
Programmieren II
Polymorphism

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from T. Bögel)

June 4, 2014

1 / 50

Outline

1 Recap - Collections

2 Advanced OOP: Polymorphism
Polymorphism
Interfaces
Abstract classes
Interfaces vs. Abstract Classes

2 / 50

Outline

1 Recap - Collections

2 Advanced OOP: Polymorphism
Polymorphism
Interfaces
Abstract classes
Interfaces vs. Abstract Classes

3 / 50

Collections

Containers for Objects
Convenient for storing, accessing and manipulating elements
Learn the Java Core Collections hierarchy by heart!
You should know common wrapper types that capture primitive data
types as objects

4 / 50

Core Collections hierarchy

source: http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

Set is special kind of Collection etc.
Map is separate from Collection

All collection interfaces are generic: ArrayList<E> list = new
ArrayList<E>;

You should specify type of objects within a collection
5 / 50

http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Concrete implementations

List:
ArrayList (insertion-order, allows duplicates)
LinkedList (insertion-order, allows duplicates)

Set:
HashSet (unordered, no duplicates)
LinkedHashSet (insertion-order, no duplicates)
Later: TreeSet (ordered, no duplicates)

Map:
HashMap (unordered keys, no duplicate keys)
LinkedHashMap (insertion-ordered keys, no duplicate keys)
Later: TreeMap (ordered keys, no duplicate keys)

6 / 50

Description of core collection interfaces

Collection
Root of collection hierarchy
Collection contains elements

Methods for each Collection

size(): int Number of elements in a collection
isEmpty(): boolean

contains(Object element): boolean

add(E element): boolean

remove(Object element): boolean

iterator(): Iterator<E>

toArray(): Object[]

equals(): boolean

7 / 50

Collection bulk operations

Methods that operate on entire collection

Methods
containsAll: does the collection contain all elements specified in
another collection?
addAll: add all elements of one collection to another collection
removeAll: remove all elements that are elements of a second
collection
clear: removes all elements from the collection

8 / 50

Additional collections

Interface implementation/description

List Stack (LIFO)
Queue holding elements prior to processing
Dequeue supports element insertion and removal at both ends

9 / 50

Outline

1 Recap - Collections

2 Advanced OOP: Polymorphism
Polymorphism
Interfaces
Abstract classes
Interfaces vs. Abstract Classes

10 / 50

Outline

1 Recap - Collections

2 Advanced OOP: Polymorphism
Polymorphism
Interfaces
Abstract classes
Interfaces vs. Abstract Classes

11 / 50

Motivation: Polymorphism

Imagine we need to filter Twitter messages
We define a Message class (think of this as a string for now)
Then we can define different types of filters which operate on
messages

We will chain these filters (apply them in a sequence)

12 / 50

Example: Filter

Each Filter filters. . .

Sub classes inherit methods of super class
This allows for Polymorphism

13 / 50

Polymorphism I

Objects of a concrete sub class can be used where super classes are
expected
All sub classes have complete functionality of super class
But: special functionality implemented in the sub class cannot be
accessed via super class

14 / 50

Polymorphism II
Example

public Message filterMessage(Message m, GeneralFilter f) {
f.apply(m);
// f.printFilterRegex () would not work

}
...
public void runFiltering(Message m) {

LinkFilter f = new LinkFilter ();
this.filterMessage(m,f);

}

filterMessage() expects GeneralFilter
LinkFilter is also a GeneralFilter

Each sub class of GeneralFilter has a apply() method
filterMessage() does not need to know which filter’s method it is
calling!

15 / 50

Polymorphism: Arrays and Collections I

Polymorphic Collections

List <GeneralFilter > filters = new ArrayList <GeneralFilter >();
filters.add(new LinkFilter ());
filters.add(new GeneralFilter ());

Each sub-class of GeneralFilter is also a GeneralFilter

Collections can be filled with sub-classes
We can only access methods in GeneralFilter

List → ArrayList itself is polymorphic

16 / 50

Polymorphism: Arrays and Collections II

Polymorphic Arrays

GeneralFilter [] filters = new GeneralFilter [2];
filters [0] = new LinkFilter ();
filters [1] = new GeneralFilter ();

Each sub-class of GeneralFilter is also a GeneralFilter

Arrays can be filled with sub-classes

17 / 50

Polymorphism: Arrays and Collections III

Accessing array elements

GeneralFilter f = filters [0]. filter(m);

For each element of the array, all functionality of the super class
can be used

18 / 50

Polymorphic Methods

The return type of a method can also be polymorphic

public GeneralFilter returnFilter () {
FormattingFilter f = new FormattingFilter ();
return f;

}

Method returns GeneralFilter
Each sub-class of GeneralFilter is also a GeneralFilter

19 / 50

Polymorphism

Polymorphism
Using Polymorphism allows extension of code
New sub-classes do not require changes in the client code
But: if a class overrides inherited methods, which method is called?
Answer: the most specific one is called

20 / 50

Polymorphism

Polymorphism
Using Polymorphism allows extension of code
New sub-classes do not require changes in the client code
But: if a class overrides inherited methods, which method is called?
Answer: the most specific one is called

20 / 50

Dynamic Method Lookup

Dynamic Method Lookup
If a class overrides inherited methods, which method is called?
polymorphic classes should keep their specific properties, even if they
seem to be objects of the super class
Decision which method to call is made during runtime
The fact that the method is looked up at runtime is called Dynamic
Method Lookup

21 / 50

Outline

1 Recap - Collections

2 Advanced OOP: Polymorphism
Polymorphism
Interfaces
Abstract classes
Interfaces vs. Abstract Classes

22 / 50

Motivation for Interfaces I

Multiple developers: need for programming contract
People should be able to write code independently
Knowledge about behavior of classes should be known early and
without knowledge about implementation

Example
Future: automatic driving
Automobile manufacturers write software to operate an automobile
GPS company writes code to use GPS to drive the car
Manufacturer needs to explicitly state specification about car
operation
Which methods+parameters does a car have (that can be used by the
GPS company)?
GPS company not interested how operation methods are implemented

23 / 50

Interfaces in Java

Interfaces in Java
Interface: reference type (similar to classes)
Specifies only constants and method signatures
Does not contain method bodies
Interfaces cannot be instantiated (i.e. no new Interface)
Interfaces can be extended
Using an interface: implements keyword

24 / 50

Interface for an automobile

public interface OperateCar {
// constant declarations , if any
// method signatures
int turn(Direction direction ,

double radius ,
double startSpeed ,
double endSpeed);

int changeLanes(Direction direction ,
double startSpeed ,
double endSpeed);

int signalTurn(Direction direction ,
boolean signalOn);

// more method signatures
}

25 / 50

Concrete car implementation I

public class OperateBMW760i implements OperateCar {

// the OperateCar method signatures , with implementation --
// for example:
int signalTurn(Direction direction , boolean signalOn) {

// code to turn BMW’s LEFT turn indicator lights on
// code to turn BMW’s LEFT turn indicator lights off
// code to turn BMW’s RIGHT turn indicator lights on
// code to turn BMW’s RIGHT turn indicator lights off

}

// other members , as needed -- for example , helper classes
not

// visible to clients of the interface
}

26 / 50

Concrete car implementation II

Implementing an interface
OperateBMW760i implements the OperateCar interface
All methods specified in the interface need to be implemented
Each car manufacturer can individually implement all methods
GPS company receives concrete implementation of different
companies
GPS company is able to invoke OperateCar methods without
knowing about their implementation
By implementing an interface, you specify that your class has certain
functionality

27 / 50

General Interface definition

public interface Interface extends Interface1 , Interface2 ,
Interface3 {

// constant declarations

// base of natural logarithms
double E = 2.718282;

// method signatures
void doSomething (int i, double x);
int doSomethingElse(String s);

}

Interfaces can extend multiple interfaces
All methods in an interface are public

All constant values are public, static and final

28 / 50

Interfaces as types

Using interfaces as types
Interface is a reference type
Interface name can be used just like any other data type
Reference variable with interface type must always point to
instance that implements interface

29 / 50

Example: Relatable interface

Interface that provides a method to determine the size of two
Relatable interfaces
Example: Rectangle implements Relatable

public interface Relatable {
// this (object calling isLargerThan)
// and other must be instances of
// the same class returns 1, 0, -1
// if this is greater than , equal
// to, or less than other
public int isLargerThan(Relatable other);

}

30 / 50

Example: Interfaces as types I

Goal: find largest object in a pair of objects
Works for any objects that implement Relatable

public Object findLargest(Object object1 , Object object2) {
Relatable obj1 = (Relatable)object1;
Relatable obj2 = (Relatable)object2;
if (obj1.isLargerThan(obj2) > 0)

return object1;
else

return object2;
}

Object is casted to Relatable →
isLargerThan can be called
Concrete implementation is irrelevant

31 / 50

Example: Interfaces as types II

Similar to multiple inheritance: each object implementing Relatable
is simultaneously an Object and Relatable

32 / 50

Checking the type of a class

isInstance

Access to the underlying class for an instance: .class property
Class is an object
Method .isInstance(Object o) checks whether an object is an
instance of the class
Class provides other useful methods that allow querying information
about an object’s class

33 / 50

Substitution for multiple inheritance

source: HFJ, p. 226

34 / 50

How you implement the Relatable interface

This depends on the relationship of your classes
For instance, suppose we can only compare the size of Rectangles.

35 / 50

Implementing the Relatable interface

public int isLargerThan(Relatable other) {
Rectangle otherRect

= (Rectangle)other;
if (this.getArea () < otherRect.getArea ())

return -1;
else if (this.getArea () > otherRect.getArea ())

return 1;
else

return 0;
}

This works fine for Squares
It throws a casting exception if other is a non-rectangle
How should we change this so we can also compare with, e.g., Circles?

36 / 50

Summary

Summary: Interfaces
Interfaces define protocols for communication between objects
Interface declarations only contain method signatures & constants, no
implementation
A class implementing an interface must implement all of its methods
Interfaces can be used just like other (reference) types

37 / 50

Outline

1 Recap - Collections

2 Advanced OOP: Polymorphism
Polymorphism
Interfaces
Abstract classes
Interfaces vs. Abstract Classes

38 / 50

Abstract classes

Motivation
Super classes represent an abstraction of sub classes
Sometimes, however, instantiating the super class does not make
sense
Examples:

Animal
Shape
Person

University library software knows about two kinds of Persons:
Student and Teacher

Instantiating Person would be strange

39 / 50

Motivation: HFJ, pp. 198–199

198 chapter 8

Animal

Feline

roam()

Canine

size
picture
food
prey

Lion

size
picture
food
prey

Tiger size
picture
food
prey

Cat

size
picture
food
prey

Wolf

size
picture
food
prey

Dog

size
picture
food
prey

Hippo

makeNoise()
eat()

roam()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

makeNoise()
eat()

picture
food
hunger
boundaries
location

makeNoise()
eat()
sleep()
roam()

designing with inheritance

Did we forget about something
when we designed this?

interfaces and polymorphism

you are here4 199

Wolf aWolf = new Wolf();

We know we can say:

A Wolf reference to a
Wolf object. Wolf

aWolf
 Wolf object

These two are the same type.

Animal aHippo = new Hippo();

And we know we can say:

Animal reference to
a Hippo object.

Animal

aHippo
Hippo object

These two are NOT the same type.

Animal anim = new Animal();

But here’s where it gets weird:

Animal reference to
an Animal object.

Animal

anim
Animal object

These two are the same type, but...
what the heck does an Animal object look like?

?

40 / 50

Abstract classes I

Abstract classes
Keyword abstract

Declare commonalities in super class, enforce implementation in
sub-class
abstract classes cannot be instantiated (new)
Sub-class needs to implement (i.e. override) all abstract methods of
the abstract class
. . . or it needs to be abstract itself

41 / 50

Abstract classes

Rules for abstract classes
Each class with abstract methods needs to be abstract

abstract classes cannot be instantiated (new)!
abstract class can contain abstract methods and implemented
methods
Methods that are private, static or final cannot be abstract as
they can’t be overridden

42 / 50

Example: GeometricShape

public abstract class GeometricShape {
public abstract double getArea ();
...

}

GeometricShapes provide a getArea() method (implementation
hidden)
Concrete implementation in GeometricShape not possible in this case
abstract methods → abstract class
abstract methods define signature only

43 / 50

Concrete implementation

public class Circle extends GeometricShape {
public static final double PI = 3.1415926536;
private double r;
public Circle(double r) { this.r = r; }
public double getArea () { return PI*r*r; }
...

}

public class Rectangle extends GeometricShape {
...

}

⇒ Concrete implementation of abstract super class
⇒ Implementation of abstract methods in GeometricShape

⇒ Additional elements (specific to Circle)

44 / 50

Abstract classes and Polymorphism

new GeometricShape() is not allowed
Nevertheless, GeometricShape can be used as reference type
(polymorphism)
GeometricShape can be used just like any other data type

Example

GeometricShape s = new Circle(1.0);
GeometricShape [] shapeArray = new GeometricShape [1];
shapeArray [0] = s;

45 / 50

Outline

1 Recap - Collections

2 Advanced OOP: Polymorphism
Polymorphism
Interfaces
Abstract classes
Interfaces vs. Abstract Classes

46 / 50

Abstract classes vs. Interfaces

Flexibility vs. reusability
Interfaces allow more flexibility by multiple inheritance
But: code duplication very likely if multiple classes implement the
same interface
Abstract class: possibility to partially implement common methods

47 / 50

Abstract classes vs. Interfaces

Compatibility
Adding new methods to an interface: all implementing classes need to
be changed
Abstract class can also add non-abstract methods that are
automatically inherited by sub-classes

48 / 50

Combining Interfaces and abstract classes

Combination of Interfaces & abstract classes
Usually: Interface + implementing abstract class (skeleton
implementation)
Concrete class can implement interface or extend abstract skeleton
class
Example: Java Collections

49 / 50

Literature

Sierra, K. & Bates, B.
Head First Java. (end of Chapter 7, Chapter 8)
O’Reilly Media, 2005.

Ullenboom, Ch.
Java ist auch eine Insel. (Sections 5.11, 5.12 & 5.13)
Galileo Computing, 2012.

The Java tutorials
http://docs.oracle.com/javase/tutorial/java/concepts

Eckel, B. (For Reference)
Thinking in Java. (Ch. 7 & 8)
Prentice Hall, 2006.

50 / 50

http://docs.oracle.com/javase/tutorial/java/concepts

	Recap - Collections
	Advanced OOP: Polymorphism
	Polymorphism
	Interfaces
	Abstract classes
	Interfaces vs. Abstract Classes

