Programmieren ||

Graphical Users Interfaces with Swing

Alexander Fraser
fraser@cl.uni-heidelberg.de

(slides based on material from Richard McKenna, Stonybrook and David
Matuszek, U Penn)

July 9th, 2014

Outline

Recap
— Javadocs

— Jar files
— Ant

GUI motivation
GUIs with Swing
Anonymous classes

Javadoc

Doc comment — Example |

Returns an Image object that can be painted on the screen.
The url argument must specify an absolute {@link URL}Z.

The name 1s a specifier that 1s relative to the url.

<p>

This method always returns immediately, whether or not the
image exists. When this applet attempts to draw the 1image on
the screen, the data will be loaded. The graphics primitives

that draw the image will incrementally paint on the screen.

@param url an absolute URL: the location of the image
@param name the location of the image, relative to the url
@return the image at the specified URL
@see Image
*/
public Image getImage (URL url, String name) {
try {
return getImage(new URL(url, name));

} catch (MalformedURLException e) {

Jar files

Using JAR Files: Basics

m JAR files are packaged with ZIP file format

m This allows for compression, archiving, decompression and unpacking
m JAR files can be created with the Java Archive Tool (in the JDK)

Common operations

Operation

Creating a jar file

Viewing the contents of a JAR file
Extracting the contents of a JAR file
Extracting specific files from a JAR file
Running application (JAR file)?

“Uses MainClass

Command

jar cfe jar-file MainClass input-file(s)
jar tf jar-file

jar xf jar-file

jar xf jar-file archived-file(s)

java -jar app.jar

Apache Ant

Basic build file

<?xml version="1.0" encoding="1IS0-8859-1"7>
<project name="MyTask"” basedir="." default="jar">

<target name="clean"” description="Delete all generated
files”>
<delete dir="classes"”"/>
<delete file="MyTasks.jar"/>

</target>

<target name="compile"” description="Compiles the Task"”>
<javac srcdir="src"” destdir="classes"/>
</target>

<target name="jar"” description="JARs the Task"”>
<jar destfile="MyTask.jar"” basedir="classes"/>

</target>

</project>

* Next 9 slides motivating GUIs from Richard
McKenna

GUI Examples

% File Edit Diewr Special

Har System Sofhware
3 Mems 2ITE in disk 173K awwiloble

Buriem Fobde Saphy Foller *

Eg: tem Folder

/% BRI Z1IE im Toller
e g
Fider

System IndgewTiher Plole Pad F ik Goropbaook Fle CBpboond Fie

173K available
Hr

= pii-4%_Exvstio I

File Wiew Special
a1 e[il #[C=] i iz

FIF PIFEDLT .EXE

Hiorosoft Windows

a ME-00% Executiue

Uersion 2.8
Copyright @ 1987 Worosoft Corp,
Dl v b,

E] B o 1l pza donil kricey e la b toeraiengg . vou

o Rl B iy s ik ook e Gt
bratian, ared than cick Halp

HELUE Pisk Space Fres: ERRGGET

IDER Hempry Frees E
HEnns
HOTEPAD .EXE
PRIKT EXE

:

Ascpcla Bn

i
|
: ¥ 3 howe thiz 'wakcorss Sicrmmr nacd e poa st Wincons

T | rdesrad

7=)(=)(5]
(=I(-J(-J(~]
anoon
anoe
oooe
0noe

3

ey Hearaca

http://toastytech.com/guis/bigmac1.gif
http://toastytech.com/guis/bigw203.gif
http://toastytech.com/guis/w95statup.gif

GUI

 Graphical User Interface (GUI)
— provides user-friendly human interaction

 Building Java GUIs require use of multiple
frameworks:

— Java’s GUI component Libraries
* javax.swing.*

— Java’s Event Programming Libraries
* java.awt.event.*
« Javax.swing.event. *

— Java’s Graphics Programming Libraries
« java.awt.*
e Java.awt.geom. *

How do GUIs work?

« A glant loop |

Construct GUI
Components

v

Render GUI <

’

Check to see if any
Input

v

Respond to user input

Example, a mouse click on a button

« Operating System recognizes mouse click
— determines which window it was inside
— notifies that program

* Program runs in loop
— checks input buffer filled by OS

— 1f 1t finds a mouse click:
» determines which component in the program

« if the click was on a relevant component
— respond appropriately according to handler

GUI Look vs. Behavior

* Look
— physical appearance
— custom component design
— containment
— layout management

* Behavior
— Interactivity
— event programmed response

What does a GUI framework do for you?

 Provides ready made visible, interactive,
customizable components

— you wouldn’t want to have to code your own window

_%’ A rails CEVGES s _ih_ﬂﬂ

The JFrame

 Java’s top-level window
— a window that 1s not contained inside another window

 Has methods for:

— used to specify window to fit screen
- setExtendedState 3

— specifying a response to clicking window’s ‘X’
« setDefaultCloseOperation

— specifying size and location (top-left corner)
« setSize, setLocation (inherited from Component)

» Many other useful methods inherited from
ancestors

javax.swing.JFrame Class Hierarchy

Object

\

Component

\

Container

‘\

Window

‘\

Frame

\

JFrame

Useful Inherited Methods for JFrames

 Frame = alhrEme S ayE ST oW _JJBB

— setting window’s 1icon
e setIconImage (Image image)

* images can be loaded via:
— Toolkit.getDefaultToolkit.getImage (String fileName)

 Window

— for hiding window
e hide ()

— for tightly packing all components inside frame
* pack ()

* Component

— for displaying window
e setVisible (boolean b)

GUI Frameworks

Java supports many GUI frameworks
— AWT is an older GUI toolkit
— Swing is a "lightweight" layer on top of AWT
« Sometimes have to mix Swing and AWT code
— JavaFX is a new lightweight toolkit from Oracle
« Not widely adopted yet

— For web development, see the Google Web Toolkit, this compiles your java
code to javascript

« Example: the Gmail interface
— For Android, user interface controlled through XML
— Today we will discuss Swing

« This is just a light introduction, could spend many weeks on GUI programming!

* You can learn more about how to work with Swing (or other frameworks) by
doing the tutorials

GUI Programming

« GUI programming Is fundamentally strange
— The program is centered around the interaction loop
« Suppose you have a complex syntactic parser with

1000s of lines of code

— Then you add a simple interactive form

— Suddenly the program is conceptually based around the
form!

* The reason for this Is that things are happening
asynchronously!

* Next slides: crash course in Swing from David
Matuszek

How to build a GUI with Swing

Create a window in which to display things—usually a JFrame
(for an application), or a JApplet

Use the setLayout(LayoutManager manager) method to
specify a layout manager

Create some Components, such as buttons, panels, etc.

Add your components to your display area, according to your
chosen layout manager

Write some Listeners and attach them to your Components
= Interacting with a Component causes an Event to occur

= A Listener gets a message when an interesting event occurs, and executes
some code to deal with it

Display your window

20

{ Import the necessary packages

The Swing components are in javax.swing.*, so you always
need to import that for a Swing application

Swing is built on top of AWT and uses a number of AWT
packages, including most of the layout managers, so you need to
Import java.awt.”

Most listeners also come from the AWT, so you also need to
Import java.awt.event.”

A few listeners, such as DocumentListener and
ListSelectionListener, are specific to Swing, so you may need
to Import javax.swing event.”

For more complex GUIs, there are additional
java.awt.something and javax.swing.something packages that
you may need to import

21

{L Make a Container

For an application, your container is typically a JFrame
« JFrame frame = new JFrame();
= JFrame frame = new JFrame("Text to put in title bar");

You can create a JFrame in your “main class”

It’s often more convenient to have your “main class”
extend JFrame

For an applet, your “main class” must extend JApplet

Once your application or applet is up and running, it can
create and display various dialogs

22

Add a layout manager

= The most important layout managers are:

= BorderLayout
= Provides five areas into which you can put components
= This is the default layout manager for both JFrame and JApplet
FlowLayout
= Components are added left to right, top to bottom
GridLayout
= Components are put in a rectangular grid
= All areas are the same size and shape
BoxLayout
= Creates a horizontal row or a vertical stack
= This can be a little weird to use
GridBaglLayout
= Too complex and a danger to your sanity—avoid
= See http://www.youtube.com/watch?v=UuLaxbFKAcc (Flash, with audio)

23

http://www.youtube.com/watch?v=UuLaxbFKAcc

{ Add components to containers

= The usual command is
container.add(component);

= For FlowLayout, GridLayout, and BoxLayout, this adds the
component to the next available location

= For BorderLayout, this puts the component in the CENTER
by default
= For BorderlLayout, it’s usually better to use
container.add(component, BorderLayout.position);
= position is one of NORTH, SOUTH, EAST, WEST, or CENTER

24

{ Some types of components

LEtS use compaonents! Click me! | _I5ingle Checkbaoy

English JScrollbar
Clubs —l| Chinese
apanese '
m m/ - : JTextArea
iTextarea

I

D hne

his is a TextField] Twi g

Cha gethin95|rfi arth _JSouth JEast Wwest

JCheckboxGroup

25

tpplet started.

Create components

JButton button = new JButton("Click me!");

JLabel label = new JLabel("This is a JLabel");

JTextField textField1 = new JTextField("This is the initial text");
JTextField textField2 = new JTextField(“Initial text”, columns);
JTextArea textAreal = new JTextArea("Initial text");

JTextArea textAreaZ = new JTextArea(rows, columns);

JTextArea textArea3 = new JTextArea("Initial text", rows, columns);
JCheckBox checkbox = new JCheckBox("Label for checkbox");
JRadioButton radioButton1 = new JRadioButton("Label for button”);

ButtonGroup group = new ButtonGroup();
group.add(radioButton1); group.add(radioButton2); etc.

This is just a sampling of the available constructors; see the javax.swing API
for all the rest

26

BorderLayout

= public class BorderLayoutExample extends JApplet {
public void init () {

setLayout(new BorderLayout ());
add(new JButton("One"), BorderLayout.NORTH);
add(new JButton("Two"), BorderLayout.WEST);
add(new JButton("Three"), BorderLayout.CENTER);
add(new JButton("Four”), BorderLayout.EAST);
add(new JButton("Five"), BorderLayout.SOUTH);
add(new JButton("Six"));

} £ Applet Yiewer: swingLayoutExs = | I:IL&]
} Applet

One

Two Six Four

Five

Applet started.

{ FlowLayout

public void init () {
_ayout(new FlowlLayout ());

set
adC
ad
ad
ad
ad

OO0 o0oo

ad

N N s T T

new J
New J
New J
New J
New J

NEW .

Button("One"));
Button("Two"));
Button("Three"));
Button("Four™));
Button("Five"));
Button("Six™));

Applet

£ Applet Yiewer: SWin

= public class FlowLayoutExample extends JApplet {

=101 x|

One

Two

Three

Four

Five

Six

Applet started.

28

{ GridLayout

= public class GridLayoutExample extends JApplet {

public void init() {

setLayout(new GridLayout(2, 4));

add(new JButton("One"));
add(new JButton(“Two"));
add(new JButton("Three"));
add(new JButton("Four"));
add(new JButton("Five"));

Applet

Z ppplet Yiewer:

wing... J5 [=] [P3

One

Two

Thr...

Four

Five

Applet started.

29

{ BoxLayout

= public class BoxLayoutExample extends JApplet {
public void init () {
Box box = new Box(BoxLayout.Y_AXIS);

add(box);
box.add(new JButton("One")); .
box.add(new JButton("Two")); lew =RaiEA
box.add(new JButton("Three")); One
box.add(new JButton("Four")); Two
box.add(new JButton("Five")); Three
box.add(new JButton("Six")); Four
} Five
} Six

Applet started.

{L Nested layouts

= A JPanel is both a JContainer and a Component
= Because It’s a container, you can put other components into it
= Because it’s a component, you can put it into other containers

= All but the very simplest GUIs are built by creating
several JPanels, arranging them, and putting
components (possibly other JPanels) into them

= A good approach is to draw (on paper) the arrangement
you want, then finding an arrangement of JPanels and
their layout managers that accomplishes this

31

An example nested layout

= Container container = new JFrame() or JApplet();

JPanel p1 = new JPanel();

p1.setLayout(new BorderLayout());

p1.add(new JButton("A"), BorderLayout.NORTH);
// also add buttons B, C, D, E

JPanel p2 = new JPanel();
p2.setLayout(new GridLayout(3, 2));
p2.add(new JButton("F"));

// also add buttons G, H, I, J, K

JPanel p3 = new JPanel();
p3.setLayout(new BoxLayout(p3, BoxLayout.Y_AXIS));
p3.add(new JButton('L"));

// also add buttons M, N, O, P

container.setLayout(new BorderLayout());
container.add(p1, BorderLayout.CENTER);
container.add(p2, BorderLayout.SOUTH);

container.add(p3, BorderLayout.EAST);

)

{ Create and attach listeners

= JButton okButton = new JButton("OK");
= okButton.addActionListener(new MyOKListener());

= class MyOkListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
// code to handle okButton click

}
}

= A small class like this is often best implemented as an
anonymous inner class

33

Anonymous Inner classes

Anonymous Inner classes are convenient for short code
(typically a single method)
b.addActionListener(anonymous inner class);
The anonymous inner class can be either:
new Superclass(args) { body }
or
new Interface() { body }
Notice that no class name is given--only the name of the

superclass or interface
= Ifit had a name, it wouldn’t be anonymous, now would it?

The args are arguments to the superclass’s constructor
(interfaces don’t have constructors)

34

Using an anonymous Inner class

= |Instead of:
= okButton.addActionListener(new MyOKkListener());

class MyOkListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
// code to handle OK button click
3

}
= You can do this:

= okButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
// code to handle OK button click
3

);
= Keep anonymous inner classes very short (typically just a call to
one of your methods), as they can really clutter up the code

35

Suggested program arrangement 1

class SomecClass {

}

// Declare components as instance variables
JFrame frame; // Can also define them here if you prefer
JButton button;

public static void main(String[] args) {
new SomeClass().createGui();

3

// Define components and attach listeners in a method
void createGui() {
frame = new JFrame();
button = new JButton("OK");
frame.add(button); // (uses default BorderLayout)
button.addActionListener(new MyOkListener());

}

// Use an inner class as your listener
class MyOkButtonListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
// Code to handle button click goes here
}

}

36

Suggested program arrangement 2

class SomeClass extends JFrame {

}

// Declare components as instance variables
// JFrame frame; // Don’t need this
JButton button;

public static void main(String[] args) {
new SomeClass().createGui();

3

// Define components and attach listeners in a method
void createGui() {
// frame = new JFrame(); // Don’t need this
button = new JButton("OK");
add(button); // Was: frame.add(button);
button.addActionListener(new MyOkListener());

}

// Use an inner class as your listener
class MyOkButtonListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
// Code to handle button click goes here
}

}

37

Components use various listeners

JButton, JMenultem, JComboBox, JTextField:

= addActionListener(ActionListener)
= public void actionPerformed(ActionEvent event)

JCheckBox, JRadioButton:

= addltemListener(ltemListener)
= public void itemStateChanged(ltemEvent event)

JSlider

= addChangelistener(Changelistener)
= public void stateChanged(ChangeEvent event)

JTextArea

= getDocument().addDocumentListener(DocumentListener)
= public void insertUpdate(DocumentEvent event)
= public void removeUpdate(DocumentEvent event)
= public void changedUpdate(DocumentEvent event)

38

Getting values

= Some user actions normally cause the program to do
something: clicking a button, or selecting from a menu

= Some user actions set values to be used later: entering
text, setting a checkbox or a radio button

= You can listen for events from these, but it’s not usually a
good idea

= Instead, read their values when you need them
String myText = myJTextField.getText();

String myText = myJTextArea.getText();

boolean checked = myJCheckBox.isSelected();
boolean selected1 = myJRadioButton1.isSelected();

39

{ Enabling and disabling components

= |t Is poor style to remove components you don’t want
the user to be able to use

= “Where did it go? It was here a minute ago!”

= |t’s better to enable and disable controls

= Disabled controls appear “grayed out”

= The user may wonder why?, but it’s still less confusing
= anyComponent.setEnabled(enabled);

= Parameter should be true to enable, false to disable

40

{L Dialogs

= A dialog (small accessory window) can be modal or
nonmodal

= When your code opens a modal dialog, it waits for a result
from the dialog before continuing

= When your code opens a nonmodal dialog, it does so in a
separate thread, and your code just keeps going

= Sun supplies a few simple (but useful) modal dialogs for
your use

= You can create your own dialogs (with JDialog), but
they are nonmodal by default

41

{ Message dialogs

= JOptionPane.showMessageDialog(parentJFrame,
“This is a JOptionPane \"message\" dialog.");

= Notice that showMessageDialog is a static method of
JOptionPane

= The “parentJFrame” is typically your main GUI
window (but it’s OK to use null if you don’t have a

main GUI window) |
x|

@ This is a JOptionPane "message" dialog.

OK

42

{ Confirm dialogs

= int yesNo =
JOptionPane.showConfirmDialog(parentJFrame,
“Is this what you wanted to see?”);

o if (yesNo == JOptionPane.YES_OPTION) { ... }

Select an Option _ 5‘

?‘

Is this what you wanted to see?

Yes No Cancel

{ Input dialogs

= String userName =
JOptionPane.showlInputDialog(parentJFrame,
"What is your name?”)

mput
-5 What is your name?

II |

OK Cancel

= Object[] options =
new String[] {"English”, "Chinese”, "French”, "German" };

int option =
JOptionPane.showOptionDialog(parentJFrame,

Option Dialog]

?

- Choose an option:

Option dialogs

X

English

Chinese

French

German

"Choose an option:”,

"Option Dialog",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE,
null,

options,

options[0]); // use as default

= Fourth argument could be JOptionPane.YES_NO_CANCEL_OPTION

= Fifth argument specifies which icon to use in the dialog; it could be one of
ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE, or
PLAIN_MESSAGE

= Sixth argument (null above) can specify a custom icon

45

|_oad file dialogs

= JFileChooser chooser = new JFileChooser();
chooser.setDialogTitle("Load which file?");

= int result = chooser.showOpenDialog(enclosingJFrame);
if (result == JFileChooser.APPROVE_OPTION) {
File file = chooser.getSelectedFile();

/ / use fi le £ | pad which file? x|
} Look In: | My Documents | ||| |3 [BElE=
] Calculator1a 3 My Downloads
= You could also test for = catcuatorth e
CANCEL_O PTI ON or [Calculator? [My Pictures
ERROR_OPTION o I Sounis
3 My Archives 3 My Storett Folder
= You will get back a File [My Backups paula
object; to use it, you must d I L
know how to do file 1/0 Telfaus | |
Files of Type: |All Files -

Open Cancel

Save file dialogs

= JFileChooser chooser = new JFileChooser();
chooser.setDialogTitle(“Save file as?");

= int result = chooser.showSaveDialog(enclosingJFrame);
if (result == JFileChooser.APPROVE_OPTION) {
File file = chooser.getSelectedFile();

} / / use f] le i Save file as? x|
Save In: | My Documents | |HE||T}| || |5 |e=
n You cou I d aISO test for] Calculator1a] My Downloads
3 Calculator b] My eBooks
CANCEL—O PTI ON or] Calculator? 3 My Pictures
ERRO R_OPTION] maya] My Sounds
. . 3 My Archives 3 My Storett Folder
= You will get back a File 7 1y Backups 7 pauta
object; to use it, you must a I C
knOW hOW to dO f'le I/O File Name: | |
Files of Type: |All Files -

Save Cancel

{ Quitting the program

= gui.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

= Other options are DO_NOTHING_ON_CLOSE,
HIDE_ON_CLOSE, and DISPOSE_ON_CLOSE

48

{ Summary I: Building a GUI

= Create a container, such as JFrame or JApplet
= Choose a layout manager

= Create more complex layouts by adding JPanels;
each JPanel can have its own layout manager

s Create other components and add them to whichever
JPanels you like

49

{ Summary Il: Building a GUI

= For each active component, look up what kind of
Listeners it can have

= Create (Implement) the Listeners
= often there is one Listener for each active component
= Active components can share the same Listener

= For each Listener you implement, supply the methods
that it requires

= For Applets, write the necessary HTML

51

Literature

» Java Swing Tutorial
http://docs.oracle.com/javase/tutorial/uiswing/

 Ullenboom, Ch.
Java ist auch eine Insel (Chapter 19)
Galileo Computing, 2012

52

