
Programmieren II
Intro Classes & Class Elements & Intro to OOP

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Contains material from T. Bögel, K. Spreyer, S. Ponzetto, M. Hartung)

May 7, 2014

1 / 59

Outline

1 Recap
Control structures
Reference types (1): arrays

2 Reference types (2): classes
Classes
Object initialization

3 Introduction to OOP

2 / 59

Outline

1 Recap
Control structures
Reference types (1): arrays

2 Reference types (2): classes
Classes
Object initialization

3 Introduction to OOP

3 / 59

Control structures

Overview
if-else

Loops
while
for
(“for-each”)

Others
switch
do-while

4 / 59

if-else

if-else cascades
Syntax:
if (expr1)

statement1;
else if (expr2)

statement2;
else if (expr3)

statement3;
. . .
else

statements;

Expressions are evaluated in order. Execute corresponding statement
if an expression is true.

5 / 59

Loops: while

Loops: multiple executions of statements

Syntax
while (expr) ⇐ expr needs to be a boolean

statement;

Meaning
1 Condition expr is evaluated
2 If it is true, statement is executed repeatedly
3 Otherwise: exit the loop

6 / 59

Loops: for

Syntax
for (init; expr; update)

statement

Meaning
1 Execute assignment init (usually: declaration & assignment)
2 if expr is true

a Execute statement
b Execute update
c Jump back to step 2

3 Otherwise: exit the loop

7 / 59

For-loop

Components
Initialization: Initializes the loop; executed once at the beginning of
the loop
Termination: Loop is repeated until termination expression evaluates
to false

Increment: Invoked after each iteration.

Scope of variables declared in for-loop: up to the end of the block.
All three components of the for-loop are optional.

8 / 59

For-loop

A special kind of for-loop. . .
for (; ;) {

// this code is so beautiful that it should
// be repeated forever...

}

9 / 59

Special for loop (“for-each”)

Example
double[] scores = {1.2, 3.0, 0.8};
double sum = 0.;

for (double d : scores) { // d gets successively each
// value in scores

sum += d;
}

10 / 59

Jump statements

Jump statements
alter the execution flow within a loop

break exits the surrounding loop immediately
continue re-evaluates the condition of the loop (skips the remaining
part of the loop)

11 / 59

switch

Similar to cascaded if-else

Multi-branched selection depending on the value of an expression
You must not forget to break!
Syntax:
switch (expr) ⇐ expr type byte, int, short, char or String!

case value01:
statement1;

case value02:
statement2;

...
[default: //optional !

statement3;]

12 / 59

Outline

1 Recap
Control structures
Reference types (1): arrays

2 Reference types (2): classes
Classes
Object initialization

3 Introduction to OOP

13 / 59

Classes

Data types
primitive data types (int, char, boolean, . . .)
Arrays
Classes

14 / 59

Classes

A class defines a new data type
A class is used to create new objects of this type
Objects are instances of a class

15 / 59

Object-Oriented Cat

16 / 59

Object-Oriented Cat

17 / 59

Motivation

Motivation for object-oriented design
Cats: different breeds, names, individual aspects
But: common attributes and methods / states and services
Classes define blueprints for objects
Instantiating a class creates a new object
→ multiple individual cat objects, one class

18 / 59

Classes

class Cat {
. . .

}

Cat c = new Cat();

19 / 59

Classes

class Cat {
. . .

}

Cat c = new Cat();

⇒ Keyword for class definitions

19 / 59

Classes

class Cat {
. . .

}

Cat c = new Cat();

⇒ Class name (Convention: starts with a capital letter)

19 / 59

Classes

class Cat {
. . .

}

Cat c = new Cat();

⇒ Instance variables and methods . . .

19 / 59

Classes

class Cat {
. . .

}

Cat c = new Cat();

⇒ Variable of type Cat

19 / 59

Classes

class Cat {
. . .

}

Cat c = new Cat();

⇒ new operator instantiates Cat class

19 / 59

Classes

class Cat {
. . .

}

Cat c = new Cat();

⇒ . . . by calling the Cat constructor

19 / 59

Class elements

Instance variables (fields)
data associated with objects
state of an object
e.g. Cat: name, yearOfBirth, breed, mood

Methods
Code associated with objects
implement behavior of objects, e.g. purr()
manipulation of the state, e.g. setName()
information about current state, e.g. getName()

Each object has its own copy of class elements

20 / 59

Class elements

import java.io.*;

public class Cat {

// instance variable of Cat objects
String name;
int yearOfBirth;
String breed;
String mood;

/**
* Constructs a Cat object with the given name and

yearOfBirth.
*/

Cat(String name , int yearOfBirth) {
this.name = name; /* "this" refers to object being

created */
this.yearOfBirth = yearOfBirth;

}

Cat.java
21 / 59

Class elements

/**
* Makes the Cat object "purr" to stdout.
*/

void purr() {
System.out.println("Purr!");

}

public static void main(String [] args) {

// call constructor to create new Cat object
Cat gracie = new Cat("Gracie", 2013);

// access the class members w/ the dot operator
System.out.println(gracie.name);
gracie.purr();

}
}

Cat.java

22 / 59

Class elements

Class elements of the class Cat
Instance variables: name, yearOfBirth

Methods: void purr()

Accessing class elements
using the dot operator
for instance variables:
gracie.name; this.name = “Gracie”

and for methods:
gracie.purr(); System.out.println(“Purr!”)

23 / 59

Classes/OOP in more detail: Goals

Conceptual understanding of objects & classes
Applying OOP to real-world problems
How to write methods & instantiate new objects
Learn about constructors and instance initialization
Learn about common modifiers (static, public, private)

24 / 59

Comparing primitive and reference types

Source: Head First
Java, p. 86.

25 / 59

Class declaration in general

Usually, classes consist of data (instance variables, “fields”) and code
(methods). Instance variables and methods are often called elements of a
class.
class <class name > {

<type > <instance variable >;
<type > <instance variable >;

<type > <method name >(<list of parameters >){
//...

}

<type > <method name >(<list of parameters >){
//...

}
}

listing-06.java

26 / 59

this

this refers to the reference of the object in which this is evaluated.
this is used to

explicitly use instance variables in an object, if other, local variables of
the same name are used.
this.name = name;

call methods for the same object
int perimeter = this.getPerimeter();

call constructors from other constructors
this(name);
this.nickName = nickName;

⇒ this is used to explicitly state that an object should use its own
variables/methods

27 / 59

Methods of a class

declaration in general:
<type > method_name(<parameter list >) {

<method body >
return <value >;

}

listing-10.java

type refers to the return type returned by the method (for methods
without return values: void)
parameter list is a comma-separated list of pairs of data type and
variable name
return <value> returns the value of type <type>

28 / 59

Methods

Methods
void purr(String sound) {

System.out.println(sound);
}

have a name
have parameters (0 or more). Their type & name is specified after the
method name
have a return value = type of the return value
return value void means that no value is returned
have a body, where parameter values can be used

29 / 59

Methods

Methods
void purr(String sound) {

System.out.println(sound);
}

have a name
have parameters (0 or more). Their type & name is specified after the
method name
have a return value = type of the return value
return value void means that no value is returned
have a body, where parameter values can be used

29 / 59

Methods

Methods
void purr(String sound) {

System.out.println(sound);
}

have a name
have parameters (0 or more). Their type & name is specified after the
method name
have a return value = type of the return value
return value void means that no value is returned
have a body, where parameter values can be used

29 / 59

Methods

Methods
void purr(String sound) {

System.out.println(sound);
}

have a name
have parameters (0 or more). Their type & name is specified after the
method name
have a return value = type of the return value
return value void means that no value is returned
have a body, where parameter values can be used

29 / 59

Methods

Methods
void purr(String sound) {

System.out.println(sound);
}

have a name
have parameters (0 or more). Their type & name is specified after the
method name
have a return value = type of the return value
return value void means that no value is returned
have a body, where parameter values can be used

29 / 59

Methods

Methods
void purr(String sound) {

System.out.println(sound);
}

have a name
have parameters (0 or more). Their type & name is specified after the
method name
have a return value = type of the return value
return value void means that no value is returned
have a body, where parameter values can be used

29 / 59

Methods

Returning values
return statement: return <expr>;

return exits the method body

Example: getter methods
String getName() {

return this.name;
}

→ are often defined for all instance variables of a class to avoid direct
access

30 / 59

Constructors

Constructors
Cat(String name, int yearOfBirth) {

this.name = name;
this.yearOfBirth = yearOfBirth; this.mood =

"grumpy"; }

same name as the class name
have parameters like regular methods
do not have an explicit return type or return value
used to initialize objects (instance variables)

31 / 59

Constructors

Constructors
Cat(String name, int yearOfBirth) {

this.name = name;
this.yearOfBirth = yearOfBirth; this.mood =

"grumpy"; }

same name as the class name
have parameters like regular methods
do not have an explicit return type or return value
used to initialize objects (instance variables)

31 / 59

Constructors

Constructors
Cat(String name, int yearOfBirth) {

this.name = name;
this.yearOfBirth = yearOfBirth; this.mood =

"grumpy"; }

same name as the class name
have parameters like regular methods
do not have an explicit return type or return value
used to initialize objects (instance variables)

31 / 59

Constructors

Constructors
Cat(String name, int yearOfBirth) {

this.name = name;
this.yearOfBirth = yearOfBirth; this.mood =

"grumpy"; }

same name as the class name
have parameters like regular methods
do not have an explicit return type or return value
used to initialize objects (instance variables)

31 / 59

Constructors

Constructors
Cat(String name, int yearOfBirth) {

this.name = name;
this.yearOfBirth = yearOfBirth; this.mood =

"grumpy"; }

same name as the class name
have parameters like regular methods
do not have an explicit return type or return value
used to initialize objects (instance variables)

31 / 59

Constructors

this

this is used to refer to the object itself
e.g. this.name = “Gracie”; this.name = name;

distinguishes between instance variables and parameter names or local
variables:
Cat(String name, int yearOfBirth) {

this.name = name;
. . .

}

32 / 59

Constructors

this

this is used to refer to the object itself
e.g. this.name = “Gracie”; this.name = name;

distinguishes between instance variables and parameter names or local
variables:
Cat(String name, int yearOfBirth) {

this.name = name;
. . .

}

⇒ Instance variable name

32 / 59

Constructors

this

this is used to refer to the object itself
e.g. this.name = “Gracie”; this.name = name;

distinguishes between instance variables and parameter names or local
variables:
Cat(String name, int yearOfBirth) {

this.name = name;
. . .

}

⇒ Parameter name

32 / 59

Detour: Instance initialization

Initializer: alternative to constructors
Instance variable initializers
Instance initializers (instance initialization block)

33 / 59

Instance variable initializers

Consists of an equals sign and one expression

Example: initializing a student (constructor)
public class StudentInitializer {

private String major;
public StudentInitializer() {

this.major = "CoLi";
}

}

Alternative: instance variable initializer
public class StudentInitializerInstInit {

private String major = "CoLi";
// no constructor...

}

34 / 59

Instance initialization block

Same idea as instance initializers
Allows more complex operations for initialization
No forward reference

This will not compile!
public class Restaurant {

private int chairs = tables * 4;
private int tables = 10;

}

35 / 59

Options for initializing instance variables

Summary
There are three ways to initialize default values for new objects:

1 Constructor: set values directly or use parameters (next section)
2 Variable initializer: simple assignment of values to instance variables

where they are declared in a class
3 Initialization block: more complex block that is executed prior to the

constructor

⇒ example: Moodle

36 / 59

Pass by value

Pass by value
What happens with a variable if you call a method with the variable
as a parameter?
Head First Java (2nd ed.), p. 77.

37 / 59

Pass by value vs. pass by reference – Litmus test

Aim: testing whether a programming language performs pass-by-value
(Java!) or pass-by-reference

Litmus test
swap(Type arg1, Type arg2) {

Type temp = arg1;
arg1 = arg2;
arg2 = temp;

}

If the values of arg1 and arg2 are swappable: pass-by-reference
(e.g. C++)
You cannot do this in Java!

38 / 59

Outline

1 Recap
Control structures
Reference types (1): arrays

2 Reference types (2): classes
Classes
Object initialization

3 Introduction to OOP

39 / 59

What is an object?

source: http://geek-and-poke.
com/2012/08/teaching-oo.html

40 / 59

http://geek-and-poke.com/2012/08/teaching-oo.html
http://geek-and-poke.com/2012/08/teaching-oo.html

Everything is an object

Everything is an object. Think of an object as a fancy variable; it stores
data, but you can ‘make requests’ to that object, asking it to perform
operations on itself. In theory, you can take any conceptual component in
the problem you’re trying to solve (dogs, buildings, services, etc.) and
represent it as an object in your program.

Source: Thinking in Java, 3rd Ed.

41 / 59

Definition of a program

A program is a bunch of objects telling each other what to do by
sending messages. To make a request of an object, you ‘send a message’
to that object. More concretely, you can think of a message as a request
to call a method that belongs to a particular object.

Source: Thinking in Java, 3rd Ed.

42 / 59

Objects and complexity

Each object has its own memory made up of other objects. Put
another way, you create a new kind of object by making a package
containing existing objects. Thus, you can build complexity into a program
while hiding it behind the simplicity of objects.

Source: Thinking in Java, 3rd Ed.

43 / 59

Objects and data types

Every object has a type. Using the parlance, each object is an instance
of a class, in which ’class’ is synonymous with ’type’. The most important
distinguishing characteristic of a class is “What messages can you send to
it?”

Source: Thinking in Java, 3rd Ed.

44 / 59

Objects and abstraction

All objects of a particular type can receive the same messages. This
is actually a loaded statement, as you will see later. Because an object of
type ‘circle’ is also an object of type ‘shape,’ a circle is guaranteed to
accept shape messages. This means you can write code that talks to
shapes and automatically handle anything that fits the description of a
shape. This substitutability is one of the powerful concepts in OOP.

Source: Thinking in Java, 3rd Ed.

45 / 59

A simple example of a class

Modeling a triangle
What fields do we need?
What methods could be useful?

46 / 59

class Triangle{
double a,b,c;
double alpha ,beta ,gamma;

boolean checkAngularSum (){
double asum;
asum = alpha + beta + gamma;
if (asum == 180.0)

return true;
else

return false;
}

double getPerimeter (){
return a + b + c;

}
}

Triangle.java

47 / 59

Creating objects

public class TriangleDemo1 {

public static void main(String [] args) {
// Creation of a new object of the type Triangle
Triangle t = new Triangle ();

}
}

TriangleDemo1.java

The new operator instantiates a new object.
Variable t refers to an instance of an object of type Triangle with all
instance variables and methods

48 / 59

Accessing variables of an object

public class TriangleDemo2 {

public static void main(String [] args) {
Triangle t = new Triangle ();
// assign a value to t’s instance variable a
t.a = 2;
System.out.println(t.a);

}
}

TriangleDemo2.java

Variables of a class can be accessed with the “.” operator (if they are not
declared as private). Alternatively: separate methods (getters).

49 / 59

Declaration vs. object creation

50 / 59

The new operator

The declaration of a variable (Triangle t) declares the variable but
does not allocate memory
The new operator instantiates a new object of the specified type and
allocates memory
in general:
<object reference variable> = new <class name>() ;

<class name>() calls the default constructor

51 / 59

Declaration, Creation, Assignment (HFJ, p. 240)

52 / 59

Multiple instances of a class

t1 and t2 refer to different objects, i.e. instances derived from the
same class
Instance variables of both objects can have different values!

53 / 59

Assigning object reference variables

What does this mean for the instance variables of t1 and t2?
54 / 59

Assigning object reference variables – example

1 class TriangleDemo{
2 public static void main(String args []){
3 Triangle t1 = new Triangle ();
4 Triangle t2 = new Triangle ();
5
6 t1.alpha = 45.0;
7 t1.beta = 45.0;
8 t1.gamma = 90.0;
9

10 t2.alpha = 30.0;
11 t2.beta = 105.0;
12 t2.gamma = 45.0;
13
14 t2 = t1;
15
16 t1.a = 5.0;
17 }
18 }

listing-09.java
55 / 59

Exercise

Object declaration vs. instantiation
Exercise:
Head First Java (2nd ed.), p. 63.

56 / 59

Methods of the class Triangle

1 class Triangle{
2 double a,b,c;
3 double alpha ,beta ,gamma;
4
5 boolean checkAngularSum (){
6 double asum;
7 asum = alpha + beta + gamma;
8 if (asum == 180.0)
9 return true;

10 else
11 return false;
12 }
13
14 double getPerimeter (){
15 return a + b + c;
16 }
17 }

Triangle.java

57 / 59

Accessing methods of a class

1 public class TriangleDemo3 {
2
3 public static void main(String [] args) {
4 Triangle t1 = new Triangle ();
5 t1.alpha = 60;
6 t1.beta = 60;
7 t1.gamma = 60;
8 boolean correct = t1.checkAngularSum ();
9 System.out.println("Correct angular sum: "+correct);

10 }
11 }

TriangleDemo3.java

Methods of a class are accessed with the (already known) “.” operator

58 / 59

Literature

Sierra, K. & Bates, B.
Head First Java. (Ch. 2, 4)
O’Reilly Media, 2005.

Ullenboom, Ch.
Java ist auch eine Insel. (Ch. 3)
Galileo Computing, 2012.

Eckel, B. (more as a comprehensive reference)
Thinking in Java. (Ch. 2 & 4)
Prentice Hall, 2006.

59 / 59

	Recap
	Control structures
	Reference types (1): arrays

	Reference types (2): classes
	Classes
	Object initialization

	Introduction to OOP

