
Programmieren II
Unit Testing & Test-Driven Development

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from Lars Vogel and T. Bögel)

July 2, 2014

1 / 62

Outline

1 Recap

2 Testing - Introduction
General Testing
Component Tests

3 Testing in more detail
Equivalence classes
Fundamentals of Testing

4 Test-Driven Development

5 Unit Testing in Java – JUnit
Introduction
Tests in Practice

6 Mocking

2 / 62

Outline

1 Recap

2 Testing - Introduction
General Testing
Component Tests

3 Testing in more detail
Equivalence classes
Fundamentals of Testing

4 Test-Driven Development

5 Unit Testing in Java – JUnit
Introduction
Tests in Practice

6 Mocking

3 / 62

OOP Principles

OOP Principles
Minimize Accessibility of Classes and Members (Encapsulation)
Favor Composition over Inheritance
Program to an Interface, not an Implementation
The Open-Closed Principle (open for extension, closed for
modification)
The Single Choice Principle (Strategy Pattern)
The Liskov Substitution Principle

4 / 62

Outline

1 Recap

2 Testing - Introduction
General Testing
Component Tests

3 Testing in more detail
Equivalence classes
Fundamentals of Testing

4 Test-Driven Development

5 Unit Testing in Java – JUnit
Introduction
Tests in Practice

6 Mocking

5 / 62

Motivation for testing

In 1998, NASA lost the USD 655 Million Mars Climate Orbiter
“The peer review preliminary findings indicate that one team used
English units (e.g., inches, feet and pounds) while the other used
metric units for a key spacecraft operation.”
Finding: had the interface between the two teams been extensively
tested, this could have been avoided

http://thephp.cc/viewpoints/blog/2014/03/disintegration-testing

6 / 62

http://thephp.cc/viewpoints/blog/2014/03/disintegration-testing

Motivation for unit testing

Why should you write unit tests?
Make sure your code does what you want it to do
Speed up development and optimization/refactoring
Create better interfaces and functionality
Get other people to use your contribution
Make sure nobody else breaks your feature
(Also, make sure you don’t break your feature)

http://ed.agadak.net/2008/03/why-you-should-write-unit-tests

7 / 62

http://ed.agadak.net/2008/03/why-you-should-write-unit-tests

Good testing is not trivial

Appropriate number of test cases?
Implementing tests is tedious (stubs, mock objects etc.)

Categories of test cases
Logical test cases: value ranges for input/output
Concrete test cases: specific values for input/output

8 / 62

Typical test methods

Black box approach
Testing an object as an interface
No control about the internal structure of the test object
Interface knowledge
Examples: equivalence classes, boundary cases, state of objects

White box approach
Testing different flows within a test object
Exploits knowledge about the internal structure (code)
Examples: coverage of statements, branches, conditions, paths

9 / 62

Test methods

Positive test
Correct input (expects correct results)

Negative test
Invalid input (expects appropriate exception handling)

Intuitive/empirical test
Based on knowledge about error situations
Should be tested alongside systematic test methods

10 / 62

Test execution

Test framework (often: requirement to run tests)

11 / 62

Component tests

Component tests
Component: self-contained unit of code, e.g. class, method, module
White box and black box testing

Common errors
Code does not terminate
Erroneous or missing result
Unexpected or wrong error message
Inconsistent state of memory
Unnecessary requirement of resources
Unexpected behavior (e.g. crash)

12 / 62

Black box component test

Testing a self-contained unit, e.g. an operation
Typical test methods

Empirical or random tests
Equivalence classes (especially borderline cases)
State assessments

Is unable to detect redundant parts of the code

13 / 62

Outline

1 Recap

2 Testing - Introduction
General Testing
Component Tests

3 Testing in more detail
Equivalence classes
Fundamentals of Testing

4 Test-Driven Development

5 Unit Testing in Java – JUnit
Introduction
Tests in Practice

6 Mocking

14 / 62

Example: Test cases

Determine a suitable number of test cases.

int search (int[] a, int k)
pre: a.length > 0
post:
(result >= 0 and a[result] ==k) or
(result == -1 and

(not exists i: i>=0
and i< a.length
and a[i] == k)

)

15 / 62

Equivalence classes I

Equivalence class Subset of possible input values
Assumption Reaction of the code is identical for all values in the

equivalence class
Test cases Cover all equivalence classes: at least one representative for

each class
Borderline cases Test borderline cases

Typical equivalence classes
Valid/invalid ranges of values
Critical values
Separation into buckets of similar output values

16 / 62

Equivalence classes II

Multiple input parameter
Combine all valid equivalence classes of different input parameters
Combine each invalid equivalence class with other, valid equivalence
classes

Simplification
Frequent combinations
Testing critical values only
Restrict test coverage to pairwise combinations
Minimal: each valid equivalence class occurs in one test case

17 / 62

Example: equivalence classes I

Function

int search (int[] a, int k)
pre: a.length > 0
post:
(result >= 0 and a[result] ==k) or
(result == -1 and

(not exists i: i>=0
and i< a.length
and a[i] == k)

)

18 / 62

Example: equivalence classes II

Valid equivalence classes
Param1: a.length > 0

Param2: k in a, k not in a

Refinement for param1 :
a.length = 1
a.length > 1

Refinement for param2 :
k is first
in the middle
last element of a
not in a

Invalid equivalence class
Param1: a.length=0

19 / 62

Test cases

a element k result
[] (a.length=0) x invalid
[x] (a.length=1) x (in a) 1
[y] (a.length=1) x (not in a) -1
[. . . , x, . . .] (a.length>1) x (in the middle of a) n
[. . .] (a.length>1) x (not in a) -1
[x,. . .] (a.length>1) x (first element of a) 1
[. . . ,x] (a.length>1) x (last element of a) n

20 / 62

State assessment

Considers not only input/output, but also history of states of a
component
Example: Stack
States: initial, empty, filled, full, deleted
Successful test: cover all states and branches at least once

21 / 62

White box test

Coverage of statements
Coverage of branches
Coverage of paths
Requirement: control flow diagram

Main advantage
Each part of the code is tested

Disadvantages
Difficulty of finding appropriate input values to cover all paths
Difficulty of finding appropriate output values

→ usually: Grey Box testing

22 / 62

Testing Classes I

Defining a structure of tests
Constructors
Getters
Boolean Methods
Setters
Iterators
Complex computations
Other methods
(Destructors)

23 / 62

Testing Classes II

Testing interactions between methods
Dependencies between methods

Non-modal: no dependency
Uni-modal: fixed order (e.g. traffic light)
Quasi-modal: content dependent order (e.g. Stack)
Modal: functional dependency (e.g. bank account)

24 / 62

Fundamentals of Testing I

Principle 1
Complete test coverage is impossible.

Principle 2
“Program testing can be used to show the presence of bugs, but never to
show their absence!” Edsger Dijkstra

Principle 3
Write tests early! Don’t defer them to the end of the development cycle!

Principle 4
Bugs are not evenly distributed across the code. If a component contains
multiple bugs, it is likely to contain even more.

25 / 62

Fundamentals of Testing II

Principle 5
Repeating tests doesn’t give you new insights. You need to assess, update
and modify your test cases.

Principle 6
Testing depends on the context and the application. Security relevant
code needs to be tested more thoroughly. (Thanks, Captain Obvious!)

Principle 7
A program without bugs does not necessary fulfill the specification of a
client.

Principle 8
Challenge: minimal number of test cases (= invested time) vs. highest
quality.

26 / 62

Outline

1 Recap

2 Testing - Introduction
General Testing
Component Tests

3 Testing in more detail
Equivalence classes
Fundamentals of Testing

4 Test-Driven Development

5 Unit Testing in Java – JUnit
Introduction
Tests in Practice

6 Mocking

27 / 62

Test-Driven Development

Test-Driven Development
Test-first approach
Thinking about tests before implementing functionality
Writing tests before programming

Advantages
All code is tested
Forces you to think about functionality your code needs to provide
Simple solutions (KISS): writing the smallest amount of code to make
the test pass

Alternative programming workflow.

28 / 62

Fear

Test-driven development is a way of managing fear during
programming. (Beck, 2002)

Start simply.
Write automated tests.
Refactor to add design decisions one at a time.

29 / 62

The secrets of the ancients – 1960s

It was just assumed that any pro would do a damn good job of
this activity, not to be embarrassed by unit bugs found in
integration test or system test – or god help us, in production.
(Jerry Weinberg)1

1source: http://secretsofconsulting.blogspot.de/2008/12/
how-we-used-to-do-unit-testing.html

30 / 62

http://secretsofconsulting.blogspot.de/2008/12/how-we-used-to-do-unit-testing.html
http://secretsofconsulting.blogspot.de/2008/12/how-we-used-to-do-unit-testing.html

The secrets of the ancients – 1970s

It said the way to program is to look at the input tape and
manually type in the output tape you expect. Then you program
until the actual and expected tapes match.

I thought, what a stupid idea. I want tests that pass, not tests
that fail. Why would I write a test when I was sure it would fail.
Well, I’m in the habit of trying stupid things out just to see
what happens, so I tried it and it worked great.

31 / 62

Rhythm of TDD

1 Quickly add a test.
2 Run all tests and see the new one fail.
3 Make a little change.
4 Run all tests and see them all succeed.
5 Refactor to remove duplication.

32 / 62

Outline

1 Recap

2 Testing - Introduction
General Testing
Component Tests

3 Testing in more detail
Equivalence classes
Fundamentals of Testing

4 Test-Driven Development

5 Unit Testing in Java – JUnit
Introduction
Tests in Practice

6 Mocking

33 / 62

JUnit test framework

Based on the tutorial by Lars Vogel:
http://www.vogella.com/articles/JUnit/article.html

JUnit TestClass
Separate class for testing (test class) that contains multiple test methods
Test methods indicated by annotations
Requirement: all methods can be executed in an arbitrary order (no dependencies)

Writing a test method
Annotate a method with @org.junit.Test annotation
Use a JUnit method to check the expected result versus the actual result

34 / 62

http://www.vogella.com/articles/JUnit/article.html

JUnit annotations (version 4.x) I

@Test Specifies that a method is a test method
@Before Method is executed before each test, e.g. to prepare the test

environment (reading data, initializing classes etc.)
@After Method is executed after each test. Used to clean up the

test environment, e.g. delete temporary data, free memory
@BeforeClass Method is executed once before the start of all tests. Use

cases: connection to a database etc. Note: methods need be
be declared as static

@AfterClass Method is executed once after all tests have been finished.
Note: methods need to be declared as static

@Ignore Ignore a method
@Test (expected = Exception.class) Fails, if the method does not

throw the named exception
@Test(timeout=100) Fails, if the method takes longer than 100

milliseconds
35 / 62

Assert statements I

Assert statements
Special methods of the Assert class to test for certain conditions
Required: expected result and actual result
[message]: error message (optional)
Write meaningful error messages!

fail(String): Let the method fail (e.g. to check that a certain part of
the code is not reached)
assertTrue([message], boolean condition) Checks that the
boolean condition is true
assertsEquals([String message], expected, actual) Tests whether
two values are the same

36 / 62

Assert statements II

assertsEquals([String message], expected, actual, tolerance)
Test for matching floating point values. Tolerance: number of
decimals that need to be identical
assertNull([message], object) Checks that an object is null
assertNotNull([message], object) Checks that an object is not
null

assertSame([String], expected, actual) Checks that both variables
refer to the same object
assertNotSame([String], expected, actual) Tests whether both
variables refer to different objects

37 / 62

Test Suite

Test suites
Multiple test classes can be combined into a test suite
Running a test suite runs all corresponding test classes

Example: two test classes

import org.junit.runner.RunWith;
import org.junit.runners.Suite;
import org.junit.runners.Suite.SuiteClasses;

@RunWith(Suite.class)
@SuiteClasses ({ TestClassA.class , TestClassB.class})
public class AllTests {
}

38 / 62

Practical workflow

Outside of eclipse
Add JUnit jar file (library) to the class path
Method runClasses() in org.junit.runner.JUnitCore: run test
classes
Returns object of type org.junit.runner.Result

Result provides information about failures, successful tests etc.

Unit testing with eclipse
Eclipse supports most of the workflows necessary for JUnit
You should use Eclipse

39 / 62

Class to test: Money.java I

public class Money {
private final int amount;
private final String currency;

public Money(int amount , String currency) {
this.amount = amount;
this.currency = currency;

}

public int getAmount () {
return amount;

}

public String getCurrency () {
return currency;

}

public boolean equals(Object anObject) {
if (anObject instanceof Money) {

40 / 62

Class to test: Money.java II

Money money = (Money) anObject;
return money.getCurrency ().equals(getCurrency ())
&& getAmount () == money.getAmount ();

}
return false;

}
}

41 / 62

Testing Money.java I

Things to test
Constructor
equals() method

42 / 62

Testing Money.java II

Testing the constructor

import static org.junit.Assert .*;
import org.junit.Test;

public class MoneyTest {

@Test
public void constructorShouldSetAmountAndCurrency () {

Money m = new Money(10, "USD");

assertEquals (10, m.getAmount ());
assertEquals("USD", m.getCurrency ());

}
}

43 / 62

Testing for exceptions I

Modification of the constructor
If amount < 0 or an invalid currency is used: throw
IllegalArgumentException

44 / 62

Testing for exceptions II

Modified constructor

public Money(int amount , String currency) {
if (amount < 0) {

throw new IllegalArgumentException(
"illegal amount: [" + amount + "]");

}

if (currency == null || currency.isEmpty ()) {
throw new IllegalArgumentException(

"illegal currency: [" + currency + "]");
}
this.amount = amount;
this.currency = currency;

}

45 / 62

Testing for exceptions III

Testing for the occurrence of an exception

@Test(expected = IllegalArgumentException.class)
public void constructorShouldThrowIAEForInvalidAmount () {

Money m = new Money(-10,"USD");
}

46 / 62

Testing for exceptions IV

Running the tests from the command line

import org.junit.runner.JUnitCore;
import org.junit.runner.Result;
import org.junit.runner.notification.Failure;

public class MoneyTestRunner {
public static void main(String [] args) {

Result result = JUnitCore.runClasses(MoneyTest.class);
for (Failure failure : result.getFailures ()) {

System.out.println(failure.toString ());
}

}
}

47 / 62

Creating and running tests from eclipse

Simply do File − > New − > JUnit test
It will ask you for which class file you want to write a test
Type in the test, and run it to see if it passes

48 / 62

Client and Address

Client and Address
Client: a client stores a collection of Address objects
Address: one address of a client
We start with the test

49 / 62

Testing Client I

public class ClientTest {
private Address addressA = new Address("street A");
private Address addressB = new Address("street B");

@Test
public void afterCreationShouldHaveNoAddress () {

Client client = new Client ();
assertEquals (0, client.getAddresses ().size());

}

@Test
public void shouldAllowToAddAddress () {

Client client = new Client ();
client.addAddress(addressA);
assertEquals (1, client.getAddresses ().size());
assertTrue(client.getAddresses ().contains(addressA));

}

@Test

50 / 62

Testing Client II

public void shouldAllowToAddManyAddresses () {
Client client = new Client ();
client.addAddress(addressA);
client.addAddress(addressB);
assertEquals (2, client.getAddresses ().size());
assertTrue(client.getAddresses ().contains(addressA));
assertTrue(client.getAddresses ().contains(addressB));
}

}

→ problematic: code duplication (Client is instantiated in each method).

51 / 62

Creating Address

Address.java

Address only needs to store an address as a String
Constructor expects the string

public class Address {
private String address;

public Address(String add) {
this.address = add;

}

public String getAddress () {
return this.address;

}
}

52 / 62

Creating Client I

Implementing Clients
Collection of Address objects
Size of collection is 0 after instantiation
Provides methods for adding an address and getting all addresses

53 / 62

Creating Client II
Client.java

public class Client {

private List <Address > addresses;

public Client () {
this.addresses = new ArrayList <Address >();

}

public List <Address > getAddresses () {
return addresses;

}

public void addAddress(Address newAddress) {
this.addresses.add(newAddress);

}

}

54 / 62

Running initialization before testing

To avoid to repeat the same code for each test: @Before annotation

public class ClientTest {
private Address addressA = new Address("street A");
private Address addressB = new Address("street B");
private Client client;

@Before
public void setUp() {

client = new Client ();
}

// the rest of the code identical to the previous listing
...

}

55 / 62

assert vs. assertTrue

Java defines an assert statement which is only actually checked if you
give the jvm the “-ea” argument

The (good) intention is to allow programmers to develop using “-ea”
and then to leave it away when code is in production
Unfortunately, in practice people don’t use this!

Instead use methods like assertTrue from JUnit in your code
(everywhere, not only in tests)

import static org.junit.Assert .*

public void myMethod(int i) {

// code here modifies i, should never result in i being
less than 1

assertTrue("myMethod: i not greater than 0", i>0);
}

56 / 62

Outline

1 Recap

2 Testing - Introduction
General Testing
Component Tests

3 Testing in more detail
Equivalence classes
Fundamentals of Testing

4 Test-Driven Development

5 Unit Testing in Java – JUnit
Introduction
Tests in Practice

6 Mocking

57 / 62

What is mocking?

Motivation
Java classes usually depend on other classes
Mock object: dummy implementation for interface or class
User-defined output of certain method calls
Benefit: testing without dependencies
This is a commonly used form of integration testing (think of Mars
Climate Observer)
Example: data provider (database replacement)

Creating mock objects
Manually (via code)
Mock framework: create mock objects at runtime and define their
behavior

58 / 62

Mock frameworks

jMock
http://jmock.org/

EasyMock
http://easymock.org/

Mockito
http://code.google.com/p/mockito/

59 / 62

http://jmock.org/
http://easymock.org/
http://code.google.com/p/mockito/

Example: EasyMock I

Object instantiation

// ICalcMethod is the object which is mocked
ICalcMethod calcMethod = EasyMock.createMock(ICalcMethod.class)

;

60 / 62

Example: EasyMock II

Specifying output
expect(): simulate a method with certain arguments
andReturn(): return value of the method for specified parameters
times(): how often the Mock object will be called

// setup the mock object
expect(calcMethod.calc(Position.BOSS)).andReturn (70000.0).times

(2);
expect(calcMethod.calc(Position.PROGRAMMER)).andReturn (50000.0)

;
// Setup is finished need to activate the mock
replay(calcMethod);

61 / 62

Literature

Vogel, Lars.
JUnit - Tutorial
http://www.vogella.com/articles/JUnit/article.html

Ullenboom, Ch.
Javainsel-Blog: Java Tests mit Junit
http://www.tutego.de/blog/javainsel/2010/04/
junit-4-tutorial-java-tests-mit-junit

Beck, Kent.
Test Driven Development: By Example.
Addison-Wesley Professional, 2002.

62 / 62

http://www.vogella.com/articles/JUnit/article.html
http://www.tutego.de/blog/javainsel/2010/04/junit-4-tutorial-java-tests-mit-junit
http://www.tutego.de/blog/javainsel/2010/04/junit-4-tutorial-java-tests-mit-junit

	Recap
	Testing - Introduction
	General Testing
	Component Tests

	Testing in more detail
	Equivalence classes
	Fundamentals of Testing

	Test-Driven Development
	Unit Testing in Java – JUnit
	Introduction
	Tests in Practice

	Mocking

