD-11 tutorial

• Observation: a collection of texts

• Assumption: the texts have been generated according to some
model

• Output: the model that has generated the texts
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Topic models

• Discover hidden topical patterns that pervade the collection
through statistical regularities

• Annotate documents with these topics

• Use the topic annotations to organize, summarize, search
texts ...
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Topic examples

Steyvers & Griffiths, 2006
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LSA and topic models

Steyvers & Griffiths, 2006
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Topic models – intuition

• Find the latent structure of “topics” or “concepts” in a text
corpus, which is obscured by “word choice” noise

• Deerwester et al (1990) – LSA – co-occurrence of terms in
text documents can be used to recover this latent structure,
without additional knowledge.

• Latent topic representations representations of text allow
modelling linguistic phenomena, like synonymy and
polysemy.
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Topic models

Each document is a mixture of topics:∑
k

p(zm = k) =
∑
k

θm,k = 1

Each word is drawn from one of its document’s topics:

p(wm,n) =
∑
k

p(wm,n|zm,n = k)p(zm,n = k) =
∑
k

ϕk(wm,n)θm,k
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Topic models

The observations are the documents: wm,m ∈ 1,M
We need to infer the model, i.e the underlying topic structure,
i.e. the topic assignments zm,n, the topic θm, m ∈ 1,M and
word distributions ϕk , k ∈ 1,K
Priors:

θ ∼ distribution with hyperparameter α
ϕ ∼ distribution with hyperparameter β

12



Topic models – Latent Dirichlet Allocation

p(θ|α) =
1

B(α)

∏
k

θαk−1
k

∑
k

θm,k = 1

α controls the mean shape and sparsity of θ
The topic proportions (θm) are a K-dimensional Dirichlet

zm,n are multinomial distributions from θm

p(zm,n|θm) =
N!∏K

k=1 nk !

K∏
k=1

θnkm,k
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Topic models – Latent Dirichlet Allocation

p(ϕ|β) =
1

B(β)

∏
v

ϕβv−1
v

∑
v

ϕk,v = 1

β controls the mean shape and sparsity of ϕ
The topics (ϕk) are a V-dimensional Dirichlet

wm,n are multinomial distributions from ϕzm,n

p(wm,n|ϕk) =
V !∏V

v=1 nv !

V∏
v=1

ϕnv
k,v
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Topic models – inference via Gibbs sampling
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Topic models – inference via Gibbs sampling

p(x = 1|O, αh, αt) =
p(x = 1,O|αh, αt)

p(O|αh, αt)
=

nh + αh

N + αh + αt
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Topic examples
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Topic examples

Object ≡ bag of words with labels
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Topic examples

Basic components:

• A set of entities (e.g. documents, images, individuals, genes)

• A set of relations (e.g. citation, coauthor, co-tag, friends,
pathways)
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Topic models in machine learning

• generative – assume an underlying model (probability
distribution, parameters) generated the observed data

• the class is a hidden variable

• can handle a large number of classes

• difference relative to discriminative models?
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Topic models in machine learning

• generative – assume an underlying model (probability
distribution, parameters) generated the observed data

• the class is a hidden variable

• can handle a large number of classes

• difference relative to discriminative models?

discriminative: P(Y |X )
generative: P(Y ,X )
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• Probabilistic topic models, Mark Steyvers, Tom Griffiths

• Parameter estimation for text analysis, Gregor Heinrich

• Topic Models, David Blei (tutorial, videolectures.net)

• Any of the many tutorials you can find on-line
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Probabilities refresher
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probability/probable

late 14c., from O.Fr. probable (14c.), from L. probabilis
”provable,” from probare ”to try, to test”

Wahrsheinlichkeit/wahrsheinlich

seems to be true
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Probabilities refresher

An experiment whose outcome depends on chance

random variable X captures the outcome of the experiment

sample space S the set of all possible outcomes

event E ⊆ S

X can be

discrete if S is finite or countably infinite

continuous

Examples?

25



Distributions and probabilities

The distribution function:

p : S → [0, 1]

p(x) ≥ 0,∀x ∈ S∑
x∈S

p(x) = 1
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Distributions and probabilities

The distribution function:

p : S → [0, 1]

p(x) ≥ 0,∀x ∈ S∑
x∈S

p(x) = 1

Probability of an event:

P(E ) =
∑
x∈E

p(x)

P({x}) = p(x)
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A bit of practice

1. dice rolling

2. tossing two coins
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Properties of probabilities

P(E ) ≥ 0, ∀E ⊆ S
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Properties of probabilities

P(E ) ≥ 0, ∀E ⊆ S

P(S) = 1
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Properties of probabilities

P(E ) ≥ 0, ∀E ⊆ S

P(S) = 1

E ⊂ F ⊂ S → P(E ) ≤ P(F )
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Properties of probabilities

P(E ) ≥ 0, ∀E ⊆ S

P(S) = 1

E ⊂ F ⊂ S → P(E ) ≤ P(F )

E ∩ F = ∅ → P(E ∪ F ) = P(E ) + P(F )
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Properties of probabilities

P(E ) ≥ 0, ∀E ⊆ S

P(S) = 1

E ⊂ F ⊂ S → P(E ) ≤ P(F )

E ∩ F = ∅ → P(E ∪ F ) = P(E ) + P(F )

P(Ē) = 1− P(E )
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Properties of probabilities

P(E ) ≥ 0, ∀E ⊆ S

P(S) = 1

E ⊂ F ⊂ S → P(E ) ≤ P(F )

E ∩ F = ∅ → P(E ∪ F ) = P(E ) + P(F )

P(Ē) = 1− P(E )

Proofs?
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Examples of probabilities in language models

• the sample space

• the events

• distributions
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Expected value

Discrete:
E (X ) =

∑
x∈S

xP(x)

Continuous:

E (X ) =

∫ b

a
xp(x)dx
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Common discrete distributions

Uniform(n) : |S | = n, n is finite

P(X = x) =
1

n
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Common discrete distributions

Uniform(n) : |S | = n, n is finite

P(X = x) =
1

n

Bernoulli(p) : p ∈ [0, 1];X ∈ 0, 1:

P(X = 1) = p;P(X = 0) = 1− p
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Common discrete distributions

Uniform(n) : |S | = n, n is finite

P(X = x) =
1

n

Bernoulli(p) : p ∈ [0, 1];X ∈ 0, 1:

P(X = 1) = p;P(X = 0) = 1− p

Binomial(p,n) : p ∈ [0, 1];X ∈ 0, 1, ..., n; n ∈ N

P(X = x) =

(
n

x

)
px(1− p)(n−x)
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Common discrete distributions

Uniform(n) : |S | = n, n is finite

P(X = x) =
1

n

Bernoulli(p) : p ∈ [0, 1];X ∈ 0, 1:

P(X = 1) = p;P(X = 0) = 1− p

Binomial(p,n) : p ∈ [0, 1];X ∈ 0, 1, ..., n; n ∈ N

P(X = x) =

(
n

x

)
px(1− p)(n−x)

Multinomial(p1, ..., pk ; x1, ..., xk ; n) :
∑

i xi = n

P(X1 = x1, ...,Xk = xk) =
n!

x1!...xk !
px1

1 ...p
xk
k

...
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Common continuous distributions

P(X ≤ x) =

∫ x

−∞
p(y)dy
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Common continuous distributions

P(X ≤ x) =

∫ x

−∞
p(y)dy

Uniform(a,b) : a, b ∈ R, a < b,X ∈ [a, b]

p(x) =
1

b − a
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Common continuous distributions

P(X ≤ x) =

∫ x

−∞
p(y)dy

Uniform(a,b) : a, b ∈ R, a < b,X ∈ [a, b]

p(x) =
1

b − a

Beta(α, β) : α, β ∈ R++,X ∈ [0, 1]

p(x ;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1
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Common continuous distributions

P(X ≤ x) =

∫ x

−∞
p(y)dy

Uniform(a,b) : a, b ∈ R, a < b,X ∈ [a, b]

p(x) =
1

b − a

Beta(α, β) : α, β ∈ R++,X ∈ [0, 1]

p(x ;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Dirichlet(α) : generalization of Beta(α, β)
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Common continuous distributions

P(X ≤ x) =

∫ x

−∞
p(y)dy

Uniform(a,b) : a, b ∈ R, a < b,X ∈ [a, b]

p(x) =
1

b − a

Beta(α, β) : α, β ∈ R++,X ∈ [0, 1]

p(x ;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Dirichlet(α) : generalization of Beta(α, β)

Normal(µ, σ2) : µ ∈ R, σ ∈ R++,X ∈ R

p(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2
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Test
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Test

Two random variables
thought they were discrete
but I heard them continuously.
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Next week sneak preview

48



Next week sneak preview

Bayes’ law and conjugate distributions
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