
Programmieren II

Graphical Users Interfaces with Swing

Alexander Fraser

fraser@cl.uni-heidelberg.de

(slides based on material from Richard McKenna, Stonybrook and David

Matuszek, U Penn)

July 9th, 2014

Outline

• Recap

– Javadocs

– Jar files

– Ant

• GUI motivation

• GUIs with Swing

• Anonymous classes

Javadoc

Jar files

Apache Ant

• Next 9 slides motivating GUIs from Richard

McKenna

GUI Examples

http://toastytech.com/guis/bigmac1.gif
http://toastytech.com/guis/bigw203.gif
http://toastytech.com/guis/w95statup.gif

GUI

• Graphical User Interface (GUI)

– provides user-friendly human interaction

• Building Java GUIs require use of multiple
frameworks:

– Java’s GUI component Libraries
• javax.swing.*

– Java’s Event Programming Libraries
• java.awt.event.*

• Javax.swing.event.*

– Java’s Graphics Programming Libraries
• java.awt.*

• java.awt.geom.*

How do GUIs work?

• A giant loop

Construct GUI

Components

Render GUI

Check to see if any

input

Respond to user input

Example, a mouse click on a button

• Operating System recognizes mouse click

– determines which window it was inside

– notifies that program

• Program runs in loop

– checks input buffer filled by OS

– if it finds a mouse click:

• determines which component in the program

• if the click was on a relevant component

– respond appropriately according to handler

GUI Look vs. Behavior

• Look

– physical appearance

– custom component design

– containment

– layout management

• Behavior

– interactivity

– event programmed response

What does a GUI framework do for you?

• Provides ready made visible, interactive,

customizable components

– you wouldn’t want to have to code your own window

The JFrame

• Java’s top-level window

– a window that is not contained inside another window

• Has methods for:

– used to specify window to fit screen

•setExtendedState

– specifying a response to clicking window’s ‘X’

•setDefaultCloseOperation

– specifying size and location (top-left corner)

•setSize, setLocation (inherited from Component)

• Many other useful methods inherited from

ancestors

javax.swing.JFrame Class Hierarchy

Object

Component

Container

Window

Frame

JFrame

Useful Inherited Methods for JFrames

• Frame

– setting window’s icon

• setIconImage(Image image)

• images can be loaded via:

– Toolkit.getDefaultToolkit.getImage(String fileName)

• Window

– for hiding window

• hide()

– for tightly packing all components inside frame

• pack()

• Component

– for displaying window

• setVisible(boolean b)

GUI Frameworks

• Java supports many GUI frameworks

– AWT is an older GUI toolkit

– Swing is a "lightweight" layer on top of AWT

• Sometimes have to mix Swing and AWT code

– JavaFX is a new lightweight toolkit from Oracle

• Not widely adopted yet

– For web development, see the Google Web Toolkit, this compiles your java

code to javascript

• Example: the Gmail interface

– For Android, user interface controlled through XML

– Today we will discuss Swing

• This is just a light introduction, could spend many weeks on GUI programming!

• You can learn more about how to work with Swing (or other frameworks) by

doing the tutorials

GUI Programming

• GUI programming is fundamentally strange

– The program is centered around the interaction loop

• Suppose you have a complex syntactic parser with

1000s of lines of code

– Then you add a simple interactive form

– Suddenly the program is conceptually based around the

form!

• The reason for this is that things are happening

asynchronously!

• Next slides: crash course in Swing from David

Matuszek

20

How to build a GUI with Swing

 Create a window in which to display things—usually a JFrame

(for an application), or a JApplet

 Use the setLayout(LayoutManager manager) method to

specify a layout manager

 Create some Components, such as buttons, panels, etc.

 Add your components to your display area, according to your

chosen layout manager

 Write some Listeners and attach them to your Components

 Interacting with a Component causes an Event to occur

 A Listener gets a message when an interesting event occurs, and executes

some code to deal with it

 Display your window

21

Import the necessary packages

 The Swing components are in javax.swing.*, so you always
need to import that for a Swing application

 Swing is built on top of AWT and uses a number of AWT
packages, including most of the layout managers, so you need to
import java.awt.*

 Most listeners also come from the AWT, so you also need to
import java.awt.event.*

 A few listeners, such as DocumentListener and
ListSelectionListener, are specific to Swing, so you may need
to import javax.swing event.*

 For more complex GUIs, there are additional
java.awt.something and javax.swing.something packages that
you may need to import

22

Make a Container

 For an application, your container is typically a JFrame

 JFrame frame = new JFrame();

 JFrame frame = new JFrame("Text to put in title bar");

 You can create a JFrame in your “main class”

 It’s often more convenient to have your “main class”

extend JFrame

 For an applet, your “main class” must extend JApplet

 Once your application or applet is up and running, it can

create and display various dialogs

23

Add a layout manager

 The most important layout managers are:

 BorderLayout

 Provides five areas into which you can put components

 This is the default layout manager for both JFrame and JApplet

 FlowLayout

 Components are added left to right, top to bottom

 GridLayout

 Components are put in a rectangular grid

 All areas are the same size and shape

 BoxLayout

 Creates a horizontal row or a vertical stack

 This can be a little weird to use

 GridBagLayout

 Too complex and a danger to your sanity—avoid

 See http://www.youtube.com/watch?v=UuLaxbFKAcc (Flash, with audio)

http://www.youtube.com/watch?v=UuLaxbFKAcc

24

Add components to containers

 The usual command is

 container.add(component);

 For FlowLayout, GridLayout, and BoxLayout, this adds the

component to the next available location

 For BorderLayout, this puts the component in the CENTER

by default

 For BorderLayout, it’s usually better to use

 container.add(component, BorderLayout.position);

 position is one of NORTH, SOUTH, EAST, WEST, or CENTER

25

Some types of components

JLabel JButton

JButton

JCheckbox

JChoice

JList

JScrollbar

JTextField JTextArea

JCheckboxGroup
JCheckbox

26

Create components

 JButton button = new JButton("Click me!");

 JLabel label = new JLabel("This is a JLabel");

 JTextField textField1 = new JTextField("This is the initial text");

 JTextField textField2 = new JTextField("Initial text", columns);

 JTextArea textArea1 = new JTextArea("Initial text");

 JTextArea textArea2 = new JTextArea(rows, columns);

 JTextArea textArea3 = new JTextArea("Initial text", rows, columns);

 JCheckBox checkbox = new JCheckBox("Label for checkbox");

 JRadioButton radioButton1 = new JRadioButton("Label for button");

 ButtonGroup group = new ButtonGroup();

group.add(radioButton1); group.add(radioButton2); etc.

 This is just a sampling of the available constructors; see the javax.swing API

for all the rest

27

BorderLayout

 public class BorderLayoutExample extends JApplet {

 public void init () {

 setLayout(new BorderLayout ());

 add(new JButton("One"), BorderLayout.NORTH);

 add(new JButton("Two"), BorderLayout.WEST);

 add(new JButton("Three"), BorderLayout.CENTER);

 add(new JButton("Four"), BorderLayout.EAST);

 add(new JButton("Five"), BorderLayout.SOUTH);

 add(new JButton("Six"));

 }

}

28

FlowLayout

 public class FlowLayoutExample extends JApplet {
 public void init () {
 setLayout(new FlowLayout ());
 add(new JButton("One"));
 add(new JButton("Two"));
 add(new JButton("Three"));
 add(new JButton("Four"));
 add(new JButton("Five"));
 add(new JButton("Six"));
 }
}

29

GridLayout

 public class GridLayoutExample extends JApplet {

 public void init() {

 setLayout(new GridLayout(2, 4));

 add(new JButton("One"));

 add(new JButton("Two"));

 add(new JButton("Three"));

 add(new JButton("Four"));

 add(new JButton("Five"));

 }

}

30

BoxLayout

 public class BoxLayoutExample extends JApplet {

 public void init () {

 Box box = new Box(BoxLayout.Y_AXIS);

 add(box);

 box.add(new JButton("One"));

 box.add(new JButton("Two"));

 box.add(new JButton("Three"));

 box.add(new JButton("Four"));

 box.add(new JButton("Five"));

 box.add(new JButton("Six"));

 }

}

31

Nested layouts

 A JPanel is both a JContainer and a Component

 Because it’s a container, you can put other components into it

 Because it’s a component, you can put it into other containers

 All but the very simplest GUIs are built by creating

several JPanels, arranging them, and putting

components (possibly other JPanels) into them

 A good approach is to draw (on paper) the arrangement

you want, then finding an arrangement of JPanels and

their layout managers that accomplishes this

32

An example nested layout

 Container container = new JFrame() or JApplet();

JPanel p1 = new JPanel();
p1.setLayout(new BorderLayout());
p1.add(new JButton("A"), BorderLayout.NORTH);
 // also add buttons B, C, D, E

JPanel p2 = new JPanel();
p2.setLayout(new GridLayout(3, 2));
p2.add(new JButton("F"));
 // also add buttons G, H, I, J, K

JPanel p3 = new JPanel();
p3.setLayout(new BoxLayout(p3, BoxLayout.Y_AXIS));
p3.add(new JButton("L"));
 // also add buttons M, N, O, P

 container.setLayout(new BorderLayout());
 container.add(p1, BorderLayout.CENTER);
 container.add(p2, BorderLayout.SOUTH);
 container.add(p3, BorderLayout.EAST);

33

Create and attach listeners

 JButton okButton = new JButton("OK");

 okButton.addActionListener(new MyOkListener());

 class MyOkListener implements ActionListener {

 public void actionPerformed(ActionEvent event) {

 // code to handle okButton click

 }

}

 A small class like this is often best implemented as an

anonymous inner class

34

Anonymous inner classes

 Anonymous inner classes are convenient for short code
(typically a single method)

 b.addActionListener(anonymous inner class);

 The anonymous inner class can be either:
 new Superclass(args) { body }

 or

 new Interface() { body }

 Notice that no class name is given--only the name of the
superclass or interface

 If it had a name, it wouldn’t be anonymous, now would it?

 The args are arguments to the superclass’s constructor
(interfaces don’t have constructors)

35

Using an anonymous inner class

 Instead of:

 okButton.addActionListener(new MyOkListener());

class MyOkListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 // code to handle OK button click
 }
}

 You can do this:

 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 // code to handle OK button click
 }
);

 Keep anonymous inner classes very short (typically just a call to
one of your methods), as they can really clutter up the code

36

Suggested program arrangement 1

 class SomeClass {

 // Declare components as instance variables
 JFrame frame; // Can also define them here if you prefer
 JButton button;

 public static void main(String[] args) {
 new SomeClass().createGui();
 }

 // Define components and attach listeners in a method
 void createGui() {
 frame = new JFrame();
 button = new JButton("OK");
 frame.add(button); // (uses default BorderLayout)
 button.addActionListener(new MyOkListener());
 }

 // Use an inner class as your listener
 class MyOkButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 // Code to handle button click goes here
 }
 }
}

37

Suggested program arrangement 2

 class SomeClass extends JFrame {

 // Declare components as instance variables
 // JFrame frame; // Don’t need this
 JButton button;

 public static void main(String[] args) {
 new SomeClass().createGui();
 }

 // Define components and attach listeners in a method
 void createGui() {
 // frame = new JFrame(); // Don’t need this
 button = new JButton("OK");
 add(button); // Was: frame.add(button);
 button.addActionListener(new MyOkListener());
 }

 // Use an inner class as your listener
 class MyOkButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 // Code to handle button click goes here
 }
 }
}

38

Components use various listeners

 JButton, JMenuItem, JComboBox, JTextField:
 addActionListener(ActionListener)

 public void actionPerformed(ActionEvent event)

 JCheckBox, JRadioButton:
 addItemListener(ItemListener)

 public void itemStateChanged(ItemEvent event)

 JSlider
 addChangeListener(ChangeListener)

 public void stateChanged(ChangeEvent event)

 JTextArea
 getDocument().addDocumentListener(DocumentListener)

 public void insertUpdate(DocumentEvent event)

 public void removeUpdate(DocumentEvent event)

 public void changedUpdate(DocumentEvent event)

39

Getting values

 Some user actions normally cause the program to do

something: clicking a button, or selecting from a menu

 Some user actions set values to be used later: entering

text, setting a checkbox or a radio button

 You can listen for events from these, but it’s not usually a

good idea

 Instead, read their values when you need them

 String myText = myJTextField.getText();

 String myText = myJTextArea.getText();

 boolean checked = myJCheckBox.isSelected();

 boolean selected1 = myJRadioButton1.isSelected();

40

Enabling and disabling components

 It is poor style to remove components you don’t want

the user to be able to use

 “Where did it go? It was here a minute ago!”

 It’s better to enable and disable controls

 Disabled controls appear “grayed out”

 The user may wonder why?, but it’s still less confusing

 anyComponent.setEnabled(enabled);

 Parameter should be true to enable, false to disable

41

Dialogs

 A dialog (small accessory window) can be modal or
nonmodal

 When your code opens a modal dialog, it waits for a result
from the dialog before continuing

 When your code opens a nonmodal dialog, it does so in a
separate thread, and your code just keeps going

 Sun supplies a few simple (but useful) modal dialogs for
your use

 You can create your own dialogs (with JDialog), but
they are nonmodal by default

42

Message dialogs

 JOptionPane.showMessageDialog(parentJFrame,

 "This is a JOptionPane \"message\" dialog.");

 Notice that showMessageDialog is a static method of

JOptionPane

 The “parentJFrame” is typically your main GUI

window (but it’s OK to use null if you don’t have a

main GUI window)

43

Confirm dialogs

 int yesNo =

 JOptionPane.showConfirmDialog(parentJFrame,

 "Is this what you wanted to see?");

 if (yesNo == JOptionPane.YES_OPTION) { ... }

44

Input dialogs

 String userName =

 JOptionPane.showInputDialog(parentJFrame,

 "What is your name?")

45

Option dialogs

 Object[] options =

 new String[] {"English", "Chinese", "French", "German" };

int option =

 JOptionPane.showOptionDialog(parentJFrame,

 "Choose an option:",

 "Option Dialog",

 JOptionPane.YES_NO_OPTION,

 JOptionPane.QUESTION_MESSAGE,

 null,

 options,

 options[0]); // use as default

 Fourth argument could be JOptionPane.YES_NO_CANCEL_OPTION

 Fifth argument specifies which icon to use in the dialog; it could be one of
ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE, or
PLAIN_MESSAGE

 Sixth argument (null above) can specify a custom icon

46

Load file dialogs

 JFileChooser chooser = new JFileChooser();

chooser.setDialogTitle("Load which file?");

 int result = chooser.showOpenDialog(enclosingJFrame);

if (result == JFileChooser.APPROVE_OPTION) {

 File file = chooser.getSelectedFile();

 // use file

}

 You could also test for

CANCEL_OPTION or

ERROR_OPTION

 You will get back a File

object; to use it, you must

know how to do file I/O

47

Save file dialogs

 JFileChooser chooser = new JFileChooser();

chooser.setDialogTitle(“Save file as?");

 int result = chooser.showSaveDialog(enclosingJFrame);

if (result == JFileChooser.APPROVE_OPTION) {

 File file = chooser.getSelectedFile();

 // use file

}

 You could also test for

CANCEL_OPTION or

ERROR_OPTION

 You will get back a File

object; to use it, you must

know how to do file I/O

48

Quitting the program

 gui.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 Other options are DO_NOTHING_ON_CLOSE,

HIDE_ON_CLOSE, and DISPOSE_ON_CLOSE

49

Summary I: Building a GUI

 Create a container, such as JFrame or JApplet

 Choose a layout manager

 Create more complex layouts by adding JPanels;

each JPanel can have its own layout manager

 Create other components and add them to whichever

JPanels you like

51

Summary II: Building a GUI

 For each active component, look up what kind of

Listeners it can have

 Create (implement) the Listeners

 often there is one Listener for each active component

 Active components can share the same Listener

 For each Listener you implement, supply the methods

that it requires

 For Applets, write the necessary HTML

Literature

• Java Swing Tutorial

 http://docs.oracle.com/javase/tutorial/uiswing/

• Ullenboom, Ch.

 Java ist auch eine Insel (Chapter 19)

 Galileo Computing, 2012

52

