
Programmieren II
OOP Principles II

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from Bob Tarr and T. Bögel)

June 18, 2014

1 / 50

Outline

1 Recap - OOP Principles I
1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation

2 OOP Principles II
4. The Open-Closed Principle
5. The Liskov Substitution Principle

3 Enums

2 / 50

Outline

1 Recap - OOP Principles I
1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation

2 OOP Principles II
4. The Open-Closed Principle
5. The Liskov Substitution Principle

3 Enums

3 / 50

Summary

OOP Principles from last session
Minimize Accessibility of Classes and Members
Favor Composition over Inheritance
Program to an Interface, not an Implementation

4 / 50

Minimize Accessibility of Classes and Members

Abstraction
Abstraction deals with complexity
Subsuming similarities, neglecting special characteristics

Encapsulation
Separating interface from implementation
Hiding data, structure and implementation
Interactions based on public interface

5 / 50

Achieving Encapsulation

Members (instance variables)
private instance variables wherever possible
Getters and setters if necessary

Methods
Define interfaces
Program to interfaces

6 / 50

Favor Composition over Inheritance

Inheritance
Extending implementation of an existing object
Superclass: common attributes and methods
Subclass: extends implementation with additional attributes and
methods

Disadvantages of Inheritance
Breaks encapsulation
If implementation of superclass changes: subclass might have to be
changed
White-box use of classes

7 / 50

Favor Composition over Inheritance

Inheritance
Extending implementation of an existing object
Superclass: common attributes and methods
Subclass: extends implementation with additional attributes and
methods

Disadvantages of Inheritance
Breaks encapsulation
If implementation of superclass changes: subclass might have to be
changed
White-box use of classes

7 / 50

Composition

Composition
Object is composed of other objects
Objects (components) are embedded into another objects
Functionality is delegated to sub-components

Advantages
Encapsulation!
Each class is focused on one task
Facilitates black-box reuse of components

Disadvantages
More objects
Increased complexity during interface design

8 / 50

Composition

Composition
Object is composed of other objects
Objects (components) are embedded into another objects
Functionality is delegated to sub-components

Advantages
Encapsulation!
Each class is focused on one task
Facilitates black-box reuse of components

Disadvantages
More objects
Increased complexity during interface design

8 / 50

When to use Inheritance: Coad’s Rules

For Inheritance, all of the following criteria should be satisfied
Subclass is a special kind of a superclass and not is a role played by a
superclass
Instance of subclass never needs to become an object of another class
Subclass extends rather than overrides responsibilities of superclass
Subclass does not extend a utility class
The subclass specializes a role, transaction, device of a superclass

9 / 50

Program to an Interface, not an Implementation

What we mean by “type” is often an interface, not a concrete class!
Why program to an interface?

Clients do not have to know about specific classes
Interfaces specify all methods common to all implementing classes
Concrete implementations can be easily replaced by other objects

10 / 50

Outline

1 Recap - OOP Principles I
1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation

2 OOP Principles II
4. The Open-Closed Principle
5. The Liskov Substitution Principle

3 Enums

11 / 50

Source

The OOP Principles II section is from Bob Tarr
http://userpages.umbc.edu/~tarr/

12 / 50

OOP Principles

1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation
4. The Open-Closed Principle: Software Entities Should Be Open For
Extension, Yet Closed For Modification

4a. The Single Choice Principle: Whenever a software system must
support a set of alternatives, ideally only one class in the system knows
the entire set of alternatives

5. The Liskov Substitution Principle: Functions That Use References
To Base (Super) Classes Must Be Able To Use Objects Of Derived
(Sub) Classes Without Knowing It

13 / 50

Outline

1 Recap - OOP Principles I
1. Minimize The Accessibility of Classes and Members
2. Favor Composition Over Inheritance
3. Program To An Interface, Not An Implementation

2 OOP Principles II
4. The Open-Closed Principle
5. The Liskov Substitution Principle

3 Enums

14 / 50

 Bob TarrDesign Patterns In Java Some OO Design Principles
4040

Principle #4Principle #4

The Open-Closed Principle:
Software Entities Should Be Open For
Extension, Yet Closed For Modification

 Bob TarrDesign Patterns In Java Some OO Design Principles
4141

The Open-Closed PrincipleThe Open-Closed Principle

l The Open-Closed Principle (OCP) says that we should attempt to
design modules that never need to be changed

l To extend the behavior of the system, we add new code. We do
not modify old code.

l Modules that conform to the OCP meet two criteria:
È Open For Extension - The behavior of the module can be extended to meet

new requirements
È Closed For Modification - the source code of the module is not allowed to

change
l How can we do this?

È Abstraction
È Polymorphism
È Inheritance
È Interfaces

 Bob TarrDesign Patterns In Java Some OO Design Principles
4242

The Open-Closed PrincipleThe Open-Closed Principle

l It is not possible to have all the modules of a software system
satisfy the OCP, but we should attempt to minimize the number of
modules that do not satisfy it

l The Open-Closed Principle is really the heart of OO design
l Conformance to this principle yields the greatest level of

reusability and maintainability

 Bob TarrDesign Patterns In Java Some OO Design Principles
4343

Open-Closed Principle ExampleOpen-Closed Principle Example

l Consider the following method of some class:

 public double totalPrice(Part[] parts) {
 double total = 0.0;
 for (int i=0; i<parts.length; i++) {
 total += parts[i].getPrice();
 }
 return total;
 }

l The job of the above function is to total the price of each part in
the specified array of parts

l If Part is a base class or an interface and polymorphism is being
used, then this class can easily accommodate new types of parts
without having to be modified!

l It conforms to the OCP

 Bob TarrDesign Patterns In Java Some OO Design Principles
4444

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l But what if the Accounting Department decrees that motherboard
parts and memory parts should have a premium applied when
figuring the total price.

l How about the following code?
 public double totalPrice(Part[] parts) {
 double total = 0.0;
 for (int i=0; i<parts.length; i++) {
 if (parts[i] instanceof Motherboard)
 total += (1.45 * parts[i].getPrice());
 else if (parts[i] instanceof Memory)
 total += (1.27 * parts[i].getPrice());
 else
 total += parts[i].getPrice();
 }
 return total;
 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
4545

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l Does this conform to the OCP? No way!
l Every time the Accounting Department comes out with a new

pricing policy, we have to modify the totalPrice() method! It is
not Closed For Modification. Obviously, policy changes such as
that mean that we have to modify code somewhere, so what could
we do?

l To use our first version of totalPrice(), we could incorporate
pricing policy in the getPrice() method of a Part

 Bob TarrDesign Patterns In Java Some OO Design Principles
4646

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l Here are example Part and ConcretePart classes:

 // Class Part is the superclass for all parts.
 public class Part {
 private double price;
 public Part(double price) (this.price = price;}
 public void setPrice(double price) {this.price = price;}
 public double getPrice() {return price;}
 }

 // Class ConcretePart implements a part for sale.
 // Pricing policy explicit here!
 public class ConcretePart extends Part {
 public double getPrice() {
 // return (1.45 * price); //Premium
 return (0.90 * price); //Labor Day Sale
 }
 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
4747

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l But now we must modify each subclass of Part whenever the
pricing policy changes!

l A better idea is to have a PricePolicy class which can be used to
provide different pricing policies:

 // The Part class now has a contained PricePolicy object.
 public class Part {
 private double price;
 private PricePolicy pricePolicy;

 public void setPricePolicy(PricePolicy pricePolicy) {
 this.pricePolicy = pricePolicy;}
 public void setPrice(double price) {this.price = price;}
 public double getPrice() {return pricePolicy.getPrice(price);}
 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
4848

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

 /**
 * Class PricePolicy implements a given price policy.
 */
 public class PricePolicy {
 private double factor;

 public PricePolicy (double factor) {
 this.factor = factor;
 }

 public double getPrice(double price) {return price * factor;}

 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
4949

Open-Closed Principle Example (Continued)Open-Closed Principle Example (Continued)

l With this solution we can dynamically set pricing policies at run
time by changing the PricePolicy object that an existing Part
object refers to

l Of course, in an actual application, both the price of a Part and its
associated PricePolicy could be contained in a database

 Bob TarrDesign Patterns In Java Some OO Design Principles
5050

The Single Choice PrincipleThe Single Choice Principle

A corollary to the OCP is the Single Choice Principle

The Single Choice Principle:
Whenever a software system must support a

set of alternatives, ideally only one class in
the system knows the entire set of

alternatives

 Bob TarrDesign Patterns In Java Some OO Design Principles
5151

Principle #5Principle #5

The Liskov Substitution Principle:
Functions That Use References To Base

(Super) Classes Must Be
Able To Use Objects Of Derived

(Sub) Classes Without Knowing It

 Bob TarrDesign Patterns In Java Some OO Design Principles
5252

The Liskov Substitution PrincipleThe Liskov Substitution Principle

l The Liskov Substitution Principle (LSP) seems obvious given all
we know about polymorphism

l For example:

 public void drawShape(Shape s) {
 // Code here.

}

l The drawShape method should work with any subclass of the
Shape superclass (or, if Shape is a Java interface, it should work
with any class that implements the Shape interface)

l But we must be careful when we implement subclasses to insure
that we do not unintentionally violate the LSP

 Bob TarrDesign Patterns In Java Some OO Design Principles
5353

The Liskov Substitution PrincipleThe Liskov Substitution Principle

l If a function does not satisfy the LSP, then it probably makes
explicit reference to some or all of the subclasses of its superclass.
Such a function also violates the Open-Closed Principle, since it
may have to be modified whenever a new subclass is created.

 Bob TarrDesign Patterns In Java Some OO Design Principles
5454

LSP ExampleLSP Example

l Consider the following Rectangle class:

 // A very nice Rectangle class.
 public class Rectangle {
 private double width;
 private double height;

 public Rectangle(double w, double h) {
 width = w;
 height = h;
 }
 public double getWidth() {return width;}
 public double getHeight() {return height;}
 public void setWidth(double w) {width = w;}
 public void setHeight(double h) {height = h;}
 public double area() {return (width * height);
 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
5555

LSP Example (Continued)LSP Example (Continued)

l Now, had about a Square class? Clearly, a square is a rectangle,
so the Square class should be derived from the Rectangle class,
right? Let's see!

l Observations:
È A square does not need both a width and a height as attributes, but it will

inherit them from Rectangle anyway. So, each Square object wastes a little
memory, but this is not a major concern.

È The inherited setWidth() and setHeight() methods are not really appropriate
for a Square, since the width and height of a square are identical. So we'll
need to override setWidth() and setHeight(). Having to override these
simple methods is a clue that this might not be an appropriate use of
inheritance!

 Bob TarrDesign Patterns In Java Some OO Design Principles
5656

LSP Example (Continued)LSP Example (Continued)

l Here's the Square class:

 // A Square class.
 public class Square extends Rectangle {

 public Square(double s) {super(s, s);}

 public void setWidth(double w) {
 super.setWidth(w);
 super.setHeight(w);
 }

 public void setHeight(double h) {
 super.setHeight(h);
 super.setWidth(h);
 }
 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
5757

LSP Example (Continued)LSP Example (Continued)

l Everything looks good. But check this out!

 public class TestRectangle {

 // Define a method that takes a Rectangle reference.
 public static void testLSP(Rectangle r) {
 r.setWidth(4.0);
 r.setHeight(5.0);
 System.out.println("Width is 4.0 and Height is 5.0" +
 ", so Area is " + r.area());
 if (r.area() == 20.0)
 System.out.println("Looking good!\n");
 else
 System.out.println("Huh?? What kind of rectangle is

 this??\n");
 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
5858

LSP Example (Continued)LSP Example (Continued)

 public static void main(String args[]) {

 //Create a Rectangle and a Square
 Rectangle r = new Rectangle(1.0, 1.0);
 Square s = new Square(1.0);

 // Now call the method above. According to the
 // LSP, it should work for either Rectangles or
 // Squares. Does it??
 testLSP(r);
 testLSP(s);
 }

 }

 Bob TarrDesign Patterns In Java Some OO Design Principles
5959

LSP Example (Continued)LSP Example (Continued)

l Test program output:

 Width is 4.0 and Height is 5.0, so Area is 20.0
 Looking good!

 Width is 4.0 and Height is 5.0, so Area is 25.0
 Huh?? What kind of rectangle is this??

l Looks like we violated the LSP!

 Bob TarrDesign Patterns In Java Some OO Design Principles
6060

LSP Example (Continued)LSP Example (Continued)

l What's the problem here? The programmer of the testLSP()
method made the reasonable assumption that changing the width
of a Rectangle leaves its height unchanged.

l Passing a Square object to such a method results in problems,
exposing a violation of the LSP

l The Square and Rectangle classes look self consistent and valid.
Yet a programmer, making reasonable assumptions about the base
class, can write a method that causes the design model to break
down

l Solutions can not be viewed in isolation, they must also be
viewed in terms of reasonable assumptions that might be made by
users of the design

 Bob TarrDesign Patterns In Java Some OO Design Principles
6161

LSP Example (Continued)LSP Example (Continued)

l A mathematical square might be a rectangle, but a Square object
is not a Rectangle object, because the behavior of a Square object
is not consistent with the behavior of a Rectangle object!

l Behaviorally, a Square is not a Rectangle! A Square object is not
polymorphic with a Rectangle object.

 Bob TarrDesign Patterns In Java Some OO Design Principles
6262

The Liskov Substitution PrincipleThe Liskov Substitution Principle

l The Liskov Substitution Principle (LSP) makes it clear that the
ISA relationship is all about behavior

l In order for the LSP to hold (and with it the Open-Closed
Principle) all subclasses must conform to the behavior that clients
expect of the base classes they use

l A subtype must have no more constraints than its base type, since
the subtype must be usable anywhere the base type is usable

l If the subtype has more constraints than the base type, there
would be uses that would be valid for the base type, but that
would violate one of the extra constraints of the subtype and thus
violate the LSP!

l The guarantee of the LSP is that a subclass can always be used
wherever its base class is used!

Literature

Martin, Robert C.
The Open-Closed Principle
C++ Report
http://www.objectmentor.com/resources/articles/ocp.pdf

Martin, Robert C.
The Liskov Substitution Principle
C++ Report
http://www.objectmentor.com/resources/articles/lsp.pdf

Gamma, E. et al. (Gang of Four)
Design Patterns. Elements of Reusable Object-Oriented Software (Ch.
1).
Addison-Wesley, 1994.

39 / 50

Enum

Enum type
Special data type
Enables for a variable to be a set of predefined constants
Variable must be equal to one of the pre-defined values
Names of enum’s fields are in uppercase letters

Common examples
compass directions: NORTH,SOUTH,EAST,WEST
days of the week: MONDAY,. . .

. . .

40 / 50

Defining an enum type

Enum for the days of the week

public enum Day {
SUNDAY , MONDAY , TUESDAY , WEDNESDAY ,
THURSDAY , FRIDAY , SATURDAY;

}

41 / 50

When to use enums?

Whenever you know a fixed set of constants: use enums
E.g. natural enum types (planets in our solar system)
Choices of a menu, command line flags etc.
Much more efficient than strings

42 / 50

Using an enum type I

public class EnumTest {
Day day;

public EnumTest(Day day) {
this.day = day;

}

public void tellItLikeItIs () {
switch (day) {

case MONDAY:
System.out.println("Mondays are bad.");
break;

case FRIDAY:
System.out.println("Fridays are better.");
break;

case SATURDAY: case SUNDAY:
System.out.println("Weekends are best.");
break;

default:

43 / 50

Using an enum type II

System.out.println("Midweek days are so-so.");
break;

}
}

public static void main(String [] args) {
EnumTest firstDay = new EnumTest(Day.MONDAY);
firstDay.tellItLikeItIs ();
EnumTest thirdDay = new EnumTest(Day.WEDNESDAY);
thirdDay.tellItLikeItIs ();
EnumTest fifthDay = new EnumTest(Day.FRIDAY);
fifthDay.tellItLikeItIs ();
EnumTest seventhDay = new EnumTest(Day.SUNDAY);
seventhDay.tellItLikeItIs ();

}
}

44 / 50

Enums as classes

Enums as classes
Enum declaration defines a class
Class body may contain methods and fields
All enums have some common methods by default:

values() returns an array containing all of the values of the enum in
declaration order

45 / 50

Example: enum with methods and properties

Modeling planets
Each planet has a mass
Each planet has a radius
Properties are set via the constructor
Constructor cannot be called explicitly
Constants need to be defined first, prior to methods and instance
variables

46 / 50

public enum Planet {
/* constant declarations with constructor parameters */

MERCURY (3.303e+23, 2.4397 e6),
VENUS (4.869e+24, 6.0518 e6),
EARTH (5.976e+24, 6.37814 e6),
MARS (6.421e+23, 3.3972 e6),
JUPITER (1.9e+27, 7.1492 e7),

/* declaration of instance variables */
private final double mass; // in kilograms
private final double radius; // in meters

/* constructor */
Planet(double mass , double radius) {

this.mass = mass;
this.radius = radius;

}

/* other methods */
private double getMass () {return mass;}
private double getRadius () {return radius ;}

47 / 50

// universal gravitational constant (m3 kg -1 s-2)
public static final double G = 6.67300E-11;

double surfaceGravity () {
return G * mass / (radius * radius);

}

48 / 50

Using the Planet enum

...
public static void main(String [] args) {

for (Planet p : Planet.values ())
System.out.printf("The surface gravity on %s is %f%n

",
p, p.surfaceGravity ());

}

...

49 / 50

References

The Java Tutorials
Enum Types
http:
//docs.oracle.com/javase/tutorial/java/javaOO/enum.html

Ullenboom, Ch.
Java ist auch eine Insel. (Ch. 9.4)
Galileo Computing, 2012.

50 / 50

