
Programmieren II
Modifiers & Overloading

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Contains material from T. Bögel, K. Spreyer, S. Ponzetto, M. Hartung)

May 8, 2014

1 / 50

Outline

1 Recap
Syntax of a class definition
Object declaration vs. instantiation

2 Constructors

3 Modifiers
static
private, public etc.

4 Overloading methods

2 / 50

Outline

1 Recap
Syntax of a class definition
Object declaration vs. instantiation

2 Constructors

3 Modifiers
static
private, public etc.

4 Overloading methods

3 / 50

What is an object?

Everything is an object
Objects store data, provide methods
Classes are used to instantiate objects of the same type
You should know the difference between declaration, creation and
assignment

4 / 50

Object Oriented Design

Coming up with classes
Idea: a problem is separated into multiple, independent components
that are self-contained
Ideally: one component == one class
OOP is no exact science, there are always multiple acceptable
solutions!

Hints
Objects should be treated as a “Black Box” (encapsulation)
Communication between objects with well-defined interfaces
(methods). No direct access to instance variables
Interaction between objects should be minimized

5 / 50

Syntax of a class definition

Usually, classes consist of data (instance variables, “fields”) and code
(instance methods). Instance variables and instance methods are often
called elements of a class.
class <class name > {

<type > <instance variable >;
<type > <instance variable >;

<type > <method name >(<list of parameters >){
//...

}

<type > <method name >(<list of parameters >){
//...

}
}

listing-06.java

6 / 50

Constructors

Constructors
Cat(String name, int yearOfBirth) {

this.name = name;
this.yearOfBirth = yearOfBirth;
this.mood = "grumpy";

}

same name as the class name
have parameters like regular methods
do not have an explicit return type or return value
used to initialize objects (instance variables)

7 / 50

Declaration vs. instantiation

Declaration, instantiation, assignment
Class: Triangle.java
Reference variable: same type as the class: Triangle t;
(declaration)
Instantiation of a new object: new Triangle();

Assigning the object to the reference variable: t = new Triangle();

8 / 50

Variable declaration

Statement Result

Triangle t; t null

Declaration of a new variable of type "Triangle". Does not point to any
object at this point.

9 / 50

Object instantiation

Statement

Result

new Triangle();

class definition

a
b

c...

instantiated object

public class Triangle {

 …

}

Triangle()

10 / 50

What happens during instantiation?

Initializing an object
Memory (on the heap) is reserved for all instance variables
Instance variables are set to default values (in two slides)
Instance initialization blocks are executed
Constructor is executed
Initialized object is returned

11 / 50

Objects on the heap

Objects on the heap
Head First Java (2nd ed.), p. 58.
Exercise: p. 64

12 / 50

Default values for instance variables

If the value of an instance variable is not explicitly stated upon
instantiation, a default value is assigned

Default values
Data type default value
byte,short,int,long 0
float,double 0.0
char ’u0000’
boolean false
reference types null

13 / 50

Options for initializing instance variables

Summary
There are three ways to initialize default values for new objects:

1 Constructor: set values directly or use parameters
2 Variable initializer: simple assignment of values to instance variables

where they are declared in a class
3 Initialization block: more complex block that is executed prior to the

constructor

⇒ example: Moodle

14 / 50

Instantiation and assignment in one step

Statement

Result

t = new Triangle();

class definition

a
b

c...

instantiated object

public class Triangle {

 …

}

Triangle()

t

t

assignment

instantiation

15 / 50

Reference variables

Statement

Result

t = new Triangle();

class definition

a
b

c...

instantiated object

public class Triangle {

 …

}

Triangle()

t

t

16 / 50

This vs. reference variable

a
b

c...

instantiated object

other object
main method etc.

t
t. gives access to the instance

this refers to all variables /
methods within an object

this

17 / 50

This

this

this is used to refer to the object itself
this is a reference variable to the object itself
e.g. this.name = “Gracie”; this.name = name;

distinguishes between instance variables and parameter names or local
variables:
Cat(String name, int yearOfBirth) {

this.name = name;
. . .

}

⇒ Instance variable name ⇒ Parameter name

18 / 50

Instance vs. local variables

Local variables
Declared within a method
Do NOT get a default value
→ Need to be initialized

Instance variables
Declared inside a class but not within a method
Instance variables are initialized automatically

19 / 50

Instance vs. local variables

methods use instance variables

fhe differet1ce betwee" it1sfat1ce
at1d local variables

public iot add() {
int total = a + b;
return total;

o Instance variables are declared
inside a class but not within a method.

e Local variables are declared within a method.
class AddThing {
iot a;
int b = 12;

Q: What about method parameters?
Howdo the rules about local variables
apply to them?

Local variables do
NOT get a default
value! The compiler
complains if you
try to use a local
variable before
the variable is
initialized.

15.2;
class Horse (
private double height
private String breed;
II more code . . .

e Local variables be initialized before usel

class Foo { "I\e" Yov.
public void go () (W()\'l t to"''' a

Ln t x; dedaye Yo WI 0 b-1nl.&t. as $CO¥\ as .
Lrrt z = x + 3; to it, tr

"------- ol.&-t.

File Edit Window He! 'r'lke6

% javac Foo.java

Foo.java:4: variable x might
not have been initialized

int z = x + 3;
1 error

A: Method parameters are virtually the
same as local variables-they're declared
Inside the method (well, technically they're
declared in the argumenr ltst of the method
rather than within the body of the method,
but they're still local variables asopposed to
Instance variables). But method parameters
will never be uninitialized, so you'll never get
a complier error telling you that a parameter
variable might not have been initialized.
But that's because the compiler will give
you an error if you try to invoke a method
without sending arguments that the method
needs.So parameters are ALWAYS initialized,
because the compiler guarantees that
methods are always called with arguments
that match the parameters declared for the
method, and the arguments are assigned
(automatically) to the parameters.

you are here . 85

HF, p. 85

20 / 50

Summary

Objects
What is a class? What’s an object?
What are the elements of a class?
Declaration, creation and assignment
Constructors
Instance initializers

21 / 50

Goals of this session

Constructors
More on constructors

Modifiers
Learn about static methods and variables
Learn about visibility of methods and instance variables
Learn how to overload (same name, different parameter list) methods

22 / 50

Outline

1 Recap
Syntax of a class definition
Object declaration vs. instantiation

2 Constructors

3 Modifiers
static
private, public etc.

4 Overloading methods

23 / 50

Constructors

Normally, we don’t want to explicitly initialize all variables for each
created instance
Instead: use a constructor to automatically initialize an object upon
its creation
Constructors do not have any explicit return value
Constructors have the same name as their class

24 / 50

Constructors with parameters
class Triangle2 {

double a,b,c;
double alpha ,beta ,gamma;

Triangle2(double alpha , double beta , double gamma){
if (checkAngularSum(alpha , beta , gamma)){

this.alpha = alpha;
this.beta = beta;
this.gamma = gamma;

} else {
System.out.println("This cannot be a triangle ..");
System.exit(1);

}
}

...
}

Triangle2.java

25 / 50

Calling the constructor – example

1 public class TriangleDemo4 {
2
3 public static void main(String [] args) {
4
5 Triangle t = new Triangle(60, 60, 60);
6 System.out.println(t.alpha);
7 // prints 60
8 }
9 }

TriangleDemo4.java

26 / 50

Constructors

Default constructor
Is provided automatically for each class
No parameter (<classname>())
No class-specific initialization

Caution
The default constructor is only provided, if no other constructors are
defined!

27 / 50

Advice for constructors

Constructors should be simple: small number of parameters, primitive
whenever possible
Consider whether to use static factory methods (later) instead of
constructors
Use the same name for constructor parameters and properties, if
appropriate
Do minimal work in the constructor!
If useful: add a default constructor

28 / 50

Outline

1 Recap
Syntax of a class definition
Object declaration vs. instantiation

2 Constructors

3 Modifiers
static
private, public etc.

4 Overloading methods

29 / 50

Modifiers: static

Static variables
In general, variables of a class are assigned to objects the class
instantiates (e.g. the variable name of the class Cat).
Sometimes it makes sense to define variables for the class itself, e.g. if
the value is identical for all objects of a class

⇒ modifier static

30 / 50

Modifiers: static

Static variables

public class Circle {

int radius;
static double pi = 3.14159;

public Circle (int r) {
radius = r;

}

public getArea () {
return (radius * radius * pi);

}
}

code/Circle.java

31 / 50

Modifiers: static

Static variables
can be accessed directly via the class itself without instantiating an
object

System.out.println(Circle.pi);

32 / 50

Modifiers: static

Static variables
can be accessed directly via the class itself without instantiating an
object

System.out.println(Circle.pi);

32 / 50

Modifiers: static

Static variables
can be accessed directly via the class itself without instantiating an
object

System.out.println(Circle.pi);

32 / 50

Modifiers: static + final

Static variables vs. constants
static variables are not constants: they can be changed and the
changed values applies to all objects of the class
to define variables as read-only (i.e. as constants), they need to be
declared as final
static final double PI = 3.14159d; // static + final
final int yearOfBirth = 1999; // only final

Convention: constants are written in capital letters

33 / 50

Modifiers: static

Static methods
are also accessed directly via the class itself
do not have access to non-static elements (why?)

Example
public class Circle {
. . .

public static double getPi () {
return pi;

}
. . .
}

34 / 50

Modifiers: public and private

Visibility
public and private (and protected – later) specify the visibility of
class elements (variables, methods)
visibility determines who is able to access an element

35 / 50

Modifiers: public and private

public

public elements are visible everywhere
public variables can be accessed and changed from outside the class
public methods can be called from outside the class

⇒ public elements are interfaces of an object to the outside world

36 / 50

Modifiers: public and private

private

private elements are visible to objects of the class only
private variables are accessed and assigned within the class
private methods can only be accessed in methods within the same
class

⇒ private allows “hiding” details of the implementation
⇒ private declaration protects from unregulated access to class details

37 / 50

Modifiers: public and private

Variables that can’t be used?
just because an instance variable is not directly accessible, does not
mean it can’t be used
use public accessors (“getters”)
public double getAlpha() {

return this.alpha;
}

and “setters”
public void setAlpha(double alpha) {

this.alpha = alpha;
}

38 / 50

Modifiers: public and private

Advantages of private variable + public setter/getter
Check for inconsistencies
Implementation independent from interface

39 / 50

Modifiers

Other modifiers
We’ll cover these later:

protected
final
abstract

not covered in this lecture
native, strict, synchronized, transient, volatile

40 / 50

Real developers encapsulate!

Without encapsulation. . .
Reference variable: Cat myCat = new Cat();

This would be ok: myCat.height = 27;

This would be disastrous: myCat.height = -1;

→ we need to protect the cat (and all other objects) from invalid size (and
other variable) changes!

Encapsulation
Always choose the most restrictive visibility possible
To allow changes: use setters and getters
This process is called encapsulation
Mark instance variables private
Mark getters/setters public

41 / 50

Outline

1 Recap
Syntax of a class definition
Object declaration vs. instantiation

2 Constructors

3 Modifiers
static
private, public etc.

4 Overloading methods

42 / 50

Overloading

Java allows to declare multiple methods with the same name within
one class, if their parameter list differs
This is called overloading of methods
Distinction between different versions of an overloaded method is
done by the type and number of parameters
Overloaded methods can have a different return type!
Constructors can also be overloaded

43 / 50

Overloading

Overloading
Multiple methods with the same name but different parameters
Parameters differ in number and/or type

Often used for constructors:

Cat() { ... }
Cat(int age) { ... }
Cat(int age, boolean isGrumpy) { ... }
Cat(int age, boolean isGrumpy, double weight) { ... }

44 / 50

Overloading: example

Imagine three different alternatives for purring in the Cat class

public void purr(String s) { ... }
public void purr(Sound s) { ... }
public void purr() { ... }

Depending on the provided parameters, the appropriate method is called and
executed

E.g. catVar.purr(); vs. catVar.purr("Purr!")

45 / 50

Overloading

Overloading constructors
Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this.age = age;
this.isGrumpy = isGrumpy;

}

Cat(int age, boolean isGrumpy, double weight) {
this.age = age;
this.isGrumpy = isGrumpy;
this.weight = weight;

}

Avoid duplicate code!!

46 / 50

Overloading

Overloading constructors
Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this.age = age;
this.isGrumpy = isGrumpy;

}

Cat(int age, boolean isGrumpy, double weight) {
this.age = age;
this.isGrumpy = isGrumpy;
this.weight = weight;

}

Avoid duplicate code!!

46 / 50

Overloading

Overloading constructors
Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this.age = age;
this.isGrumpy = isGrumpy;

}

Cat(int age, boolean isGrumpy, double weight) {
this.age = age;
this.isGrumpy = isGrumpy;
this.weight = weight;

}

Avoid duplicate code!!

46 / 50

Overloading

Constructor chaining
Duplicating initialization code in multiple methods should be avoided
Instead: constructor chaining
Call simple constructors from more complex ones
Syntax: this(...);

Needs to be the first statement in a constructor!

47 / 50

Overloading

Constructor chaining)

Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this.age = age;

this.isGrumpy = isGrumpy;
}

Cat(int age, boolean isGrumpy, double weight) {
this.age = age;
this.isGrumpy = isGrumpy;

this.weight = weight;
}

48 / 50

Overloading

Constructor chaining)

Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this.age = age;

this.isGrumpy = isGrumpy;
}

Cat(int age, boolean isGrumpy, double weight) {
this.age = age;
this.isGrumpy = isGrumpy;

this.weight = weight;
}

48 / 50

Overloading

Constructor chaining)

Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this(age);

this.isGrumpy = isGrumpy;
}

Cat(int age, boolean isGrumpy, double weight) {
this.age = age;
this.isGrumpy = isGrumpy;

this.weight = weight;
}

48 / 50

Overloading

Constructor chaining)

Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this(age);

this.isGrumpy = isGrumpy;
}

Cat(int age, boolean isGrumpy, double weight) {
this.age = age;
this.isGrumpy = isGrumpy;

this.weight = weight;
}

48 / 50

Overloading

Constructor chaining)

Cat(int age) { this.age = age; }

Cat(int age, boolean isGrumpy) {
this(age);

this.isGrumpy = isGrumpy;
}

Cat(int age, boolean isGrumpy, double weight) {
this(age, isGrumpy);

this.weight = weight;
}

48 / 50

What you should know after this session

What does static mean?
What’s the difference between private and public?
Why do we need private variables and methods?
How and why do we overload methods? (. . . and what does
overloading actually mean)

49 / 50

Literature

Sierra, K. & Bates, B.
Head First Java. (Mostly Ch. 3 & 4)
O’Reilly Media, 2005.

Ullenboom, Ch.
Java ist auch eine Insel. (Ch. 5)
Galileo Computing, 2012.

Eckel, B. (for reference)
Thinking in Java. (Ch. 2 & 4)
Prentice Hall, 2006.

50 / 50

	Recap
	Syntax of a class definition
	Object declaration vs. instantiation

	Constructors
	Modifiers
	static
	private, public etc.

	Overloading methods

