Programmieren |l

Sorting Collections

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from T. Bogel)

June 5, 2014

48

Recap

Sorting
m Sorting Collections
m Sorted Collections

Summary

Recap

Polymorphism |

m Objects of a concrete sub class can be used where super classes are
expected

m All sub classes have complete functionality of super class

m But: special functionality implemented in the sub class cannot be
accessed via super class

Polymorphism I

Example

public Message filterMessage(Message m, GeneralFilter f) {
f.apply(m);
// f.printFilterRegex () would not work

}

public void runFiltering(Message m) {
LinkFilter f = new LinkFilter();
this.filterMessage(m,f);

m filterMessage() expects GeneralFilter
m LinkFilter is also a GeneralFilter
m Each sub class of GeneralFilter has a apply() method

m filterMessage() does not need to know which filter's method it is
calling!
5/48

Interfaces

Interfaces
m Interfaces define protocols for communication between objects

m Interface declarations only contain method signatures & constants, no
implementation

m A class implementing an interface must implement all of its methods

m Interfaces can be used just like other (reference) types

6 /48

Interfaces as types

Using interfaces as types
m Interfaces are reference types
m Interface name can be used just like any other data type

m Reference variable with interface type must always point to
instance that implements interface

E.g. Relatable rect = new Rectangle();

Abstract classes

Motivation
m Super classes represent an abstraction of sub classes
m Sometimes, however, instantiating the super class does not make
sense

m Examples:

m Animal
m Shape
m Person

m University library software knows two kinds of Persons: Student and
Teacher

m Instantiating Person would be strange

Example: linguistic annotation (token-based)

m You want to define linguistic token-based annotations in a document
m Concrete implementations:

m Token
m Lemma

m PoS tag

m Word sense
=

m Each linguistic annotation has a start and end position (measured in
token from beginning of the document)

48

Example: linguistic annotation

m You (as a developer) want to write different (token-based)
annotations to a file

m Linguistic annotations should be implemented by others
m To write an annotation, you need its content

m Super class: TokenAnnotation

10/48

Example: linguistic annotation

m You (as a developer) want to write different (token-based)
annotations to a file

m Linguistic annotations should be implemented by others
m To write an annotation, you need its content

m Super class: TokenAnnotation

What do we know about each TokenAnnotation object?
m Each Annotation has a start and end position

Each Annotation object has a content

[
m We do not know how this content looks like!

m Content could be very complicated to compute
[

We just need a string representing the content (for writing)

10/48

Example: linguistic annotation

m You (as a developer) want to write different (token-based)
annotations to a file

m Linguistic annotations should be implemented by others
m To write an annotation, you need its content

m Super class: TokenAnnotation

What do we know about each TokenAnnotation object?
m Each Annotation has a start and end position

Each Annotation object has a content

[
m We do not know how this content looks like!

m Content could be very complicated to compute
[

We just need a string representing the content (for writing)

— We need an abstract class!

10/48

Abstract class for T Annotation

public abstract class TokenAnnotation {
int start, end;

public Annotation(int start, int end) {
this.start = start;
this.end = end;
3
public abstract String getContent();
public int getStart() {
return start;
3
public int getEnd() {
return end;

}

11/48

Writer class

Class that writes TokenAnnotation objects
public class AnnotationWriter {

public void writeAnnotations(String fn, List<
TokenAnnotation> annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter (Paths.get(
fn), Charset.defaultCharset());
for (TokenAnnotation a : annotations) {
bw.write(a.getContent());
3

bw.close();

12 /48

Class diagram: TokenAnnotation and sub-classes

abstract

TokenAnnotation

abstr. getContent():String
getStart():int
getEnd():int

PoSTag Lemma Token

getContent():String getContent(): String getContent():String

13 /48

Advantage of abstract super class

Advantage

m Method that writes an annotation does not have to know which
annotation it is dealing with

m Writer method can be implemented at the beginning of the
implementation

m Arbitrary annotations can be added easily

m Developer writing the AnnotationWriter doesn't need to know
anything about the implementation of concrete sub-classes

14 /48

Additional request

Adding parse trees
m You also want to process parse trees
Parse trees are not token based
Parse trees have a number of tokens that are spanned by the tree

|

|

m Parse trees have a start and an end

m But: positions measured in character positions!
|

15/48

Additional request

Adding parse trees
m You also want to process parse trees
Parse trees are not token based
Parse trees have a number of tokens that are spanned by the tree
Parse trees have a start and an end

But: positions measured in character positions!

— we add an alternative super class: ParseTree

Inheritance hierarchy
m ParseTree as a sub-class of TokenAnnotation?

15/48

Additional request

Adding parse trees
m You also want to process parse trees
Parse trees are not token based
Parse trees have a number of tokens that are spanned by the tree
Parse trees have a start and an end

But: positions measured in character positions!

— we add an alternative super class: ParseTree

Inheritance hierarchy
m ParseTree as a sub-class of TokenAnnotation?
m Not really! A parse tree is not a TokenAnnotation!

m — separate inheritance structure

15/48

Modeling a parse tree

public class ParseTree {
// here: _character_ positions
int start, end;
List<TokenAnnotation> spannedAnnotations;

public ParseTree(int start, int end) {
this.start = start;
this.end = end;
3
public String getContent() {
// some implementation...
3
public List<TokenAnnotation> getSpannedAnnotations() {
return spannedAnnotations;

16 /48

New class structure

m ParseTree completely separate from TokenAnnotation

abstract

ParseTree

TokenAnnotation

getContent(): String

getSpannedAnnotations():List

abstr, getContent(): String

Lemma Taken

getContent(): String getContent():String

17 /48

Reminder: writer class

public void writeAnnotations(String fn, List<
TokenAnnotation> annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter (Paths.get(
fn), Charset.defaultCharset());
for (TokenAnnotation a : annotations) {
bw.write(a.getContent());
}

bw.close();

m ParseTree is not a TokenAnnotation

m — We cannot write parse trees!

18 /48

Writer class too concrete

Writing parse trees
m We implemented the writer class to accept each TokenAnnotation
m ParseTree is not a TokenAnnotation

m In writeAnnotations, we only access the getContent method of
TokenAnnotation

m ParseTree provides the same method

19/48

Writer class too concrete

Writing parse trees
m We implemented the writer class to accept each TokenAnnotation
m ParseTree is not a TokenAnnotation

m In writeAnnotations, we only access the getContent method of
TokenAnnotation

m ParseTree provides the same method

m We need to define that the method can handle all classes that have a
getContent method!

19/48

Writer class too concrete

Writing parse trees
m We implemented the writer class to accept each TokenAnnotation
m ParseTree is not a TokenAnnotation

m In writeAnnotations, we only access the getContent method of
TokenAnnotation

m ParseTree provides the same method

m We need to define that the method can handle all classes that have a
getContent method!

m — We define an interface: Writable!

19/48

Writable interface

Simple interface for writable classes

public interface Writable {
public String getContent();
}

20 /48

Class diagram: Writable interface & TokenAnnotation

<< Writable>>

J'ﬂ h\

F Ay

7
/!
r
!/

A
Ay
A

&
. A
|rn?(ements imp\lements
ri A
\
< abstract>
_ ParseTree
TokenAnnotation
PoSTag Lemma Token

21/48

Implementing the Writable interface

m TokenAnnotation and ParseTree need to implement Writable
TokenAnnotation

public abstract class TokenAnnotation implements Writable {

}

— No change required (TokenAnnotation already implements the
getContent method)

ParseTree

public class ParseTree implements Writable { - 3

— No change required (ParseTree already implements the getContent
method)

22 /48

Applying Writable interface to writer class

m Now, both TokenAnnotation and ParseTree implement Writable

m Both classes (and sub-classes thereof) have a getContent method

public void writeAnnotations(String fn, List<
TokenAnnotation> annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter (Paths.get(
fn), Charset.defaultCharset());
for (TokenAnnotation a annotations) {

bw.write(a.getContent());
}

bw.close();

— How can we change this method to accept both classes?

23 /48

Applying Writable interface to writer class

m Now, both TokenAnnotation and ParseTree implement Writable

m Both classes (and sub-classes therof) have a getContent method

public void writeAnnotations(String fn,
annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter (Paths.get(
fn), Charset.defaultCharset());
for (Writable a : annotations) {
bw.write(a.getContent());

List<Writable>

3

bw.close();

We just use Writable instead of TokenAnnotation!

24 /48

Abstract classes

m Begin implementation with most abstract class possible that contains
all functionality each subclass should have (TokenAnnotation)

m Implement methods that are identical for each sub-class (e.g. getter,
setter)

m Mark all other methods as abstract methods

m Exploit polymorphism wherever possible

Interfaces
m Combine two class hierarchies

m Specify “contract” that defines that all classes have particular
methods

m Use interfaces as types (polymorphism) wherever possible

25 /48

Summary |

Polymorphism
m Always use most abstract type possible

m Advantage: methods etc. can be applied to all sub-classes

m Disadvantage: loss of specificity
— special behavior of concrete sub-classes not accessible

m Exception: if a method is overwritten, the most specific method is
called (dynamic method lookup)

26 /48

Sorting
m Sorting Collections
m Sorted Collections

27 /48

Traversing collections

A) Traversing collections with for-each

for (Object o : collection)
System.out.println(o);

B) Using Iterators
m lterators allow traversing trough collections

m Each collection provides an iterator with the .iterator() method

public interface Iterator<E> {
boolean hasNext();
E next();

void remove(); //optional

m Iterator.remove(): modify the collection during iteration

28 /48

Iterator example: filtering a list

static void filter(Collection<?> c) {
for (Iterator<?> it = c.iterator(); it.hasNext();)
if (!cond(it.next()))
it.remove();

m Works for any Collection

29 /48

Recap
Sorting

m Sorting Collections

Summary

30 /48

Sorting Collections

Simple case
m Collections.sort(l) (where 1 is a List, for instance)

m Natural ordering of elements (works for all standard Java data types
out of the box)

m In order to sort a Collection, its elements need to implement
Comparable
m Overview of classes implementing Comparable:

http://docs.oracle.com/javase/tutorial/collections/
interfaces/order.html

31/48

http://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/order.html

Writing Comparable types (classes)

Comparable interface

public interface Comparable<T> {
public int compareTo(T o0);

}

m In order to sort collections with your own classes, you have to
implement Comparable!

compareTo method
m Compares the object with another object (o)

m returns negative int, if o is less than the object for which the
method is called

m returns 0, if both objects are equal

m returns positive int, if o is greater

32/48

Simple example: comparing Names

public class Name implements Comparable<Name> {
private String firstName;
private String lastName;

public Name(String first, String last) {
this.firstName = first;
this.lastName = last;

3

public int compareTo(Name o) {
int lastComp = this.lastName.compareTo(o.lastName);
if (lastComp == 0) {
return this.firstName.compareTo(o.firstName);

b

return 0;

33 /48

Comparing Persons

public class Person implements Comparable<Person> {
private Name name;
private int birthYear;

public Person(String firstN, String lastN, int birthY) {
this.name = new Name(firstN, lastN);
this.birthYear = birthyY;

3

public int compareTo(Person arg0) {
int nameComp = this.name.compareTo(arg0.name);
if (nameComp == 0) {

return arg0O.birthYear - this.birthYear;

b

return nameComp;

34 /48

equals, hashCode, compareTo

m You (almost always) want to override all three of them
m Hashcode contract: two equal objects have the same hash code

m equals() should return true under the same conditions that
compareTo return 0

35/48

Example for Name

public class Name implements Comparable<Name> {

public boolean equals(Object o) {
Name no = (Name) o;
return (no.firstName.equals(this.firstName) &&
no.lastName.equals(this.lastName));

}

public int hashCode () {
return (this.firstName + this.lastName).hashCode();

3

public int compareTo(Name o) {
int lastComp = this.lastName.compareTo(o.lastName);
if (lastComp == 0) {

return this.firstName.compareTo(o.firstName);

}

return lastComp;

36 /48

How to compare objects

m Begin with comparing most specific information
m Proceed with comparing all remaining properties of the object

m Delegate comparisons to compareTo methods of single components

37 /48

m Default ordering: natural order

m Different behavior: you need a Comparator

m Class that compares two elements of the same type
public interface Comparator<T> {

int compare(T o1, T 02);

}

38 /48

Example: Person Comparator

m Normally, sorting persons by their name first is ok
m One scenario: we want to sort them by birthyear for a company
anniversary

import java.util.Comparator;

public class YearFirstPersonComp implements Comparator<Person>

{

public int compare(Person arg0, Person argl) {
// sort persons by their birthyear
return (arg0.getBirthYear () - argl.getBirthYear());

Sorting a list of Persons

Collections.sort(personList, new YearFirstPersonComp());
39/48

Recap

Sorting

m Sorted Collections

Summary

40 /48

Sorted collections |

SortedSet interface
m head/tailSet(E e) returns sub-sets of elements less/greater than e

m subSet(E from, E to) returns a sub-set with values between from
and to

first/last() retrieves first/last element
Concrete implementation: TreeSet
All elements in a sorted set need to implement Comparable

Optional comparator can be specified to adjust ordering strategy

Constructors:

m TreeSet()
m TreeSet(Comparator comp)
...

41 /48

Sorted collections I

SortedMap interface
m Keys are ordered
m Concrete implementation: TreeMap

m Methods similar to SortedSet

m firstKey()
m subMap(K from, K to)
n ...

42 /48

Summary

43 /48

Overview: collection hierarchy

<<interface>>
Collection

<<interface>>

<<interface>>

ist Queue
i v iy
interface>>
SortedSet
‘ HashSet ‘[}inkedHashSe[‘ TreeSet H ArrayList ‘ \ Vector ‘ | LinkedList }blorityQueue

<<interface>>

<<interface>>
SortedMap

[Arrays —’ |Calle<nohsJ Hashtable LinkedHashMap I HashMap I‘ TreeMap ‘
> e
implements extends

source: collectionsjava.blogspot.de
44 /48

collectionsjava.blogspot.de

Choosing the right collection

Is order
imporkant?

will it contain
key/value pairs
ar values only?

will it contain
duplicates?

ArrayList

Inserbon order
or sorked by keys?

Is primary task
searching For elements
{contains/remove)?

Is ordet im portant?
Sorted

TreeMap ‘ ‘ LinkedHashMap

Hashset

Ordered

LinkedHashSet

Insertion order
or sorted by vaues?

source: www.sergiy.ca/guide-to-selecting-appropriate-map-collection-in-java

45 /48

www.sergiy.ca/guide-to-selecting-appropriate-map-collection-in-java

Collections

m Collection framework contains multiple classes to conveniently store
collections of objects

m Ordered (insertion-order) collections with duplicates: List (e.g.
ArraylList, LinkedList)

m Sets of elements without duplicates and no ordering: Set (e.g.
HashSet)

m Sets of elements without duplicates and ordering: SortedSet (e.g.
TreeSet)

m Mapping from keys to values: Map (e.g. HashMap, TreeMap)

46 /48

Exercises

Source: http://docs.oracle.com/javase/tutorial/collections/
interfaces/QandE/questions.html

Which collection would you choose?

m Whimsical Toys Inc (WTI) needs to record the names of all its
employees. Every month, an employee will be chosen at random from
these records to receive a free toy.

m WTI has decided that each new product will be named after an
employee — but only first names will be used, and each name will be
used only once. Prepare a list of unique first names.

m WTI decides that it only wants to use the most popular names for its
toys. Count the number of employees who have each first name.

m WTI acquires season tickets for the local lacrosse team, to be shared
by employees. Create a waiting list for this popular sport.

47 /48

http://docs.oracle.com/javase/tutorial/collections/interfaces/QandE/questions.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/QandE/questions.html

[{ Java 7 API
http://docs.oracle.com/javase/7/docs/api/java/util/
Collections.html

¥ Sierra, K. & Bates, B.
Head First Java. (Chapter 14)
O'Reilly Media, 2005

¥ Ullenboom, Ch.
Java ist auch eine Insel. (Chapter 13)
Galileo Computing, 2012.

48 /48

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

	Recap
	Sorting
	Sorting Collections
	Sorted Collections

	Summary

