Programmieren |l

Polymorphism

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from T. Bogel)

June 4, 2014

50

Recap - Collections

Advanced OOP: Polymorphism
m Polymorphism
m Interfaces
m Abstract classes
m Interfaces vs. Abstract Classes

Recap - Collections

Collections

m Containers for Objects
m Convenient for storing, accessing and manipulating elements
m Learn the Java Core Collections hierarchy by heart!

m You should know common wrapper types that capture primitive data
types as objects

Core Collections hierarchy

Collection Map
——
| | |
| Set List | Queue | Deque | SortedMap

[
SortedSet

source: http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

m Set is special kind of Collection etc.
m Map is separate from Collection

m All collection interfaces are generic: ArrayList<E> list = new
ArraylList<E>;

m You should specify type of objects within a collection

http://docs.oracle.com/javase/tutorial/collections/interfaces/index.html

Concrete implementations

m List:

Set:

Map:

Concrete implementations

m List:
m ArraylList

Set:

Map:

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
[

Set:

Map:

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedlList

Set:

Map:

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:
| |

Map:

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:
m HashSet

Map:

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:

m HashSet (unordered, no duplicates)
"

Map:

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:

m HashSet (unordered, no duplicates)
m LinkedHashSet

Map:

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:

m HashSet (unordered, no duplicates)
m LinkedHashSet (insertion-order, no duplicates)
m Later: TreeSet (ordered, no duplicates)

m Map:

6 /50

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:

m HashSet (unordered, no duplicates)
m LinkedHashSet (insertion-order, no duplicates)
m Later: TreeSet (ordered, no duplicates)

m Map:
m HashMap

6 /50

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:

m HashSet (unordered, no duplicates)
m LinkedHashSet (insertion-order, no duplicates)
m Later: TreeSet (ordered, no duplicates)

m Map:

m HashMap (unordered keys, no duplicate keys)
]

6 /50

Concrete implementations

m List:

m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)

m Set:

m HashSet (unordered, no duplicates)
m LinkedHashSet (insertion-order, no duplicates)
m Later: TreeSet (ordered, no duplicates)

m Map:
m HashMap (unordered keys, no duplicate keys)
m LinkedHashMap

6 /50

Concrete implementations

m List:
m Arraylist (insertion-order, allows duplicates)
m LinkedList (insertion-order, allows duplicates)
m Set:

m HashSet (unordered, no duplicates)
m LinkedHashSet (insertion-order, no duplicates)
m Later: TreeSet (ordered, no duplicates)

m HashMap (unordered keys, no duplicate keys)
m LinkedHashMap (insertion-ordered keys, no duplicate keys)
m Later: TreeMap (ordered keys, no duplicate keys)

6 /50

Description of core collection interfaces

Collection
m Root of collection hierarchy

m Collection contains elements

Methods for each Collection
m size(): int Number of elements in a collection
isEmpty(): boolean
contains(Object element): boolean
add(E element): boolean
remove(Object element): boolean
iterator(): Iterator<g>
toArray(): Object[]

equals(): boolean

Collection bulk operations

m Methods that operate on entire collection

Methods

m containsAll: does the collection contain all elements specified in
another collection?

m addAll: add all elements of one collection to another collection

m removeAll: remove all elements that are elements of a second
collection

m clear: removes all elements from the collection

Additional collections

Interface implementation/description

List Stack (LIFO)
Queue holding elements prior to processing
Dequeue supports element insertion and removal at both ends

Advanced OOP: Polymorphism
m Polymorphism
m Interfaces
m Abstract classes
m Interfaces vs. Abstract Classes

10/50

Advanced OOP: Polymorphism
m Polymorphism

11 /50

Motivation: Polymorphism

m Imagine we need to filter Twitter messages
m We define a Message class (think of this as a string for now)

m Then we can define different types of filters which operate on

messages
m We will chain these filters (apply them in a sequence)

12/50

Example: Filter

Each Filter filters. . .

LinkFilter

+apply(Message m): Message

GeneralFilter | +printFilterRegax(): String
+apply(Message m): Message [| FormattingFilter

+apply(Message m): Message

m Sub classes inherit methods of super class

m This allows for Polymorphism

13 /50

Polymorphism |

m Objects of a concrete sub class can be used where super classes are
expected

m All sub classes have complete functionality of super class

m But: special functionality implemented in the sub class cannot be
accessed via super class

14 /50

Polymorphism I

Example

public Message filterMessage(Message m, GeneralFilter f) {
f.apply(m);
// f.printFilterRegex () would not work

}

public void runFiltering(Message m) {
LinkFilter f = new LinkFilter();
this.filterMessage(m,f);

m filterMessage() expects GeneralFilter
m LinkFilter is also a GeneralFilter
m Each sub class of GeneralFilter has a apply() method

m filterMessage() does not need to know which filter's method it is
calling!
15 /50

Polymorphism: Arrays and Collections |

Polymorphic Collections

List<GeneralFilter> filters = new ArraylList<GeneralFilter>();
filters.add(new LinkFilter());
filters.add(new GeneralFilter());

m Each sub-class of GeneralFilter is also a GeneralFilter
m Collections can be filled with sub-classes
m We can only access methods in GeneralFilter

m List — ArraylList itself is polymorphic

16 /50

Polymorphism: Arrays and Collections Il

Polymorphic Arrays

GeneralFilter[] filters = new GeneralFilter[2];
filters[0] new LinkFilter();
filters[1] new GeneralFilter();

m Each sub-class of GeneralFilter is also a GeneralFilter
m Arrays can be filled with sub-classes

17 /50

Polymorphism: Arrays and Collections Il|

Accessing array elements

GeneralFilter f = filters[0].filter(m);

m For each element of the array, all functionality of the super class
can be used

18 /50

Polymorphic Methods

m The return type of a method can also be polymorphic

public GeneralFilter returnFilter() {
FormattingFilter f = new FormattingFilter ();
return f;

m Method returns GeneralFilter

m Each sub-class of GeneralFilter is also a GeneralFilter

19 /50

Polymorphism

Polymorphism
m Using Polymorphism allows extension of code
m New sub-classes do not require changes in the client code

m But: if a class overrides inherited methods, which method is called?

20 /50

Polymorphism

Polymorphism

Using Polymorphism allows extension of code

m New sub-classes do not require changes in the client code

m But: if a class overrides inherited methods, which method is called?
[

Answer: the most specific one is called

20 /50

Dynamic Method Lookup

Dynamic Method Lookup
m If a class overrides inherited methods, which method is called?

m polymorphic classes should keep their specific properties, even if they
seem to be objects of the super class

m Decision which method to call is made during runtime

m The fact that the method is looked up at runtime is called Dynamic
Method Lookup

21 /50

Advanced OOP: Polymorphism

m Interfaces

22 /50

Motivation for Interfaces |

m Multiple developers: need for programming contract
m People should be able to write code independently

m Knowledge about behavior of classes should be known early and
without knowledge about implementation

Example

m Future: automatic driving

m Automobile manufacturers write software to operate an automobile
m GPS company writes code to use GPS to drive the car
[

Manufacturer needs to explicitly state specification about car
operation

m Which methods+parameters does a car have (that can be used by the
GPS company)?

GPS company not interested how operation methods are implemented

23 /50

Interfaces in Java

Interfaces in Java

Interface: reference type (similar to classes)
Specifies only constants and method signatures

Does not contain method bodies

(]
]
m Interfaces cannot be instantiated (i.e. no new Interface)
m Interfaces can be extended

(]

Using an interface: implements keyword

24 /50

Interface

public interface OperateCar {
// constant declarations, if any
// method signatures
int turn(Direction direction,
double radius,
double startSpeed,
double endSpeed);
int changelLanes(Direction direction,
double startSpeed,
double endSpeed);
int signalTurn(Direction direction,
boolean signalOn);
// more method signatures

25 /50

Concrete car implementation |

public class OperateBMW760i implements OperateCar {

// the OperateCar method signatures, with implementation --
// for example:
int signalTurn(Direction direction, boolean signalOn) {
// code to turn BMW’s LEFT turn indicator lights on
// code to turn BMW’s LEFT turn indicator lights off
// code to turn BMW’s RIGHT turn indicator lights on
// code to turn BMW’s RIGHT turn indicator lights off
3

// other members, as needed -- for example, helper classes
not
// visible to clients of the interface

26 /50

Concrete car implementation |l

Implementing an interface

m OperateBMW760i implements the OperateCar interface

m All methods specified in the interface need to be implemented
m Each car manufacturer can individually implement all methods
|

GPS company receives concrete implementation of different
companies

m GPS company is able to invoke OperateCar methods without
knowing about their implementation

m By implementing an interface, you specify that your class has certain
functionality

27 /50

General Interface definition

public interface Interface extends Interfacel, Interface2,
Interface3 {

// constant declarations

// base of natural logarithms
double E = 2.718282;

// method signatures
void doSomething (int i, double x);
int doSomethingElse(String s);

m Interfaces can extend multiple interfaces
m All methods in an interface are public

m All constant values are public, static and final

28 /50

Interfaces as types

Using interfaces as types
m Interface is a reference type
m Interface name can be used just like any other data type

m Reference variable with interface type must always point to
instance that implements interface

29 /50

Example: Relatable interface

m Interface that provides a method to determine the size of two
Relatable interfaces

m Example: Rectangle implements Relatable

public interface Relatable {
// this (object calling islLargerThan)
// and other must be instances of
// the same class returns 1, 0, -1
// if this is greater than, equal
// to, or less than other
public int isLargerThan(Relatable other);

30 /50

Example: Interfaces as types |

m Goal: find largest object in a pair of objects
m Works for any objects that implement Relatable
public Object findLargest(Object objectl, Object object2) {
Relatable objl = (Relatable)objectl;
Relatable obj2 = (Relatable)object2;
if (objl.isLargerThan(obj2) > 0)
return objectl;

else
return object2;

m Object is casted to Relatable —
m isLargerThan can be called
m Concrete implementation is irrelevant

31/50

Example: Interfaces as types Il

m Similar to multiple inheritance: each object implementing Relatable
is simultaneously an Object and Relatable

32 /50

Checking the type of a class

isInstance
m Access to the underlying class for an instance: .class property
m Class is an object

m Method .isInstance(Object o) checks whether an object is an
instance of the class

m Class provides other useful methods that allow querying information
about an object’s class

33 /50

Substitution for multiple inheritance

Classes from different inheritance trees
can implement the same interface.

Class RoboD,
to-nz :o... {-;2 mnj

é:hm{:anee tree, bu{; it stil]

cat | Lion

source: HFJ, p. 226

34 /50

How you implement the Relatable interface

m This depends on the relationship of your classes

m For instance, suppose we can only compare the size of Rectangles.

35/50

Implementing the Relatable interface

public int islLargerThan(Relatable other) {

Rectangle otherRect
= (Rectangle)other;

if (this.getArea() < otherRect.getArea())
return -1;

else if (this.getArea() > otherRect.getArea())
return 1;

else
return 0;

m This works fine for Squares
m It throws a casting exception if other is a non-rectangle

m How should we change this so we can also compare with, e.g., Circles?

36 /50

Summary: Interfaces
m Interfaces define protocols for communication between objects

m Interface declarations only contain method signatures & constants, no
implementation

m A class implementing an interface must implement all of its methods

m Interfaces can be used just like other (reference) types

37 /50

Advanced OOP: Polymorphism

m Abstract classes

38 /50

Abstract classes

Motivation
m Super classes represent an abstraction of sub classes

m Sometimes, however, instantiating the super class does not make
sense
m Examples:

m Animal
m Shape
m Person

m University library software knows about two kinds of Persons:
Student and Teacher

m Instantiating Person would be strange

39/50

Motivation: HFJ,

designing with

Did we forget about something
‘when we designed this?

@ We've designed

pp. 196-199

Animal

nterfaces and

We know we can say:

|

R S

e b v e sane e

And we know we can say:

40

50

Abstract classes |

Abstract classes
m Keyword abstract

m Declare commonalities in super class, enforce implementation in
sub-class

m abstract classes cannot be instantiated (new)

m Sub-class needs to implement (i.e. override) all abstract methods of
the abstract class

m ...or it needs to be abstract itself

41 /50

Abstract classes

Rules for abstract classes
m Each class with abstract methods needs to be abstract
m abstract classes cannot be instantiated (new)!

m abstract class can contain abstract methods and implemented
methods

m Methods that are private, static or final cannot be abstract as
they can't be overridden

42 /50

Example: GeometricShape

public abstract class GeometricShape {
public abstract double getArea();

m GeometricShapes provide a getArea() method (implementation
hidden)

Concrete implementation in GeometricShape not possible in this case

abstract methods — abstract class

m abstract methods define signature only

43 /50

Concrete implementation

public class Circle extends GeometricShape {
public static final double PI = 3.1415926536;
private double r;
public Circle(double r) { this.r = r; }
public double getArea() { return PIxrxr; }

}

public class Rectangle extends GeometricShape {

}

m = Concrete implementation of abstract super class
m = Implementation of abstract methods in GeometricShape
m = Additional elements (specific to Circle)

44 /50

Abstract classes and Polymorphism

m new GeometricShape() is not allowed

m Nevertheless, GeometricShape can be used as reference type
(polymorphism)

m GeometricShape can be used just like any other data type

Example
GeometricShape s = new Circle(1.0);
GeometricShape[] shapeArray = new GeometricShapel[1];

shapeArray[0] = s;

45 /50

Advanced OOP: Polymorphism

m Interfaces vs. Abstract Classes

46 /50

Abstract classes vs. Interfaces

Flexibility vs. reusability
m Interfaces allow more flexibility by multiple inheritance
m But: code duplication very likely if multiple classes implement the
same interface
m Abstract class: possibility to partially implement common methods

47 /50

Abstract classes vs. Interfaces

Compatibility

m Adding new methods to an interface: all implementing classes need to
be changed

m Abstract class can also add non-abstract methods that are
automatically inherited by sub-classes

48 /50

Combining Interfaces and abstract classes

Combination of Interfaces & abstract classes
m Usually: Interface + implementing abstract class (skeleton
implementation)
m Concrete class can implement interface or extend abstract skeleton
class
m Example: Java Collections

interface AbstractlList .
] e I e— ArraylList
<<Llist=> (abstract)

49 /50

¥ Sierra, K. & Bates, B.
Head First Java. (end of Chapter 7, Chapter 8)
O'Reilly Media, 2005.

¥ Ullenboom, Ch.
Java ist auch eine Insel. (Sections 5.11, 5.12 & 5.13)
Galileo Computing, 2012.

@ The Java tutorials
http://docs.oracle.com/javase/tutorial/java/concepts

¥ Eckel, B. (For Reference)
Thinking in Java. (Ch. 7 & 8)
Prentice Hall, 2006.

50 /50

http://docs.oracle.com/javase/tutorial/java/concepts

	Recap - Collections
	Advanced OOP: Polymorphism
	Polymorphism
	Interfaces
	Abstract classes
	Interfaces vs. Abstract Classes

