
Programmieren II
Sorting Collections

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from T. Bögel)

June 5, 2014

1 / 48



Outline

1 Recap

2 Sorting
Sorting Collections
Sorted Collections

3 Summary

2 / 48



Outline

1 Recap

2 Sorting
Sorting Collections
Sorted Collections

3 Summary

3 / 48



Polymorphism I

Objects of a concrete sub class can be used where super classes are
expected
All sub classes have complete functionality of super class
But: special functionality implemented in the sub class cannot be
accessed via super class

4 / 48



Polymorphism II
Example

public Message filterMessage(Message m, GeneralFilter f) {
f.apply(m);
// f.printFilterRegex () would not work

}
...
public void runFiltering(Message m) {

LinkFilter f = new LinkFilter ();
this.filterMessage(m,f);

}

filterMessage() expects GeneralFilter
LinkFilter is also a GeneralFilter

Each sub class of GeneralFilter has a apply() method
filterMessage() does not need to know which filter’s method it is
calling!

5 / 48



Interfaces

Interfaces
Interfaces define protocols for communication between objects
Interface declarations only contain method signatures & constants, no
implementation
A class implementing an interface must implement all of its methods
Interfaces can be used just like other (reference) types

6 / 48



Interfaces as types

Using interfaces as types
Interfaces are reference types
Interface name can be used just like any other data type
Reference variable with interface type must always point to
instance that implements interface
E.g. Relatable rect = new Rectangle();

7 / 48



Abstract classes

Motivation
Super classes represent an abstraction of sub classes
Sometimes, however, instantiating the super class does not make
sense
Examples:

Animal
Shape
Person

University library software knows two kinds of Persons: Student and
Teacher

Instantiating Person would be strange

8 / 48



Example: linguistic annotation (token-based)

You want to define linguistic token-based annotations in a document
Concrete implementations:

Token
Lemma
PoS tag
Word sense
. . .

Each linguistic annotation has a start and end position (measured in
token from beginning of the document)

9 / 48



Example: linguistic annotation

You (as a developer) want to write different (token-based)
annotations to a file
Linguistic annotations should be implemented by others
To write an annotation, you need its content
Super class: TokenAnnotation

What do we know about each TokenAnnotation object?
Each Annotation has a start and end position
Each Annotation object has a content
We do not know how this content looks like!
Content could be very complicated to compute
We just need a string representing the content (for writing)

→ We need an abstract class!
10 / 48



Example: linguistic annotation

You (as a developer) want to write different (token-based)
annotations to a file
Linguistic annotations should be implemented by others
To write an annotation, you need its content
Super class: TokenAnnotation

What do we know about each TokenAnnotation object?
Each Annotation has a start and end position
Each Annotation object has a content
We do not know how this content looks like!
Content could be very complicated to compute
We just need a string representing the content (for writing)

→ We need an abstract class!
10 / 48



Example: linguistic annotation

You (as a developer) want to write different (token-based)
annotations to a file
Linguistic annotations should be implemented by others
To write an annotation, you need its content
Super class: TokenAnnotation

What do we know about each TokenAnnotation object?
Each Annotation has a start and end position
Each Annotation object has a content
We do not know how this content looks like!
Content could be very complicated to compute
We just need a string representing the content (for writing)

→ We need an abstract class!
10 / 48



Abstract class for TokenAnnotation

public abstract class TokenAnnotation {
int start , end;

public Annotation(int start , int end) {
this.start = start;
this.end = end;

}
public abstract String getContent ();
public int getStart () {

return start;
}
public int getEnd () {

return end;
}

}

11 / 48



Writer class

Class that writes TokenAnnotation objects

public class AnnotationWriter {

public void writeAnnotations(String fn, List <
TokenAnnotation > annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter(Paths.get(

fn), Charset.defaultCharset ());
for (TokenAnnotation a : annotations) {

bw.write(a.getContent ());
}
bw.close();

}
}

12 / 48



Class diagram: TokenAnnotation and sub-classes

13 / 48



Advantage of abstract super class

Advantage
Method that writes an annotation does not have to know which
annotation it is dealing with
Writer method can be implemented at the beginning of the
implementation
Arbitrary annotations can be added easily
Developer writing the AnnotationWriter doesn’t need to know
anything about the implementation of concrete sub-classes

14 / 48



Additional request

Adding parse trees
You also want to process parse trees
Parse trees are not token based
Parse trees have a number of tokens that are spanned by the tree
Parse trees have a start and an end
But: positions measured in character positions!
→ we add an alternative super class: ParseTree

Inheritance hierarchy
ParseTree as a sub-class of TokenAnnotation?
Not really! A parse tree is not a TokenAnnotation!
→ separate inheritance structure

15 / 48



Additional request

Adding parse trees
You also want to process parse trees
Parse trees are not token based
Parse trees have a number of tokens that are spanned by the tree
Parse trees have a start and an end
But: positions measured in character positions!
→ we add an alternative super class: ParseTree

Inheritance hierarchy
ParseTree as a sub-class of TokenAnnotation?
Not really! A parse tree is not a TokenAnnotation!
→ separate inheritance structure

15 / 48



Additional request

Adding parse trees
You also want to process parse trees
Parse trees are not token based
Parse trees have a number of tokens that are spanned by the tree
Parse trees have a start and an end
But: positions measured in character positions!
→ we add an alternative super class: ParseTree

Inheritance hierarchy
ParseTree as a sub-class of TokenAnnotation?
Not really! A parse tree is not a TokenAnnotation!
→ separate inheritance structure

15 / 48



Modeling a parse tree

public class ParseTree {
// here: _character_ positions
int start , end;
List <TokenAnnotation > spannedAnnotations;

public ParseTree(int start , int end) {
this.start = start;
this.end = end;

}
public String getContent () {

// some implementation ...
}
public List <TokenAnnotation > getSpannedAnnotations () {

return spannedAnnotations;
}

}

16 / 48



New class structure

ParseTree completely separate from TokenAnnotation

17 / 48



Reminder: writer class

...
public void writeAnnotations(String fn, List <

TokenAnnotation > annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter(Paths.get(

fn), Charset.defaultCharset ());
for (TokenAnnotation a : annotations) {

bw.write(a.getContent ());
}
bw.close();

}

ParseTree is not a TokenAnnotation

→ We cannot write parse trees!

18 / 48



Writer class too concrete

Writing parse trees
We implemented the writer class to accept each TokenAnnotation

ParseTree is not a TokenAnnotation

In writeAnnotations, we only access the getContent method of
TokenAnnotation

ParseTree provides the same method
We need to define that the method can handle all classes that have a
getContent method!
→ We define an interface: Writable!

19 / 48



Writer class too concrete

Writing parse trees
We implemented the writer class to accept each TokenAnnotation

ParseTree is not a TokenAnnotation

In writeAnnotations, we only access the getContent method of
TokenAnnotation

ParseTree provides the same method
We need to define that the method can handle all classes that have a
getContent method!
→ We define an interface: Writable!

19 / 48



Writer class too concrete

Writing parse trees
We implemented the writer class to accept each TokenAnnotation

ParseTree is not a TokenAnnotation

In writeAnnotations, we only access the getContent method of
TokenAnnotation

ParseTree provides the same method
We need to define that the method can handle all classes that have a
getContent method!
→ We define an interface: Writable!

19 / 48



Writable interface

Simple interface for writable classes

public interface Writable {
public String getContent ();

}

20 / 48



Class diagram: Writable interface & TokenAnnotation

21 / 48



Implementing the Writable interface

TokenAnnotation and ParseTree need to implement Writable

TokenAnnotation

public abstract class TokenAnnotation implements Writable {
... }

→ No change required (TokenAnnotation already implements the
getContent method)

ParseTree

public class ParseTree implements Writable { ... }

→ No change required (ParseTree already implements the getContent
method)

22 / 48



Applying Writable interface to writer class

Now, both TokenAnnotation and ParseTree implement Writable
Both classes (and sub-classes thereof) have a getContent method

public void writeAnnotations(String fn, List <
TokenAnnotation > annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter(Paths.get(

fn), Charset.defaultCharset ());
for (TokenAnnotation a : annotations) {

bw.write(a.getContent ());
}
bw.close();

}

→ How can we change this method to accept both classes?

23 / 48



Applying Writable interface to writer class

Now, both TokenAnnotation and ParseTree implement Writable
Both classes (and sub-classes therof) have a getContent method

public void writeAnnotations(String fn, List <Writable >
annotations) throws IOException {
BufferedWriter bw = Files.newBufferedWriter(Paths.get(

fn), Charset.defaultCharset ());
for (Writable a : annotations) {

bw.write(a.getContent ());
}
bw.close();

}

We just use Writable instead of TokenAnnotation!

24 / 48



Summary I

Abstract classes
Begin implementation with most abstract class possible that contains
all functionality each subclass should have (TokenAnnotation)
Implement methods that are identical for each sub-class (e.g. getter,
setter)
Mark all other methods as abstract methods
Exploit polymorphism wherever possible

Interfaces
Combine two class hierarchies
Specify “contract” that defines that all classes have particular
methods
Use interfaces as types (polymorphism) wherever possible

25 / 48



Summary II

Polymorphism
Always use most abstract type possible
Advantage: methods etc. can be applied to all sub-classes
Disadvantage: loss of specificity
→ special behavior of concrete sub-classes not accessible
Exception: if a method is overwritten, the most specific method is
called (dynamic method lookup)

26 / 48



Outline

1 Recap

2 Sorting
Sorting Collections
Sorted Collections

3 Summary

27 / 48



Traversing collections

A) Traversing collections with for-each

for (Object o : collection)
System.out.println(o);

B) Using Iterators
Iterators allow traversing trough collections
Each collection provides an iterator with the .iterator() method

public interface Iterator <E> {
boolean hasNext ();
E next();
void remove (); // optional

}

Iterator.remove(): modify the collection during iteration
28 / 48



Iterator example: filtering a list

static void filter(Collection <?> c) {
for (Iterator <?> it = c.iterator (); it.hasNext (); )

if (!cond(it.next()))
it.remove ();

}

Works for any Collection

29 / 48



Outline

1 Recap

2 Sorting
Sorting Collections
Sorted Collections

3 Summary

30 / 48



Sorting Collections

Simple case
Collections.sort(l) (where l is a List, for instance)
Natural ordering of elements (works for all standard Java data types
out of the box)
In order to sort a Collection, its elements need to implement
Comparable

Overview of classes implementing Comparable:
http://docs.oracle.com/javase/tutorial/collections/
interfaces/order.html

31 / 48

http://docs.oracle.com/javase/tutorial/collections/interfaces/order.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/order.html


Writing Comparable types (classes)

Comparable interface

public interface Comparable <T> {
public int compareTo(T o);

}

In order to sort collections with your own classes, you have to
implement Comparable!

compareTo method
Compares the object with another object (o)
returns negative int, if o is less than the object for which the
method is called
returns 0, if both objects are equal
returns positive int, if o is greater

32 / 48



Simple example: comparing Names

public class Name implements Comparable <Name > {
private String firstName;
private String lastName;

public Name(String first , String last) {
this.firstName = first;
this.lastName = last;

}

public int compareTo(Name o) {
int lastComp = this.lastName.compareTo(o.lastName);
if (lastComp == 0) {

return this.firstName.compareTo(o.firstName);
}
return 0;

}
}

33 / 48



Comparing Persons

public class Person implements Comparable <Person > {
private Name name;
private int birthYear;

public Person(String firstN , String lastN , int birthY) {
this.name = new Name(firstN , lastN);
this.birthYear = birthY;

}

public int compareTo(Person arg0) {
int nameComp = this.name.compareTo(arg0.name);
if (nameComp == 0) {

return arg0.birthYear - this.birthYear;
}
return nameComp;

}
}

34 / 48



equals, hashCode, compareTo

You (almost always) want to override all three of them
Hashcode contract: two equal objects have the same hash code
equals() should return true under the same conditions that
compareTo return 0

35 / 48



Example for Name

public class Name implements Comparable <Name > {
...

public boolean equals(Object o) {
Name no = (Name) o;
return (no.firstName.equals(this.firstName) &&

no.lastName.equals(this.lastName));
}

public int hashCode () {
return (this.firstName + this.lastName).hashCode ();

}

public int compareTo(Name o) {
int lastComp = this.lastName.compareTo(o.lastName);
if (lastComp == 0) {

return this.firstName.compareTo(o.firstName);
}
return lastComp;

}
}

36 / 48



How to compare objects

Begin with comparing most specific information
Proceed with comparing all remaining properties of the object
Delegate comparisons to compareTo methods of single components

37 / 48



Comparator

Default ordering: natural order
Different behavior: you need a Comparator

Class that compares two elements of the same type

public interface Comparator <T> {
int compare(T o1, T o2);

}

38 / 48



Example: Person Comparator

Normally, sorting persons by their name first is ok
One scenario: we want to sort them by birthyear for a company
anniversary

import java.util.Comparator;

public class YearFirstPersonComp implements Comparator <Person >
{

public int compare(Person arg0 , Person arg1) {
// sort persons by their birthyear
return (arg0.getBirthYear () - arg1.getBirthYear ());

}

}

Sorting a list of Persons
Collections.sort(personList, new YearFirstPersonComp());

39 / 48



Outline

1 Recap

2 Sorting
Sorting Collections
Sorted Collections

3 Summary

40 / 48



Sorted collections I

SortedSet interface
head/tailSet(E e) returns sub-sets of elements less/greater than e
subSet(E from, E to) returns a sub-set with values between from
and to

first/last() retrieves first/last element
Concrete implementation: TreeSet
All elements in a sorted set need to implement Comparable
Optional comparator can be specified to adjust ordering strategy
Constructors:

TreeSet()
TreeSet(Comparator comp)
. . .

41 / 48



Sorted collections II

SortedMap interface
Keys are ordered
Concrete implementation: TreeMap
Methods similar to SortedSet

firstKey()
subMap(K from, K to)
. . .

42 / 48



Outline

1 Recap

2 Sorting
Sorting Collections
Sorted Collections

3 Summary

43 / 48



Overview: collection hierarchy

source: collectionsjava.blogspot.de
44 / 48

collectionsjava.blogspot.de


Choosing the right collection

source: www.sergiy.ca/guide-to-selecting-appropriate-map-collection-in-java

45 / 48

www.sergiy.ca/guide-to-selecting-appropriate-map-collection-in-java


Summary

Collections
Collection framework contains multiple classes to conveniently store
collections of objects
Ordered (insertion-order) collections with duplicates: List (e.g.
ArrayList, LinkedList)
Sets of elements without duplicates and no ordering: Set (e.g.
HashSet)
Sets of elements without duplicates and ordering: SortedSet (e.g.
TreeSet)
Mapping from keys to values: Map (e.g. HashMap, TreeMap)

46 / 48



Exercises

Source: http://docs.oracle.com/javase/tutorial/collections/
interfaces/QandE/questions.html

Which collection would you choose?
Whimsical Toys Inc (WTI) needs to record the names of all its
employees. Every month, an employee will be chosen at random from
these records to receive a free toy.
WTI has decided that each new product will be named after an
employee – but only first names will be used, and each name will be
used only once. Prepare a list of unique first names.
WTI decides that it only wants to use the most popular names for its
toys. Count the number of employees who have each first name.
WTI acquires season tickets for the local lacrosse team, to be shared
by employees. Create a waiting list for this popular sport.

47 / 48

http://docs.oracle.com/javase/tutorial/collections/interfaces/QandE/questions.html
http://docs.oracle.com/javase/tutorial/collections/interfaces/QandE/questions.html


Literature

Java 7 API
http://docs.oracle.com/javase/7/docs/api/java/util/
Collections.html

Sierra, K. & Bates, B.
Head First Java. (Chapter 14)
O’Reilly Media, 2005.

Ullenboom, Ch.
Java ist auch eine Insel. (Chapter 13)
Galileo Computing, 2012.

48 / 48

http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html
http://docs.oracle.com/javase/7/docs/api/java/util/Collections.html

	Recap
	Sorting
	Sorting Collections
	Sorted Collections

	Summary

