
Programmieren II
OOP Principles I

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from Bob Tarr and T. Bögel)

June 12, 2014

1 / 54

Outline

1 Recap: Generics

2 OOP Principles
1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation
4. The Open-Closed Principle
5. The Liskov Substitution Principle

2 / 54

Outline

1 Recap: Generics

2 OOP Principles
1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation
4. The Open-Closed Principle
5. The Liskov Substitution Principle

3 / 54

Summary

Motivation for Generics
Using generic classes
Generic class definition
Generic method definition
Type wildcards

4 / 54

Motivation for Generics

Without generics: run-time errors

List v = new ArrayList ();
v.add("test");
Integer i = (Integer)v.get(0); // Run time error

With generics: type safety

List <String > v = new ArrayList <String >();
v.add("test");
Integer i = v.get(0); // (type error) Compile time error

5 / 54

Generic class definition

public class Entry <K, V> {
private final K key;
private final V value;

public Entry(K k,V v) {
key = k;
value = v;

}
public K getKey () { return key; }

public V getValue () { return value; }

public String toString () {
return "(" + key + ", " + value + ")";

}
}

6 / 54

Using generic classes

Using the generic class defined on the previous slide

Entry <String , String > grade440 = new Entry <String , String >("
mike", "A");

Entry <String , Integer > marks440 = new Entry <String , Integer >("
mike", 100);

System.out.println("grade: " + grade440);
System.out.println("marks: " + marks440);

Types can be constrained
For instance:
public class Entry<K extends SuperType1, V extends
SuperType2> ...

7 / 54

Generic method definitions

public static <T> Entry <T,T> twice(T value) {
return new Entry <T,T>(value , value);

}

First <T> represents the (obligatory) declaration of the symbol
Type parameters do not need to be specified when method is called:

Entry <String , String > pair = twice("Hello");

8 / 54

Wildcards

Wildcard <?> indicates unknown type
Methods expecting List<?> accept any type of list
All elements are treated as objects
Upper bound: List<? extends Superclass>

Reading elements from the list will return an object of type Superclass
Adding elements is not allowed!

9 / 54

Why do we need wildcards? I

This won’t work
public static void printElements(List <SuperClass > aList) {...}

→ invalid method call:
printElements(new ArrayList <SubClass >); // compile -time error!

10 / 54

Why do we need wildcards? II

This will work
public static void printElements(List <? extends SuperClass >

aList) {...}

printElements(new ArrayList <SubClass >);

Wildcards prohibit adding new elements to a collection
Without wildcards: elements of SubClass2 could be added to
collection with elements of SubClass → violates type safety

11 / 54

Outline

1 Recap: Generics

2 OOP Principles
1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation
4. The Open-Closed Principle
5. The Liskov Substitution Principle

12 / 54

Source

The OOP Principles section is from Bob Tarr
http://userpages.umbc.edu/~tarr/

13 / 54

OOP Principles

1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation
4. The Open-Closed Principle: Software Entities Should Be Open For
Extension, Yet Closed For Modification

4a. The Single Choice Principle: Whenever a software system must
support a set of alternatives, ideally only one class in the system knows
the entire set of alternatives

5. The Liskov Substitution Principle: Functions That Use References
To Base (Super) Classes Must Be Able To Use Objects Of Derived
(Sub) Classes Without Knowing It

14 / 54

Design Patterns In Java Bob Tarr

Some
Object-Oriented Design

Principles

 Bob TarrDesign Patterns In Java Some OO Design Principles
22

Principle #1Principle #1

Minimize The Accessibility of Classes and
Members

 Bob TarrDesign Patterns In Java Some OO Design Principles
33

The Meaning of AbstractionThe Meaning of Abstraction

l Tony Hoare: “Abstraction arises from a recognition of similarities
between certain objects, situations, or processes in the real world,
and the decision to concentrate upon those similarities and to
ignore for the time being the differences.”

l Grady Booch: “An abstraction denotes the essential
characteristics of an object that distinguish it from all other kinds
of objects and thus provide crisply defined conceptual boundaries,
relative to the perspective of the viewer.”

l Abstraction is one of the fundamental ways to deal with
complexity

l An abstraction focuses on the outside view of an object and
separates an object’s behavior from its implementation

 Bob TarrDesign Patterns In Java Some OO Design Principles
44

EncapsulationEncapsulation

l Grady Booch: “Encapsulation is the process of
compartmentalizing the elements of an abstraction that constitute
its structure and behavior; encapsulation serves to separate the
contractual interface of an abstraction and its implementation.”

l Craig Larman: “Encapsulation is a mechanism used to hide the
data, internal structure, and implementation details of an object.
All interaction with the object is through a public interface of
operations.”

l Classes should be opaque
l Classes should not expose their internal implementation details

 Bob TarrDesign Patterns In Java Some OO Design Principles
55

Information Hiding In JavaInformation Hiding In Java

l Use private members and appropriate accessors and mutators
wherever possible

l For example:
È Replace
public double speed;

È with
private double speed;
public double getSpeed() {
 return(speed);
}
public void setSpeed(double newSpeed) {
 speed = newSpeed;
}

 Bob TarrDesign Patterns In Java Some OO Design Principles
66

Use Accessors and Mutators, Not Public MembersUse Accessors and Mutators, Not Public Members

l You can put constraints on values

public void setSpeed(double newSpeed) {
if (newSpeed < 0) {

 sendErrorMessage(...);
 newSpeed = Math.abs(newSpeed);
 }
 speed = newSpeed;
}

l If users of your class accessed the fields directly, then they would
each be responsible for checking constraints

 Bob TarrDesign Patterns In Java Some OO Design Principles
77

Use Accessors and Mutators, Not Public MembersUse Accessors and Mutators, Not Public Members

l You can change your internal representation without changing the
interface

// Now using metric units (kph, not mph)

public void setSpeedInMPH(double newSpeed) {
 speedInKPH = convert(newSpeed);
}

public void setSpeedInKPH(double newSpeed) {
 speedInKPH = newSpeed;
}

 Bob TarrDesign Patterns In Java Some OO Design Principles
88

Use Accessors and Mutators, Not Public MembersUse Accessors and Mutators, Not Public Members

l You can perform arbitrary side effects

public double setSpeed(double newSpeed) {
 speed = newSpeed;
 notifyObservers();
}

l If users of your class accessed the fields directly, then they would
each be responsible for executing side effects

 Bob TarrDesign Patterns In Java Some OO Design Principles
99

Principle #2Principle #2

Favor Composition Over Inheritance

 Bob TarrDesign Patterns In Java Some OO Design Principles
1010

CompositionComposition

l Method of reuse in which new functionality is obtained by
creating an object composed of other objects

l The new functionality is obtained by delegating functionality to
one of the objects being composed

l Sometimes called aggregation or containment, although some
authors give special meanings to these terms

l For example:
È Aggregation - when one object owns or is responsible for another object

and both objects have identical lifetimes (GoF)
È Aggregation - when one object has a collection of objects that can exist on

their own (UML)
È Containment - a special kind of composition in which the contained object

is hidden from other objects and access to the contained object is only via
the container object (Coad)

 Bob TarrDesign Patterns In Java Some OO Design Principles
1111

CompositionComposition

l Composition can be:
È By reference
È By value

l C++ allows composition by value or by reference
l But in Java all we have are object references!

 Bob TarrDesign Patterns In Java Some OO Design Principles
1212

Advantages/Disadvantages Of CompositionAdvantages/Disadvantages Of Composition

l Advantages:
È Contained objects are accessed by the containing class solely through their

interfaces
È "Black-box" reuse, since internal details of contained objects are not visible
È Good encapsulation
È Fewer implementation dependencies
È Each class is focused on just one task
È The composition can be defined dynamically at run-time through objects

acquiring references to other objects of the same type
l Disadvantages:

È Resulting systems tend to have more objects
È Interfaces must be carefully defined in order to use many different objects

as composition blocks

 Bob TarrDesign Patterns In Java Some OO Design Principles
1313

InheritanceInheritance

l Method of reuse in which new functionality is obtained by
extending the implementation of an existing object

l The generalization class (the superclass) explicitly captures the
common attributes and methods

l The specialization class (the subclass) extends the implementation
with additional attributes and methods

 Bob TarrDesign Patterns In Java Some OO Design Principles
1414

Advantages/Disadvantages Of InheritanceAdvantages/Disadvantages Of Inheritance

l Advantages:
È New implementation is easy, since most of it is inherited
È Easy to modify or extend the implementation being reused

l Disadvantages:
È Breaks encapsulation, since it exposes a subclass to implementation details

of its superclass
È "White-box" reuse, since internal details of superclasses are often visible to

subclasses
È Subclasses may have to be changed if the implementation of the superclass

changes
È Implementations inherited from superclasses can not be changed at run-

time

 Bob TarrDesign Patterns In Java Some OO Design Principles
1515

Inheritance vs Composition ExampleInheritance vs Composition Example

l This example comes from the book Effective Java by Joshua
Bloch

l Suppose we want a variant of HashSet that keeps track of the
number of attempted insertions. So we subclass HashSet as
follows:

 public class InstrumentedHashSet extends HashSet {

 // The number of attempted element insertions
 private int addCount = 0;

 public InstrumentedHashSet(Collection c) {super(c);}
 public InstrumentedHashSet(int initCap, float loadFactor) {
 super(initCap, loadFactor);
 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
1616

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

 public boolean add(Object o) {
 addCount++;
 return super.add(o);
 }

 public boolean addAll(Collection c) {
 addCount += c.size();
 return super.addAll(c);
 }

 public int getAddCount() {
 return addCount;
 }

 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
1717

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

l Looks good, right. Let’s test it!

 public static void main(String[] args) {
 InstrumentedHashSet s = new InstrumentedHashSet();
 s.addAll(Arrays.asList(new String[] {"Snap","Crackle","Pop"}));
 System.out.println(s.getAddCount());
 }

l We get a result of 6, not the expected 3. Why?
l It’s because the internal implementation of addAll() in the

HashSet superclass itself invokes the add() method. So first we
add 3 to addCount in InstrumentedHashSet’s addAll(). Then we
invoke HashSet’s addAll(). For each element, this addAll()
invokes the add() method, which as overridden by
InstrumentedHashSet adds one for each element. The result: each
element is double counted.

 Bob TarrDesign Patterns In Java Some OO Design Principles
1818

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

l There are several ways to fix this, but note the fragility of our
subclass. Implementation details of our superclass affected the
operation of our subclass.

l The best way to fix this is to use composition. Let’s write an
InstrumentedSet class that is composed of a Set object. Our
InstrumentedSet class will duplicate the Set interface, but all Set
operations will actually be forwarded to the contained Set object.

l InstrumentedSet is known as a wrapper class, since it wraps an
instance of a Set object

l This is an example of delegation through composition!

 Bob TarrDesign Patterns In Java Some OO Design Principles
1919

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

public class InstrumentedSet implements Set {
 private final Set s;
 private int addCount = 0;

 public InstrumentedSet(Set s) {this.s = s;}

 public boolean add(Object o) {
 addCount++;
 return s.add(o);
 }

 public boolean addAll(Collection c) {
 addCount += c.size();
 return s.addAll(c);
 }

 public int getAddCount() {return addCount;}

 Bob TarrDesign Patterns In Java Some OO Design Principles
2020

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

 // Forwarding methods (the rest of the Set interface methods)
 public void clear() { s.clear(); }
 public boolean contains(Object o) { return s.contains(o); }
 public boolean isEmpty() { return s.isEmpty(); }
 public int size() { return s.size(); }
 public Iterator iterator() { return s.iterator(); }
 public boolean remove(Object o) { return s.remove(o); }
 public boolean containsAll(Collection c)
 { return s.containsAll(c); }
 public boolean removeAll(Collection c)
 { return s.removeAll(c); }
 public boolean retainAll(Collection c)
 { return s.retainAll(c); }
 public Object[] toArray() { return s.toArray(); }
 public Object[] toArray(Object[] a) { return s.toArray(a); }
 public boolean equals(Object o) { return s.equals(o); }
 public int hashCode() { return s.hashCode(); }
 public String toString() { return s.toString(); }
}

 Bob TarrDesign Patterns In Java Some OO Design Principles
2121

Inheritance vs Composition Example (Continued)Inheritance vs Composition Example (Continued)

l Note several things:
È This class is a Set
È It has one constructor whose argument is a Set
È The contained Set object can be an object of any class that implements the

Set interface (and not just a HashSet)
È This class is very flexible and can wrap any preexisting Set object

l Example:
 List list = new ArrayList();
 Set s1 = new InstrumentedSet(new TreeSet(list));

 int capacity = 7;
 float loadFactor = .66f;
 Set s2 = new InstrumentedSet(new HashSet(capacity, loadFactor));

 Bob TarrDesign Patterns In Java Some OO Design Principles
2222

Coad's RulesCoad's Rules

Use inheritance only when all of the following criteria are satisfied:

l A subclass expresses "is a special kind of" and not "is a role
played by a"

l An instance of a subclass never needs to become an object of
another class

l A subclass extends, rather than overrides or nullifies, the
responsibilities of its superclass

l A subclass does not extend the capabilities of what is merely a
utility class

l For a class in the actual Problem Domain, the subclass specializes
a role, transaction or device

 Bob TarrDesign Patterns In Java Some OO Design Principles
2323

Inheritance/Composition Example 1Inheritance/Composition Example 1

Person
Name
Address

Passenger
Frequent Flyer ID
Reservation

Agent
Password
Authorization Level

Agent Passenger

 Bob TarrDesign Patterns In Java Some OO Design Principles
2424

Inheritance/Composition Example 1 (Continued)Inheritance/Composition Example 1 (Continued)

l "Is a special kind of" not "is a role played by a"
È Fail. A passenger is a role a person plays. So is an agent.

l Never needs to transmute
È Fail. A instance of a subclass of Person could change from Passenger to

Agent to Agent Passenger over time
l Extends rather than overrides or nullifies

È Pass.
l Does not extend a utility class

È Pass.

l Within the Problem Domain, specializes a role, transaction or
device
È Fail. A Person is not a role, transaction or device.

Inheritance does not fit here!

 Bob TarrDesign Patterns In Java Some OO Design Principles
2525

Inheritance/Composition Example 1 (Continued)Inheritance/Composition Example 1 (Continued)

Passenger
Frequent Flyer ID
Reservation

Person
Name
Address
Passenger
Agent

Agent
Password
Authorization Level

Composition to the rescue!Composition to the rescue!

 Bob TarrDesign Patterns In Java Some OO Design Principles
2626

Inheritance/Composition Example 2Inheritance/Composition Example 2

Passenger
Frequent Flyer ID
Reservation

Agent
Password
Authorization Level

Person
Name
Address
Role

PersonRole

 Bob TarrDesign Patterns In Java Some OO Design Principles
2727

Inheritance/Composition Example 2 (Continued)Inheritance/Composition Example 2 (Continued)

l "Is a special kind of" not "is a role played by a"
È Pass. Passenger and agent are special kinds of person roles.

l Never needs to transmute
È Pass. A Passenger object stays a Passenger object; the same is true for an

Agent object.
l Extends rather than overrides or nullifies

È Pass.
l Does not extend a utility class

È Pass.

l Within the Problem Domain, specializes a role, transaction or
device
È Pass. A PersonRole is a type of role.

Inheritance ok here!

 Bob TarrDesign Patterns In Java Some OO Design Principles
2828

Inheritance/Composition Example 3Inheritance/Composition Example 3

Reservation
DateExpires
DiscountCategory

Purchase
ProductSet
Store

Transaction
ID
Date

 Bob TarrDesign Patterns In Java Some OO Design Principles
2929

Inheritance/Composition Example 3 (Continued)Inheritance/Composition Example 3 (Continued)

l "Is a special kind of" not "is a role played by a"
È Pass. Reservation and purchase are a special kind of transaction.

l Never needs to transmute
È Pass. A Reservation object stays a Reservation object; the same is true for

a Purchase object.
l Extends rather than overrides or nullifies

È Pass.
l Does not extend a utility class

È Pass.

l Within the Problem Domain, specializes a role, transaction or
device
È Pass. It's a transaction.

Inheritance ok here!

 Bob TarrDesign Patterns In Java Some OO Design Principles
3030

Inheritance/Composition Example 4Inheritance/Composition Example 4

Reservation
DateExpires
DiscountCategory

java.util.Observable

 Bob TarrDesign Patterns In Java Some OO Design Principles
3131

Inheritance/Composition Example 4 (Continued)Inheritance/Composition Example 4 (Continued)

l "Is a special kind of" not "is a role played by a"
È Fail. A reservation is not a special kind of observable.

l Never needs to transmute
È Pass. A Reservation object stays a Reservation object.

l Extends rather than overrides or nullifies
È Pass.

l Does not extend a utility class
È Fail. Observable is just a utility class.

l Within the Problem Domain, specializes a role, transaction or
device
È Not Applicable. Observable is a utility class, not a Problem Domain class

Inheritance does not fit here!

 Bob TarrDesign Patterns In Java Some OO Design Principles
3232

Inheritance/Composition SummaryInheritance/Composition Summary

l Both composition and inheritance are important methods of reuse
l Inheritance was overused in the early days of OO development
l Over time we've learned that designs can be made more reusable

and simpler by favoring composition
l Of course, the available set of composable classes can be enlarged

using inheritance
l So composition and inheritance work together
l But our fundamental principle is:

Favor Composition Over Inheritance

 Bob TarrDesign Patterns In Java Some OO Design Principles
3333

Principle #3Principle #3

Program To An Interface, Not An
Implementation

 Bob TarrDesign Patterns In Java Some OO Design Principles
3434

InterfacesInterfaces

l An interface is the set of methods one object knows it can invoke
on another object

l An object can have many interfaces. (Essentially, an interface is
a subset of all the methods that an object implements).

l A type is a specific interface of an object
l Different objects can have the same type and the same object can

have many different types
l An object is known by other objects only through its interface
l In a sense, interfaces express "is a kind of" in a very limited way

as "is a kind of that supports this interface"
l Interfaces are the key to pluggability!

 Bob TarrDesign Patterns In Java Some OO Design Principles
3535

Implementation Inheritance vs Interface InheritanceImplementation Inheritance vs Interface Inheritance

l Implementation Inheritance (Class Inheritance) - an object's
implementation is defined in terms of another's objects
implementation

l Interface Inheritance (Subtyping) - describes when one object can
be used in place of another object

l The C++ inheritance mechanism means both class and interface
inheritance

l C++ can perform interface inheritance by inheriting from a pure
abstract class

l Java has a separate language construct for interface inheritance -
the Java interface

l Java's interface construct makes it easier to express and
implement designs that focus on object interfaces

 Bob TarrDesign Patterns In Java Some OO Design Principles
3636

Benefits Of InterfacesBenefits Of Interfaces

l Advantages:
È Clients are unaware of the specific class of the object they are using
È One object can be easily replaced by another
È Object connections need not be hardwired to an object of a specific class,

thereby increasing flexibility
È Loosens coupling
È Increases likelihood of reuse
È Improves opportunities for composition since contained objects can be of

any class that implements a specific interface
l Disadvantages:

È Modest increase in design complexity

 Bob TarrDesign Patterns In Java Some OO Design Principles
3737

Interface ExampleInterface Example

/**
 * Interface IManeuverable provides the specification
 * for a maneuverable vehicle.
 */
public interface IManeuverable {
 public void left();
 public void right();
 public void forward();
 public void reverse();
 public void climb();
 public void dive();
 public void setSpeed(double speed);
 public double getSpeed();
}

 Bob TarrDesign Patterns In Java Some OO Design Principles
3838

Interface Example (Continued)Interface Example (Continued)

public class Car
 implements IManeuverable { // Code here. }

public class Boat
 implements IManeuverable { // Code here. }

public class Submarine
 implements IManeuverable { // Code here. }

 Bob TarrDesign Patterns In Java Some OO Design Principles
3939

Interface Example (Continued)Interface Example (Continued)

l This method in some other class can maneuver the vehicle
without being concerned about what the actual class is (car, boat,
submarine) or what inheritance hierarchy it is in

 public void travel(IManeuverable vehicle) {
 vehicle.setSpeed(35.0);
 vehicle.forward();
 vehicle.left();
 vehicle.climb();
 }

Literature

Gamma, E. et al. (Gang of Four)
Design Patterns. Elements of Reusable Object-Oriented Software (Ch.
1).
Addison-Wesley, 1994.
Bloch, Joshua.
Effective Java (2nd Edition) (Ch. 4).
Addison-Wesley, 2008.

54 / 54

