
Programmieren II
Exceptions

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from T. Bögel)

May 22, 2014

1 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

2 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

3 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

4 / 86

Format strings I

Format strings
Format specifiers begin with a %

End with a 1- or 2-character conversion

Examples for conversions
d formats integer value as a decimal value
f formats floating point values
n formats platform-specific new line
s formats any value as a string

5 / 86

Format strings II

Additional elements
Precision (e.g. for floats)
Width (minimum width)
Flags (special formatting options)
Argument index

6 / 86

Format strings III

Example
double amount = 34002005.2450;
System.out.format("Money gained/lost since last

statement: %,.2f", amount);

Output:

Money gained/lost since last statement: 34,002,005.25

printf and format are synonyms

7 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

8 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

9 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

9 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

9 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

9 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

boolean result = m.matches(); // result = ?

9 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

result = m.lookingAt(); // result = ?

9 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

result = m.find(); // result = ?

result = m.find(); // result = ?

9 / 86

java.util.regex

Methods of the class Matcher
3 Methods:

boolean matches() complete match
boolean lookingAt() match with prefix
boolean find() match with sub-sequence (iterative)

Pattern p = Pattern.compile("ab");

Matcher m = p.matcher("abcdabcd");

result = m.find(); // result = ?
result = m.find(); // result = ?

9 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

10 / 86

Reading a file line-by-line (HFJ, pp. 452 – 454)

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;

public class PlaintextReader {
public static void main(String [] args) {

try {
BufferedReader br = new BufferedReader(new FileReader("

test.txt"));
String line = br.readLine ();
while (line != null) {

line = br.readLine ();
System.out.println(line);

}
// always ensure that a stream is closed!
br.close();

} catch (IOException e) {e.printStackTrace ();}
}

}

code/PlaintextReader.java
11 / 86

Writing to a file

import java.io.BufferedWriter;
import java.io.FileWriter;
import java.io.IOException;

public class PlaintextWriter {
public static void main(String [] args) {

try {
BufferedWriter bw = new BufferedWriter(new FileWriter("

test.txt"));
bw.write("bla , bla , bla\n");
bw.close();

} catch (IOException e) {
e.printStackTrace ();

}

}
}

code/PlaintextWriter.java

12 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

13 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

14 / 86

NIO.2

New Input/Output Classes introduced in Java 7
Java NIO.2 introduced in Java 7
Comprehensive support for file I/O and file system interaction
Tutorial:
http://docs.oracle.com/javase/tutorial/essential/io/

What is a Path?
Hierarchical structure starting at the root node (/ or C:\, D:\ etc.)
Absolute path: /home/root/statusReport.txt
Relative path: joe/foo

15 / 86

http://docs.oracle.com/javase/tutorial/essential/io/

The Path class

java.nio.file.Path

Primary entry point for file I/O
Programmatic representation of a path in the file system
Path reflects underlying OS

Obtaining a Path object
Helper class: Paths
Path p1 = Paths.get(“/tmp/foo”);

Path p2 =
Paths.get(“/home/root”,“Documents”,“world_formula.txt”);

Path p5 =
Paths.get(System.getProperty(“user.home”),“logs”,
“foo.log”);

16 / 86

A selection of Path methods

Path methods
toString: returns a string representation of the Path

getFileName: returns the last element of the sequence of name
elements
getParent: returns the path of the parent directory

17 / 86

Joining two paths

Paths can be joined with the resolve method
Partial path given as a parameter is appended to original path

Example

Path p1 = Paths.get("/home/joe/foo");
// Result is /home/joe/foo/bar
System.out.format("%s%n", p1.resolve("bar"));

Additional methods
Check additional methods in the official Java API:
http://docs.oracle.com/javase/7/docs/api/

18 / 86

http://docs.oracle.com/javase/7/docs/api/

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

19 / 86

Files methods

Class Files provides many methods
Read the Java API to get an overview: http://docs.oracle.com/
javase/7/docs/api/java/nio/file/Files.html

20 / 86

http://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Files.html

Checking a file or directory

Verifying existence of file/directory
Static method: public static boolean exists(Path
path,LinkOption... options)

Equivalently: . . . notExists . . .

Checking File Accessibility
Verifying that a file is accessible:

isReadable(Path)
isWritable(Path)
isExecutable(Path)

21 / 86

Deleting a file or directory

Files methods
Two methods to delete files, directories and links:

1 delete(Path): deletes the file or throws an exception, if the deletion
fails

2 deleteIfExists(Path): deletes the file. No exception, if the file does
not exist

22 / 86

Commonly used methods for small files I

Reading all bytes or lines at once
Multiple small files
Read all lines: Files.readAllLines(Path path, Charset cs)
throws IOException

Read all bytes: Files.readAllBytes(Path path)

Writing all bytes or lines to a file
File.write(Path, byte[], OpenOption...)

Files.write(Path, Iterable<extends CharSequence>,
Charset, OpenOption...)

23 / 86

Commonly used methods for small files II

Example

Path file = Paths.get("test.txt");
byte[] buf = ...;
Files.write(file , buf);

24 / 86

Buffered I/O I

Conveniently reading a file
Convenience method:
Files.newBufferedReader(Path, Charset)

Opens a file for reading
Returns a BufferedReader

Similar for BufferedWriter:
Files.newBufferedWriter(Path, Charset, OpenOption...)

25 / 86

Buffered I/O II

Example

Charset charset = Charset.defaultCharset ();
try (BufferedReader reader = Files.newBufferedReader(file ,

charset)) {
String line = null;
while ((line = reader.readLine ()) != null) {

System.out.println(line);
}

} catch (IOException x) {
System.err.format("IOException: %s%n", x);

}

26 / 86

Creating files I

Creating files
Method: Files.createFile(Path, FileAttribute<?>)

Creates a file with an initial set of attributes
If no attributes are specified: default attributes

27 / 86

Creating files II

Example

Path file = ...;
try {

// Create the empty file with default permissions , etc.
Files.createFile(file);

} catch (FileAlreadyExistsException x) {
System.err.format("file named %s" +

" already exists%n", file);
} catch (IOException x) {

// Some other sort of failure , such as permissions.
System.err.format("createFile error: %s%n", x);

}

28 / 86

Creating temporary files

Temporary files
Platform-specific creation of a temp file
Two methods:

createTempFile(Path dir, String prefix, String suffix,
FileAttribute<?>... attrs)
createTempFile(String prefix, String suffix,
FileAttribute<?>... attrs)

Example: creating a temp file

try {
Path tempFile = Files.createTempFile(null , ".tmp");
System.out.format("The temporary file" +

" has been created: %s%n", tempFile);
} catch (IOException x) {

System.err.format("IOException: %s%n", x);
}

29 / 86

That’s just the beginning. . .

Other NIO.2 methods
Java NIO.2 provides many methods for commonly used file operations
You’ve seen just a few of them
Other things you might be interested in:

Walking the file tree
http://docs.oracle.com/javase/tutorial/essential/io/walk.html

Finding files
http://docs.oracle.com/javase/tutorial/essential/io/find.html

Watching directory for changes
http://docs.oracle.com/javase/tutorial/essential/io/notification.html

. . .
Read the NIO.2 documentation

30 / 86

http://docs.oracle.com/javase/tutorial/essential/io/walk.html
http://docs.oracle.com/javase/tutorial/essential/io/find.html
http://docs.oracle.com/javase/tutorial/essential/io/notification.html

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

31 / 86

Summary

java.io: classes for reading and writing files
Sequential access streams for bytes and strings

java.nio.file

Extensive support for file system I/O
Comprehensive API as a starting point

Path class: manipulating a path
Files class: file operations, such as moving, copy, deleting, and also
methods for retrieving and setting file attributes

More information on NIO.2:
http://openjdk.java.net/projects/nio/

32 / 86

http://openjdk.java.net/projects/nio/

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

33 / 86

What you should know about exceptions

Why do we need exceptions?
What’s the difference between checked and unchecked exceptions?
What different possibilities do you have to handle checked exceptions?
How do you throw your own exception?

34 / 86

Let’s talk about errors and mistakes. . .

source: http:
//software.intel.
com/sites/default/
files/race.jpg

35 / 86

http://software.intel.com/sites/default/files/race.jpg
http://software.intel.com/sites/default/files/race.jpg
http://software.intel.com/sites/default/files/race.jpg
http://software.intel.com/sites/default/files/race.jpg

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

36 / 86

Exceptions

What is an exception?
Shorthand for exceptional event
Definition:

Event, which occurs during the execution of a program, that
disrupts the normal flow of the program’s instructions

37 / 86

What happens at an exception?

1 Error occurs within a method
2 Method creates an exception object
3 → throwing an exception

Exception Object
Information about the error
Type of the error
State of the application at error time

38 / 86

Exception handling

Call stack
Thrown exceptions need to be handled somehow
Runtime system searches ordered list of methods (call stack) for
exception handling code

Call stack. Source:
http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

39 / 86

http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Throwing, forwarding and catching exceptions

Proceed search through call stack in reversed order (forward)
If appropriate handler is found: pass exception object to it
Appropriate: correct type
Exception handler catches the exception
Without any appropriate exception handler: program terminates :(

Searching the call stack for the exception handler. Source:
http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

40 / 86

http://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

41 / 86

Catch or Specify Requirement I

1) Checked exceptions
Exceptions that should be handled
e.g. java.io.FileNotFoundException
Catch or specify requirement

2) Errors
Usually external conditions a program cannot recover from
Example: java.io.IOError

3) Runtime exceptions
Usually programming bugs
Meet your friend, the NullPointerException

Unchecked exceptions

42 / 86

Catch or Specify Requirement II

Checked exceptions need to be handled
1 Method has a try statement catching a specific exception
2 Method “announces” that it can throw an exception (passing it up

the call stack)

Otherwise: code won’t compile
Method can throw an exception via the throws clause

43 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

44 / 86

Dealing with exceptions

Use try, catch, finally blocks to write an exception handler
New in Java 7: try-with-resources

Example
ChatReader.java (next slide)
readline: call to a constructor to instantiate FileReader

If file cannot be opened: constructor throws FileNotFoundException
Class won’t compile
IOException is a checked exception
ArrayIndexOutOfBoundsException: unchecked exception

45 / 86

ChatReader: checked vs. unchecked exceptions

import java.io.BufferedReader;

public class ChatReader {
...

public String [] readlines () {
/* This won’t compile! FileReader throws a checked

exception! */
BufferedReader br = new BufferedReader(new FileReader(this.

fileName));
String [] lines = new String [1];
/* Throws an unchecked exception (does not need to be

handled) */
lines [10] = "test";

}

}

code/ChatReader.java

46 / 86

The try block

Enclose code that might throw an exception within a try block

try {
code

}
catch and finally blocks . . .

Each line that might throw an exception: own line
Or: single try block with multiple handlers for exceptions
For each try block, you need to specify a catch block

47 / 86

The catch blocks I

Goal: associate exception handlers with a try block
Solution: define one (or more) catch blocks directly after the try
block
No code between the end of try and the beginning of catch

try {

} catch (ExceptionType name) {

} catch (ExceptionType name) {

}

48 / 86

The catch blocks II

catch blocks
Each catch block: exception handler that handles indicated type of
exception
ExceptionType is a name of a Throwable class
Within the handler code, exception can be referred to by name variable
Code in catch block is executed when exception handler is invoked
Exception handler is triggered if handler is first one in call stack with
correct ExceptionType

49 / 86

The catch blocks III

Catching more than one exception (Java ≥ 7)
Java 7 and newer: one catch block for multiple exceptions
Exception types are separated by |
Example:

catch (IOException|SQLException ex) {
logger.log(ex);
throw ex;

}

50 / 86

The finally block

Cleaning up the mess. . .
A finally block executes whenever a try block exists
finally is always executed
Useful for cleanup (even if no exceptions are expected)
Use cases: closing connections, closing files (!) etc.
Things in finally should not be done in the catch block
Example:

finally {
...

}

51 / 86

Try-with-resources I

Files should always be closed
try statement with one or more resources
Resource: object that must be closed after usage
Try-with-resources ensures that resources are closed

52 / 86

Try-with-resources II

Example

static String readFirstLineFromFile(String path) throws
IOException {
try (BufferedReader br =

new BufferedReader(new FileReader(path))) {
return br.readLine ();

}
}

BufferedReader is the resource to be closed
No matter what happens: br will be closed

53 / 86

The Exception class

Commonly used method
Print the stack trace: public void printStackTrace()

54 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

55 / 86

Delegating exceptions I

Two different approaches
Up to now: catching and handling exceptions within a method
Alternative: delegate exceptions to handlers further up the call stack

Checked exceptions need to be taken care of
Instead of catching: specifying that a method throws an exception
Somebody calling the method needs to take care of the exception

56 / 86

Delegating exceptions II

Syntax
throws statement in the method signature
Specifies what kind of exception is thrown
Note: only checked exceptions need to be specified (or caught)
Example:

public String [] readlines () throws IOException {
throw new IOException ();

}

57 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

58 / 86

Let’s throw exceptions

About the origin of . . . exceptions
We know how to handle exceptions
But: what’s the actual origin of an exception?
Each exception is thrown somewhere
Exceptions are thrown with throw

Each exception is a sub-class of Throwable
Creating custom exceptions: sub-class Throwable

59 / 86

The throw statement

Throwing exceptions
throw statement throws exceptions
Single argument: throwable object
Example:

throw someThrowableObject;

60 / 86

Example: stack I

Example: pop method of a common stack object
pop removes the top element from the stack and returns it

public Object pop() {
Object obj;

if (size == 0) {
throw new EmptyStackException ();

}

obj = objectAt(size - 1);
setObjectAt(size - 1, null);
size --;
return obj;

}

61 / 86

Example: stack II

pop throws an exception
If the stack is empty: throw an EmptyStackException object
Why does pop neither handle nor delegate the exception?
EmptyStackException is not a checked exception!

62 / 86

Exception hierarchy I

Throwable class hierarchy.
source: http://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html

63 / 86

http://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html

Exception hierarchy II

Error class
Hard failure in the Java virtual machine
E.g. dynamic linking failure
Usually not recoverable

Exception class
Most thrown and caught exceptions descendants of Exception
Look at some exceptions: http://docs.oracle.com/javase/7/
docs/api/java/lang/Exception.html

Special case: RuntimeException
Indicate incorrect use of API
(Frequent) example: NullPointerException: accessing members of
object through null reference
You normally should not throw RuntimeExceptions
Read through the list of exceptions!

64 / 86

http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html

Chained Exceptions I

Responding to an exception by throwing another one
First exception causes second exception
This can be done with ChainedExceptions

Useful methods for chained exceptions
Throwable getCause()
Throwable initCause(Throwable)
Throwable(String, Throwable)
Throwable(Throwable)

65 / 86

Chained Exceptions II

Example

try {

} catch (IOException e) {
throw new SampleException("Other IOException", e);

}

When IOException occurs: new SampleException is thrown

66 / 86

Accessing stack trace information I

Stack trace
Execution history of the current thread
Lists names of classes and methods that were called when an
exception occurred

67 / 86

Accessing stack trace information II

Accessing and formatting the stack trace

catch (Exception cause) {
StackTraceElement elements [] = cause.getStackTrace ();
for (int i = 0, n = elements.length; i < n; i++) {

System.err.println(elements[i]. getFileName ()
+ ":" + elements[i]. getLineNumber ()
+ ">> "
+ elements[i]. getMethodName () + "()");

}
}

68 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

69 / 86

Writing Exception classes

When to write your own exception class
Exception type not represented by Java platform?
Does custom exception type help to differentiate exceptions from
other classes?
Does your code throw more than one related exception?

Alternative: Exception(String m)

Exception constructor: Exception(String message)

Provides additional information about the error
Printed with the stack trace
Example: throw new Exception("Username invalid");

70 / 86

Unchecked Exceptions

Programmers are lazy. . .
Checked exceptions need to be taken care of
Why not just use unchecked exceptions? (RuntimeException,
Error)

Convenience vs. reliability
Exceptions are part of a method’s public interface
Programmers using your classes: knowledge about what could go
wrong
Runtime exceptions: programming problems
Runtime exceptions occur frequently
Do not throw a RuntimeException or a sub-class thereof

71 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

72 / 86

Separating Error-Handling Code from “Regular” Code I

Code for the case of exceptional events is separated from main
program logic
Example

readFile {
open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

}

73 / 86

Separating Error-Handling Code from “Regular” Code II

What could possibly go wrong?
What happens if the file can’t be opened?
What happens if the length of the file can’t be determined?
What happens if enough memory can’t be allocated?
What happens if the read fails?
What happens if the file can’t be closed?

errorCodeType readFile {
initialize errorCode = 0;

open the file;
if (theFileIsOpen) {

determine the length of the file;
if (gotTheFileLength) {

allocate that much memory;
if (gotEnoughMemory) {

74 / 86

Separating Error-Handling Code from “Regular” Code III

read the file into memory;
if (readFailed) {

errorCode = -1;
}

} else {
errorCode = -2;

}
} else {

errorCode = -3;
}
close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {

errorCode = errorCode and -4;
}

} else {
errorCode = -5;

}

75 / 86

Separating Error-Handling Code from “Regular” Code IV

return errorCode;
}

Without exception framework
Check each condition with if statements
Original seven lines of code get completely cluttered
You would not want to read such code

readFile {
try {

open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) {

76 / 86

Separating Error-Handling Code from “Regular” Code V

doSomething;
} catch (sizeDeterminationFailed) {

doSomething;
} catch (memoryAllocationFailed) {

doSomething;
} catch (readFailed) {

doSomething;
} catch (fileCloseFailed) {

doSomething;
}

With exception handling
Errors still need to be detected, reported and handled
But: actual code is much more organised

77 / 86

Propagating Errors Up the Call Stack I

Imagine an error occurs in method readFile

Only method1 cares about errors

method1 {
call method2;

}

method2 {
call method3;

}

method3 {
call readFile;

}

78 / 86

Propagating Errors Up the Call Stack II

Just propagate the error

method1 {
try {

call method2;
} catch (exception e) {

doErrorProcessing;
}

}

method2 throws exception { call method3; }

method3 throws exception { call readFile; }

Other methods do not need to detect the exception
Exception is automatically caught in method1

79 / 86

Grouping and differentiating errors I

Example: java.io.IOException
IOException most general I/O related exception
Descendants: more specific errors
Example: FileNotFoundException
Graunularity of exception handling can be adjusted

Catching specific exceptions
catch (FileNotFoundException e) {
...
}

80 / 86

Grouping and differentiating errors II

Catching more general exceptions
catch (IOException e) {

...
}

81 / 86

Too general exception handlers

Gonna catch ’em all
It’s possible to catch any exception:

// A (too) general exception handler
catch (Exception e) {

...
}

Exception very high in the class hierarchy
In most situations: be as specific as possible
Exceptions that are too general prohibit appropriate error handling

82 / 86

Outline
1 Recap

Format strings
Regular expressions
Basic I/O

2 NIO.2 – Accessing the file system
Paths
File Operations
Summary

3 Exceptions
Exceptions in General
The Catch or Specify Requirement
Catching and Handling Exceptions
Exceptions and method signatures
Throwing exceptions
Creating exceptions
Advantages of Exceptions
Summary

83 / 86

Summary

Exceptions can be thrown with throw + exception object
If a method throws a checked exception, its method signature must
contain a throws clause
Exceptions are caught via

try blocks, where exceptions might occur
catch blocks, where exceptions are caught and handled
finally blocks that are guaranteed to be executed and used for
cleanup

84 / 86

Best practises for exception handling

Recommendation: read about best practises for exception handling
Using exceptions is not very difficult
Using them appropriately is challenging in the beginning
Some interesting aspects: http:
//www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html

85 / 86

http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html
http://www.onjava.com/pub/a/onjava/2003/11/19/exceptions.html

Literature

Java Tutorials
http:
//docs.oracle.com/javase/tutorial/essential/exceptions

Sierra, K. & Bates, B.
Head First Java. (Ch. 2, 4)
O’Reilly Media, 2005.

Ullenboom, Ch.
Java ist auch eine Insel. (Ch. 7)
Galileo Computing, 2012.

86 / 86

http://docs.oracle.com/javase/tutorial/essential/exceptions
http://docs.oracle.com/javase/tutorial/essential/exceptions

	Recap
	Format strings
	Regular expressions
	Basic I/O

	NIO.2 – Accessing the file system
	Paths
	File Operations
	Summary

	Exceptions
	Exceptions in General
	The Catch or Specify Requirement
	Catching and Handling Exceptions
	Exceptions and method signatures
	Throwing exceptions
	Creating exceptions
	Advantages of Exceptions
	Summary

