
Programmieren II 

Graphical Users Interfaces with Swing 

 

Alexander Fraser 

fraser@cl.uni-heidelberg.de 

 
(slides based on material from Richard McKenna, Stonybrook and David 

Matuszek, U Penn) 

 

July 9th, 2014 



Outline 

• Recap 

– Javadocs 

– Jar files 

– Ant 

• GUI motivation 

• GUIs with Swing 

• Anonymous classes 

 



Javadoc 



Jar files 



Apache Ant 



• Next 9 slides motivating GUIs from Richard 

McKenna 



GUI Examples 

http://toastytech.com/guis/bigmac1.gif
http://toastytech.com/guis/bigw203.gif
http://toastytech.com/guis/w95statup.gif


GUI 

• Graphical User Interface (GUI) 

– provides user-friendly human interaction 

 

• Building Java GUIs require use of multiple 
frameworks: 

– Java’s GUI component Libraries 
• javax.swing.* 

– Java’s Event Programming Libraries 
• java.awt.event.* 

• Javax.swing.event.* 

– Java’s Graphics Programming Libraries 
• java.awt.* 

• java.awt.geom.* 



How do GUIs work? 

• A giant loop 

Construct GUI 

Components 

Render  GUI 

Check to see if any 

input 

Respond to user input 



Example, a mouse click on a button 

• Operating System recognizes mouse click 

– determines which window it was inside 

– notifies that program 

 

• Program runs in loop 

– checks input buffer filled by OS 

– if it finds a mouse click: 

• determines which component in the program 

• if the click was on a relevant component 

– respond appropriately according to handler 



GUI Look vs. Behavior 

• Look 

– physical appearance 

– custom component design 

– containment 

– layout management 

 

• Behavior 

– interactivity 

– event programmed response 



What does a GUI framework do for you? 

• Provides ready made visible, interactive, 

customizable components 

– you wouldn’t want to have to code your own window 



The JFrame 

• Java’s top-level window 

– a window that is not contained inside another window 

• Has methods for: 

– used to specify window to fit screen 

•setExtendedState 

– specifying a response to clicking window’s ‘X’ 

•setDefaultCloseOperation 

– specifying size and location (top-left corner) 

•setSize, setLocation (inherited from Component) 

• Many other useful methods inherited from 

ancestors 



javax.swing.JFrame Class Hierarchy 

Object 

Component 

Container 

Window 

Frame 

JFrame 



Useful Inherited Methods for JFrames 

• Frame 

– setting window’s icon 

• setIconImage(Image image) 

• images can be loaded via: 

– Toolkit.getDefaultToolkit.getImage(String fileName) 

• Window 

– for hiding window 

• hide() 

– for tightly packing all components inside frame 

• pack() 

• Component 

– for displaying window 

• setVisible(boolean b) 



GUI Frameworks 

• Java supports many GUI frameworks 

– AWT is an older GUI toolkit 

– Swing is a "lightweight" layer on top of AWT 

• Sometimes have to mix Swing and AWT code 

– JavaFX is a new lightweight toolkit from Oracle 

• Not widely adopted yet 

– For web development, see the Google Web Toolkit, this compiles your java 

code to javascript 

• Example: the Gmail interface 

– For Android, user interface controlled through XML 

– Today we will discuss Swing 

• This is just a light introduction, could spend many weeks on GUI programming! 

• You can learn more about how to work with Swing (or other frameworks) by 

doing the tutorials 

 



GUI Programming 

• GUI programming is fundamentally strange 

– The program is centered around the interaction loop  

• Suppose you have a complex syntactic parser with 

1000s of lines of code 

– Then you add a simple interactive form 

– Suddenly the program is conceptually based around the 

form! 

• The reason for this is that things are happening 

asynchronously! 



• Next slides: crash course in Swing from David 

Matuszek 



20 

How to build a GUI with Swing 

 Create a window in which to display things—usually a JFrame 

(for an application), or a JApplet 

 Use the setLayout(LayoutManager manager) method to 

specify a layout manager 

 Create some Components, such as buttons, panels, etc. 

 Add your components to your display area, according to your 

chosen layout manager 

 Write some Listeners and attach them to your Components 

 Interacting with a Component causes an Event to occur 

 A Listener gets a message when an interesting event occurs, and executes 

some code to deal with it 

 Display your window 



21 

Import the necessary packages 

 The Swing components are in javax.swing.*, so you always 
need to import that for a Swing application 

 Swing is built on top of AWT and uses a number of AWT 
packages, including most of the layout managers, so you need to 
import java.awt.* 

 Most listeners also come from the AWT, so you also need to 
import java.awt.event.* 

 A few listeners, such as DocumentListener and 
ListSelectionListener, are specific to Swing, so you may need 
to import javax.swing event.* 

 For more complex GUIs, there are additional 
java.awt.something and javax.swing.something packages that 
you may need to import 



22 

Make a Container 

 For an application, your container is typically a JFrame 

 JFrame frame = new JFrame(); 

 JFrame frame = new JFrame("Text to put in title bar"); 

 You can create a JFrame in your “main class” 

 It’s often more convenient to have your “main class” 

extend JFrame 

 For an applet, your “main class” must extend JApplet 

 Once your application or applet is up and running, it can 

create and display various dialogs 



23 

Add a layout manager 

 The most important layout managers are: 

 BorderLayout 

 Provides five areas into which you can put components 

 This is the default layout manager for both JFrame and JApplet 

 FlowLayout 

 Components are added left to right, top to bottom 

 GridLayout 

 Components are put in a rectangular grid 

 All areas are the same size and shape 

 BoxLayout 

 Creates a horizontal row or a vertical stack 

 This can be a little weird to use 

 GridBagLayout 

 Too complex and a danger to your sanity—avoid 

 See http://www.youtube.com/watch?v=UuLaxbFKAcc  (Flash, with audio) 

http://www.youtube.com/watch?v=UuLaxbFKAcc


24 

Add components to containers 

 The usual command is 

     container.add(component); 

 For FlowLayout, GridLayout, and BoxLayout, this adds the 

component to the next available location 

 For BorderLayout, this puts the component in the CENTER 

by default 

 For BorderLayout, it’s usually better to use 

 container.add(component, BorderLayout.position); 

 position is one of NORTH, SOUTH, EAST, WEST, or CENTER 

 



25 

Some types of components 

JLabel JButton 

JButton 

JCheckbox 

JChoice 

JList 

JScrollbar 

JTextField JTextArea 

JCheckboxGroup 
JCheckbox 



26 

Create components 

 JButton button = new JButton("Click me!"); 

 JLabel label = new JLabel("This is a JLabel"); 

 JTextField textField1 = new JTextField("This is the initial text");  

 JTextField textField2 = new JTextField("Initial text", columns); 

 JTextArea textArea1 = new JTextArea("Initial text"); 

 JTextArea textArea2 = new JTextArea(rows, columns); 

 JTextArea textArea3 = new JTextArea("Initial text", rows, columns); 

 JCheckBox checkbox = new JCheckBox("Label for checkbox"); 

 JRadioButton radioButton1 = new JRadioButton("Label for button"); 

 ButtonGroup group = new ButtonGroup(); 

group.add(radioButton1); group.add(radioButton2); etc. 

 

 This is just a sampling of the available constructors; see the javax.swing API 

for all the rest 



27 

BorderLayout 

 public class BorderLayoutExample extends JApplet { 

    public void init () { 

        setLayout(new BorderLayout ()); 

        add(new JButton("One"),   BorderLayout.NORTH); 

        add(new JButton("Two"),   BorderLayout.WEST); 

        add(new JButton("Three"), BorderLayout.CENTER); 

        add(new JButton("Four"),  BorderLayout.EAST); 

        add(new JButton("Five"),  BorderLayout.SOUTH); 

        add(new JButton("Six")); 

      } 

} 



28 

FlowLayout 

 public class FlowLayoutExample extends JApplet { 
  public void init () { 
    setLayout(new FlowLayout ()); 
    add(new JButton("One")); 
    add(new JButton("Two")); 
    add(new JButton("Three")); 
    add(new JButton("Four")); 
    add(new JButton("Five")); 
    add(new JButton("Six")); 
  } 
} 



29 

GridLayout 

 public class GridLayoutExample extends JApplet { 

    public void init() { 

        setLayout(new GridLayout(2, 4)); 

        add(new JButton("One")); 

        add(new JButton("Two")); 

        add(new JButton("Three")); 

        add(new JButton("Four")); 

        add(new JButton("Five")); 

    } 

} 



30 

BoxLayout 

 public class BoxLayoutExample extends JApplet { 

    public void init () { 

        Box box = new Box(BoxLayout.Y_AXIS); 

        add(box); 

        box.add(new JButton("One")); 

        box.add(new JButton("Two")); 

        box.add(new JButton("Three")); 

        box.add(new JButton("Four")); 

        box.add(new JButton("Five")); 

        box.add(new JButton("Six")); 

      } 

} 



31 

Nested layouts 

 A JPanel is both a JContainer and a Component 

 Because it’s a container, you can put other components into it 

 Because it’s a component, you can put it into other containers 

 All but the very simplest GUIs are built by creating 

several JPanels, arranging them, and putting 

components (possibly other JPanels) into them 

 A good approach is to draw (on paper) the arrangement 

you want, then finding an arrangement of JPanels and 

their layout managers that accomplishes this 

 



32 

An example nested layout 

 Container container = new JFrame() or JApplet(); 
  
JPanel p1 = new JPanel();  
p1.setLayout(new BorderLayout()); 
p1.add(new JButton("A"), BorderLayout.NORTH); 
      // also add buttons B, C, D, E 
 
JPanel p2 = new JPanel(); 
p2.setLayout(new GridLayout(3, 2)); 
p2.add(new JButton("F")); 
     // also add buttons G, H, I, J, K 
 
JPanel p3 = new JPanel(); 
p3.setLayout(new BoxLayout(p3, BoxLayout.Y_AXIS)); 
p3.add(new JButton("L")); 
     // also add buttons M, N, O, P 
 
 container.setLayout(new BorderLayout()); 
 container.add(p1, BorderLayout.CENTER); 
 container.add(p2, BorderLayout.SOUTH); 
 container.add(p3, BorderLayout.EAST); 



33 

Create and attach listeners 

 JButton okButton = new JButton("OK"); 

 

 okButton.addActionListener(new MyOkListener()); 

 

 class MyOkListener implements ActionListener { 

     public void actionPerformed(ActionEvent event) { 

          // code to handle okButton click 

     } 

} 

 

 A small class like this is often best implemented as an 

anonymous inner class 



34 

Anonymous inner classes 

 Anonymous inner classes are convenient for short code 
(typically a single method) 

 b.addActionListener(anonymous inner class); 

 The anonymous inner class can be either: 
 new Superclass(args) { body } 

 or 

 new Interface() { body } 

 Notice that no class name is given--only the name of the 
superclass or interface 

 If it had a name, it wouldn’t be anonymous, now would it? 

 The args are arguments to the superclass’s constructor 
(interfaces don’t have constructors) 



35 

Using an anonymous inner class 

 Instead of: 

 okButton.addActionListener(new MyOkListener()); 
 
class MyOkListener implements ActionListener { 
     public void actionPerformed(ActionEvent event) { 
          // code to handle OK button click 
     } 
} 

 You can do this: 

 okButton.addActionListener(new ActionListener() { 
     public void actionPerformed(ActionEvent event) { 
          // code to handle OK button click 
     } 
); 

 Keep anonymous inner classes very short (typically just a call to 
one of your methods), as they can really clutter up the code 



36 

Suggested program arrangement 1 

 class SomeClass { 

     // Declare components as instance variables 
    JFrame frame; // Can also define them here if you prefer 
    JButton button; 

      public static void main(String[] args) { 
          new SomeClass().createGui(); 
     } 

      // Define components and attach listeners in a method 
     void createGui() { 
          frame = new JFrame(); 
          button = new JButton("OK"); 
          frame.add(button); // (uses default BorderLayout) 
          button.addActionListener(new MyOkListener()); 
     } 

      // Use an inner class as your listener 
     class MyOkButtonListener implements ActionListener { 
          public void actionPerformed(ActionEvent event) { 
               // Code to handle button click goes here 
          } 
     } 
} 



37 

Suggested program arrangement 2 

 class SomeClass extends JFrame { 

     // Declare components as instance variables 
    // JFrame frame; // Don’t need this 
    JButton button; 

      public static void main(String[] args) { 
          new SomeClass().createGui(); 
     } 

      // Define components and attach listeners in a method 
     void createGui() { 
          // frame = new JFrame();  // Don’t need this 
          button = new JButton("OK"); 
          add(button); // Was: frame.add(button); 
          button.addActionListener(new MyOkListener()); 
     } 

      // Use an inner class as your listener 
     class MyOkButtonListener implements ActionListener { 
          public void actionPerformed(ActionEvent event) { 
               // Code to handle button click goes here 
          } 
     } 
} 



38 

Components use various listeners 

 JButton, JMenuItem, JComboBox, JTextField: 
 addActionListener(ActionListener) 

 public void actionPerformed(ActionEvent event) 

 JCheckBox, JRadioButton: 
 addItemListener(ItemListener) 

 public void itemStateChanged(ItemEvent event) 

 JSlider 
 addChangeListener(ChangeListener) 

 public void stateChanged(ChangeEvent event) 

 JTextArea 
 getDocument().addDocumentListener(DocumentListener) 

 public void insertUpdate(DocumentEvent event) 

 public void removeUpdate(DocumentEvent event) 

 public void changedUpdate(DocumentEvent event) 



39 

Getting values 

 Some user actions normally cause the program to do 

something: clicking a button, or selecting from a menu 

 Some user actions set values to be used later: entering 

text, setting a checkbox or a radio button 

 You can listen for events from these, but it’s not usually a 

good idea 

 Instead, read their values when you need them 

 String myText = myJTextField.getText(); 

 String myText = myJTextArea.getText(); 

 boolean checked = myJCheckBox.isSelected(); 

 boolean selected1 = myJRadioButton1.isSelected(); 



40 

Enabling and disabling components 

 It is poor style to remove components you don’t want 

the user to be able to use 

 “Where did it go? It was here a minute ago!” 

 It’s better to enable and disable controls 

 Disabled controls appear “grayed out” 

 The user may wonder why?, but it’s still less confusing 

  anyComponent.setEnabled(enabled); 

 Parameter should be true to enable, false to disable 



41 

Dialogs 

 A dialog (small accessory window) can be modal or 
nonmodal 

 When your code opens a modal dialog, it waits for a result 
from the dialog before continuing 

 When your code opens a nonmodal dialog, it does so in a 
separate thread, and your code just keeps going 

 Sun supplies a few simple (but useful) modal dialogs for 
your use 

 You can create your own dialogs (with JDialog), but 
they are nonmodal by default 

 



42 

Message dialogs 

 JOptionPane.showMessageDialog(parentJFrame, 

                   "This is a JOptionPane \"message\" dialog."); 

 

 Notice that showMessageDialog is a static method of 

JOptionPane 

 The “parentJFrame” is typically your main GUI 

window (but it’s OK to use null if you don’t have a 

main GUI window) 



43 

Confirm dialogs 

 int yesNo = 

       JOptionPane.showConfirmDialog(parentJFrame, 

                                   "Is this what you wanted to see?"); 

     if (yesNo == JOptionPane.YES_OPTION) { ... } 



44 

Input dialogs 

 String userName = 

   JOptionPane.showInputDialog(parentJFrame, 

                                                 "What is your name?") 



45 

Option dialogs 

 Object[] options = 

    new String[] {"English", "Chinese", "French", "German" }; 

int option = 

    JOptionPane.showOptionDialog(parentJFrame, 

                                                    "Choose an option:", 

                                                    "Option Dialog", 

                                                    JOptionPane.YES_NO_OPTION, 

                                                    JOptionPane.QUESTION_MESSAGE, 

                                                    null, 

                                                    options, 

                                                    options[0]); // use as default 

 Fourth argument could be JOptionPane.YES_NO_CANCEL_OPTION 

 Fifth argument specifies which icon to use in the dialog; it could be one of 
ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE, or 
PLAIN_MESSAGE 

 Sixth argument (null above) can specify a custom icon 

 



46 

Load file dialogs 

 JFileChooser chooser = new JFileChooser(); 

chooser.setDialogTitle("Load which file?"); 

 int result = chooser.showOpenDialog(enclosingJFrame); 

if (result == JFileChooser.APPROVE_OPTION) { 

    File file = chooser.getSelectedFile(); 

    // use file 

} 

 You could also test for 

CANCEL_OPTION or 

ERROR_OPTION 

 You will get back a File 

object; to use it, you must 

know how to do file I/O 



47 

Save file dialogs 

 JFileChooser chooser = new JFileChooser(); 

chooser.setDialogTitle(“Save file as?"); 

 int result = chooser.showSaveDialog(enclosingJFrame); 

if (result == JFileChooser.APPROVE_OPTION) { 

    File file = chooser.getSelectedFile(); 

    // use file 

} 

 You could also test for 

CANCEL_OPTION or 

ERROR_OPTION 

 You will get back a File 

object; to use it, you must 

know how to do file I/O 



48 

Quitting the program 

 gui.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

 

 Other options are DO_NOTHING_ON_CLOSE, 

HIDE_ON_CLOSE, and DISPOSE_ON_CLOSE 



49 

Summary I: Building a GUI 

 Create a container, such as  JFrame or  JApplet 

 Choose a layout manager 

 Create more complex layouts by adding JPanels; 

each JPanel can have its own layout manager 

 Create other components and add them to whichever  

JPanels you like 

 



51 

Summary II: Building a GUI 

 For each active component, look up what kind of 

Listeners it can have 

 Create (implement) the Listeners 

  often there is one Listener for each active component 

 Active components can share the same Listener 

 For each Listener you implement, supply the methods 

that it requires 

 For Applets, write the necessary HTML 

 



Literature 

• Java Swing Tutorial 

    http://docs.oracle.com/javase/tutorial/uiswing/ 

 

• Ullenboom, Ch. 

    Java ist auch eine Insel (Chapter 19) 

    Galileo Computing, 2012 

 

52 


