
Programmieren II
Java-Docs & Deployment

Alexander Fraser

fraser@cl.uni-heidelberg.de

(Based on material from Oracle and T. Bögel)

http://www.oracle.com/technetwork/java/javase/
documentation/index-137868.html

July 3, 2014

1 / 50

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Outline

1 Javadocs
Introduction
Writing Doc Comments
Tag Conventions

2 Deployment
JAR files
Working with the manifest file
Apache Ant

2 / 50

Outline

1 Javadocs
Introduction
Writing Doc Comments
Tag Conventions

2 Deployment
JAR files
Working with the manifest file
Apache Ant

3 / 50

Principles

Two ways of writing docs
API specifications (Java Platform API Specification)
Programming guide documentation

4 / 50

Writing API Specifications

1. API Specification (most commonly used)
Ideally: all assertions required to do clean-room implementation
API specification: defined by documentation comments in source code
Extended documentation in separate files
Describes contracts, no implementation details
Exceptions must be set apart
Clear error behavior
API should be enough to write Unit Tests

5 / 50

Writing Programming Guide Documentation

2. Programming Guide Documentation
Programming guide: examples, definition of common terms,
metaphors, description of implementation
Contribute to developer’s understanding
Should be separated from doc comments in the source code
Example: Java Tutorials

6 / 50

Terminology

API docs or API specs
Descriptions of the API
Target audience: programmers
Automatically extractable from the source code

Doc comments
Special comments to indicate Java Docs: /** . . . */

Javadoc
JDK tool that generates API documentation

Source files
Source code files for java classes
Package comment files
Overview comment files

7 / 50

Format of doc comments

Format for doc comments: HTML
Comments precede corresponding constructor, method or declaration
Two parts: description followed by tags

8 / 50

Doc comment – Example I

/**
* Returns an Image object that can be painted on the screen.
* The url argument must specify an absolute {@link URL}.
* The name is a specifier that is relative to the url.
* <p>
* This method always returns immediately , whether or not the
* image exists. When this applet attempts to draw the image on
* the screen , the data will be loaded. The graphics primitives
* that draw the image will incrementally paint on the screen.
*
* @param url an absolute URL: the location of the image
* @param name the location of the image , relative to the url
* @return the image at the specified URL
* @see Image
*/
public Image getImage(URL url , String name) {

try {
return getImage(new URL(url , name));

} catch (MalformedURLException e) {

9 / 50

Doc comment – Example II

return null;
}

}

10 / 50

Comments I

Each line is indented to align with code below the comment
The first line contains the begin-comment delimiter (/**)
Leading asterisks are optional
First sentence: short summary
Inline tag {@link URL}: hyperlink pointing to documentation of URL
class
Paragraphs are separated by <p>

Blank comment line between description and tags
First line beginning with an “@” ends description
Last line: end-comment delimiter (*/)
Limit any doc-comment line to 80 characters

11 / 50

Descriptions I

First sentence
First sentence: summary sentence
First sentence is used for package/class or member summaries
“Crisp and informative sentences that can stand on their own”
Sentence ends at first period that is followed by a white space

Problematic white spaces

/**
* This is a simulation of Prof. Knuth’s MIX computer.
*/

→ first sentence ends at “Prof.”

12 / 50

Descriptions II

Solution: HTML code for white spaces

/**
* This is a simulation of Prof. Knuth’s MIX computer.
*/

13 / 50

Descriptions III

Distinguishing overloaded methods
First sentence should distinguish overloaded methods
Example:

/**
* Class constructor.
*/

foo() {
...

/**
* Class constructor specifying number of objects to create.
*/

foo(int n) {
...

14 / 50

Descriptions – Hints

Hints
Description should be complete enough for conforming implementors
Specs should be complete, include boundary conditions and value
ranges
Description should be implementation-independent

15 / 50

Automatic re-use of method comments

Automatically inherited/duplicated comments
When a method in a class overrides a method in a superclass
When a method in an interface overrides a method in a
superinterface
When a method in a class implements a method in an interface
If java doc is defined in sub-class: docs are not copied

16 / 50

Style Guide I

<code> style
Use <code>. . . </code> for key words and names
Java key words
Package names, class names
Method names, interface names, field names
Argument names
Code examples

17 / 50

Style Guide II

In-line links
In-line links: {@link target} tag
Not necessary to add links for all API names in a doc comment
Use links if user might actually want to click on it for more
information
Only for the first occurrence of each API name

18 / 50

Style Guide III

Some style hints
Omit parentheses for the general form of methods and constructors
Example: “The add method enables you to insert items.”
OK to use phrases instead of complete sentences, in the interests of
brevity
Use 3rd person instead of 2nd person
Method descriptions should begin with a verb phrase
Add description beyond the API name

19 / 50

Required tags

@param

@param required for every parameter
Followed by the name of the parameter
First noun in the description: data type of the parameter
Data type starts with a lowercase letter
Example: @param ch the character to be tested

@return

Required for every method that returns something other than void

Whenever possible: state return values for special cases

20 / 50

Optional tags I

@author

None, one or multiple @authors
Not included in the API specification
Only visible in the source code

@deprecated

Tell the user when the API was deprecated
Name possible replacements

21 / 50

Optional tags II

@throws

Should be included for any checked exception
Errors should not be documented
Example:

/**
* @throws IOException If an input or output
* exception occurred
*/

public void f() throws IOException {
// body

}

22 / 50

Package-level comments

Package-level comments
Each package can have its own package-level doc comment source file
File name: package-info.java
Location: in the source directory along with all *.java files

23 / 50

Generating Javadocs

Javadoc
Documentation generator for generating API docs in HTML format
from Java source code
In Eclipse: Project → Generate Javadoc

→ Use standard doclet

Adjust Destination and additional settings

Doclet
Modifies content and format of documentation
Usually: sufficient to use the built-in doclet
Documentation for doclets: http://download.java.net/jdk8/
docs/technotes/guides/javadoc/index.html

24 / 50

http://download.java.net/jdk8/docs/technotes/guides/javadoc/index.html
http://download.java.net/jdk8/docs/technotes/guides/javadoc/index.html

Outline

1 Javadocs
Introduction
Writing Doc Comments
Tag Conventions

2 Deployment
JAR files
Working with the manifest file
Apache Ant

25 / 50

Java Archive (JAR) file format

Bundles multiple files into a single archive file
Typically: class files & auxiliary resources

Benefits
Security: JARs can be digitally signed
Compression: content in JAR files is compressed
Packaging for extensions: JAR files can be added to other programs
easily

26 / 50

Using JAR Files: Basics

JAR files are packaged with ZIP file format
This allows for compression, archiving, decompression and unpacking
JAR files can be created with the Java Archive Tool (in the JDK)

Common operations
Operation Command
Creating a jar file jar cfe jar-file MainClass input-file(s)
Viewing the contents of a JAR file jar tf jar-file
Extracting the contents of a JAR file jar xf jar-file
Extracting specific files from a JAR file jar xf jar-file archived-file(s)
Running application (JAR file)a java -jar app.jar

aUses MainClass

27 / 50

Creating a jar file

Basic command format
jar cfe jar-file MainClass input-file(s)

c: create a file
f: output should be a file
e: entrypoint, the class whose main method should be run (optional)
jar-file: name of the resulting jar file
input-files: space-separated list of one or more files that should be
included in JAR file.
Directories are added recursively.
Adds a default manifest file to path META-INF/MANIFEST.MF

Parameters
0: do not compress the content
v: verbose
m: include manifest information from an existing manifest file

28 / 50

Viewing the contents of a jar file

Basic command format
jar tf jar-file

t: view the table of contents of the jar file
f: input is a file
jar-file: name of the jar file to be read
v (optional): additional information about file size and modification
dates

29 / 50

Extracting the contents of a jar file

Basic command format
jar xf jar-file [archived-file(s)]

x: extract files from the jar archive
f: input is a file
jar-file: name of the jar file to be extracted
archived-file(s) (optional): space-separated list of the files to be
extracted from the archive

30 / 50

Updating a jar file

Basic command format
jar uf jar-file input-file(s)

u: update existing jar file
f: input that should be updated is a file
jar-file: existing jar-file that should be updated
input-file(s): space-delimited list of one or more files that you
want to add to the jar file

31 / 50

Running jar files as applications

Basic command
java -jar jar-file

Runtime environment needs to know which class to execute
This is done by adding a Main-Class: classname header to the
Manifest file with the e parameter when creating the jar file, or by
explicitly creating a manifest

32 / 50

Default manifest

Manifest file
Manifest file contains information about files packaged in a jar file
Meta information about a jar file
Only one manifest per jar file
Path of the manifest file: META-INF/MANIFEST.MF
Format of entries: (header: value) pairs

Default manifest (without e option)
Manifest-Version: 1.0
Created-By: 1.7.0_09 (Oracle Corporation)

33 / 50

Modifying a manifest file

Basic command to modify default manifest
jar cfm jar-file manifest-addition input-file(s)

manifest-addition: path of existing text file whose contents you
want to add to the jar file’s manifest
manifest-addition is a plain text file that contains the desired
additions

34 / 50

Setting an application’s entry point

Specifying the start class
Add this to the manifest file: Main-Class: classname

Class needs to have a main method
Create a jar file with the modified manifest file
→ start class is executed with the command java -jar jar-name

35 / 50

Adding Classes to the jar File’s Classpath

Reference classes in other JAR files from within a JAR file
Add this to the manifest file: Class-Path: jar1-name jar2-name
directory-name/jar3-name

36 / 50

Creating jar files with eclipse

Exporting your java project as a jar file
Export → Runnable JAR file

Launch configuration: entry point (starting class with a main
method)

37 / 50

Signing jar files

Jar files can be signed to verify that the content has not changed

General workflow
1 Programmer signs a jar file
2 Jar file can be verified by a user
3 Documentation: http://docs.oracle.com/javase/tutorial/

deployment/jar/signing.html

38 / 50

http://docs.oracle.com/javase/tutorial/deployment/jar/signing.html
http://docs.oracle.com/javase/tutorial/deployment/jar/signing.html

What is Apache Ant?

Java-based build tool
Acronym for “Another Neat Tool”
Similar to make
Apache project. Download and information:
http://ant.apache.org/

39 / 50

http://ant.apache.org/

General Ant workflow

build.xml in a directory defines targets that can be executed
Tasks for an Ant script

Compiling the source files
Creating a jar file for deployment
Cleaning up temporary files

40 / 50

Example: Hello World with Apache Ant

Preparing your project
Create your source directory: mkdir src

Create a HelloWorld class in src/test/HelloWorld.java

41 / 50

Basic build file

<?xml version="1.0" encoding="ISO -8859 -1"?>
<project name="MyTask" basedir="." default="jar">

<target name="clean" description="Delete all generated
files">
<delete dir="classes"/>
<delete file="MyTasks.jar"/>

</target >

<target name="compile" description="Compiles the Task">
<javac srcdir="src" destdir="classes"/>

</target >

<target name="jar" description="JARs the Task">
<jar destfile="MyTask.jar" basedir="classes"/>

</target >

</project >

42 / 50

Single components of a build.xml file I

XML header
<?xml version=“1.0” encoding=“ISO-8859-1”?>

Standard XML header

Project element
<project name=“MyTask” basedir=“.” default="jar">

Specifies the name of the project
Base/root directory
Specifies the default target

43 / 50

Single components of a build.xml file II

Targets

<target name="clean" description="Delete all generated files">
<delete dir="classes"/>

<delete file="MyTasks.jar"/>
</target >

One target represents one task
Target has a name and description

Within target element: tasks and operations provided by Ant
Overview of available ant tasks:
https://ant.apache.org/manual/tasksoverview.html

44 / 50

https://ant.apache.org/manual/tasksoverview.html

Ant tasks

javac
Compile source files in directory srcdir to destdir

classpath option: classpath to be used

jar
Creates the jar file specified with destfile

basedir: directory with files that should be included in the jar file
manifest: the manifest file to use

45 / 50

Using properties and defining dependencies

Same value is used repeatedly: we should use variables
Variables in Ant: properties
Properties can be used within the build file with ${name}

Defining properties
<property name=“src.dir” value=“src”/>
<property name=“classes.dir" value=“classes"/>

Dependencies
target elements can contain an optional depends attribute to show
that another target needs to run before the target
E.g. <target name=“jar" depends=“compile”>

46 / 50

Updated build file I

<?xml version="1.0" encoding="ISO -8859 -1"?>
<project name="MyTask" basedir="." default="jar">

<property name="src.dir" value="src"/>
<property name="classes.dir" value="classes"/>

<target name="clean" description="Delete all generated
files">
<delete dir="${ classes.dir}" failonerror="false"/>
<delete file="${ant.project.name}.jar"/>

</target >

<target name="compile" description="Compiles the Task">
<mkdir dir="${ classes.dir}"/>
<javac srcdir="${src.dir}" destdir="${ classes.dir}"/>

</target >

<target name="jar" description="JARs the Task" depends="
compile">

47 / 50

Updated build file II

<jar destfile="${ant.project.name}.jar" basedir="${
classes.dir}"/>

</target >
</project >

48 / 50

Running ant targets

Running the build process
ant [target]

ant without any target runs the default target
If a target is specified, this target (and optionally dependencies) is
executed

49 / 50

References

The Java Tutorial
Lesson: Packaging Programs in JAR Files
http://docs.oracle.com/javase/tutorial/deployment/jar/

Oracle Technology Network
How to Write Doc Comments for the Javadoc Tool
http://www.oracle.com/technetwork/java/javase/
documentation/index-137868.html

Ullenboom, Ch.
Java ist auch eine Insel. (Ch. 19.3 & 19.4)
Galileo Computing, 10th edition, 2012.

50 / 50

http://docs.oracle.com/javase/tutorial/deployment/jar/
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

	Javadocs
	Introduction
	Writing Doc Comments
	Tag Conventions

	Deployment
	JAR files
	Working with the manifest file
	Apache Ant

