
Programmieren II

Threads

Alexander Fraser

fraser@cl.uni-heidelberg.de

(slides based on material from David Matuszek, U Penn and a few slides

from others, see attributions on individual slides)

July 10th, 2014

Admin

• Reminder: Commitment-Frist until 13.07

• CL students register if they have met the
requirements

• Non-CL students must email the ICL
Sekretariat (there is no form) to be registered
if they have met the requirements

• And some more breaking news...

Assignment 8

• We were thinking about doing a Bonus Blatt
after Assignment 8

• However, we are actually out of time

• Therefore Assignment 8 is OPTIONAL

– Highly recommended to do it though!

– You will most likely use opennlp in the future a lot
(or Stanford NLP which is quite similar)

Outline

• Recap

– GUIs with Swing

– Anonymous inner classes

– Listeners

• Event loops

• Threads

5

How to build a GUI with Swing

 Create a window in which to display things—usually a JFrame

(for an application), or a JApplet

 Use the setLayout(LayoutManager manager) method to

specify a layout manager

 Create some Components, such as buttons, panels, etc.

 Add your components to your display area, according to your

chosen layout manager

 Write some Listeners and attach them to your Components

 Interacting with a Component causes an Event to occur

 A Listener gets a message when an interesting event occurs, and executes

some code to deal with it

 Display your window

6

Anonymous inner classes

 Anonymous inner classes are convenient for short code
(typically a single method)

 b.addActionListener(anonymous inner class);

 The anonymous inner class can be either:
 new Superclass(args) { body }

 or

 new Interface() { body }

 Notice that no class name is given--only the name of the
superclass or interface

 If it had a name, it wouldn’t be anonymous, now would it?

 The args are arguments to the superclass’s constructor
(interfaces don’t have constructors)

7

Using an anonymous inner class

 Instead of:

 okButton.addActionListener(new MyOkListener());

class MyOkListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 // code to handle OK button click
 }
}

 You can do this:

 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 // code to handle OK button click
 }
);

 Keep anonymous inner classes very short (typically just a call to
one of your methods), as they can really clutter up the code

8

Suggested program arrangement 2

 class SomeClass extends JFrame {

 // Declare components as instance variables
 // JFrame frame; // Don’t need this
 JButton button;

 public static void main(String[] args) {
 new SomeClass().createGui();
 }

 // Define components and attach listeners in a method
 void createGui() {
 // frame = new JFrame(); // Don’t need this
 button = new JButton("OK");
 add(button); // Was: frame.add(button);
 button.addActionListener(new MyOkListener());
 }

 // Use an inner class as your listener
 class MyOkButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 // Code to handle button click goes here
 }
 }
}

Inner Classes

• Note that the previous example defined a
named inner class

• This is not recommended

• Anonymous inner classes are OK (I personally
don't use them that much)

• The Java compiler saves inner classes in:
OuterClass$InnerClass.class

• Anonymous classes are numbered:
OuterClass$1.class

10-Jul-14

Event loops

11

Programming in prehistoric times

 Earliest programs were all “batch” processing

 There was no interaction with the user

Input

Output

Process

12

Very early interactive programs

 BASIC was an early

interactive language

 Still a central computer, with

terminals

 Style of interaction was

“filling out forms”

Process input

Ask user for input

Ask user for input

Process input

etc.

13

Command-driven programs
(30 years ago)

 Allow the user to enter

“commands”

 Much more flexible

 Still only a single source

of inputs

 Not good enough for

modern programs

Ask user for command

Read and parse

command

Execute command

quit

14

Modern event-driven programs

 Multiple sources of

input

 mouse clicks

 keyboard

 timers

 external events

 A new program

structure is required

Wait for event

Dispatch event

Quit

15

Java hides the event loop

 The event loop is built into Java GUIs

 GUI stands for Graphical User Interface

 Interacting with a GUI component (such as a button)

causes an event to occur

 An Event is an object

 You create Listeners for interesting events

 Listener is an interface; you create a Listener by

implementing that interface

 The Listener method gets the Event as a parameter

16

Building a GUI

 To build a GUI in Java,

 Create some Components

 Use a layout manager to arrange the Components in a

window

 Add Listeners, usually one per Component

 Put methods in the Listeners to do whatever it is you

want done

 That's it!

17

Vocabulary I

 Event – an object representing an external happening

that can be observed by the program

 event-driven programming – A style of programming

where the main thing the program does is respond to

Events

 event loop – a loop that waits for an Event to occur,

then dispatches it to the appropriate code

 GUI – a Graphical User Interface (user interacts with

the program via things on the screen)

18

Vocabulary II

 Component – an interface element, such as a Button or a

TextField

 Layout Manager – an object (provided by Java) that

arranges your Components in a window

 Listener – an interface you implement to execute some

code when an Event occurs

• I uploaded a file called ColorWindow.java to

Moodle.

– Look at this program to see how Listeners work in

detail.

20

Multiprocessing

 Modern operating systems are multiprocessing

 Appear to do more than one thing at a time

 Three general approaches:

 Cooperative multiprocessing

 Preemptive multiprocessing

 Really having multiple processors

Slide from Travis Brown, Rochester Tech

Slide from Travis Brown, Rochester Tech

What is a Thread?

• Individual and separate unit of execution
that is part of a process

– multiple threads can work together to
accomplish a common goal

• Video Game example

– one thread for graphics

– one thread for user interaction

– one thread for networking

Matt McCormick, Wisconsin Madison

Slide from Travis Brown, Rochester Tech

What is a Thread?

video

interaction

networking

Video Game

Process

Matt McCormick, Wisconsin Madison

Advantages

• easier to program

– 1 thread per task

• can provide better performance

– thread only runs when needed

– no polling to decide what to do

• multiple threads can share resources

• utilize multiple processors if available

Matt McCormick, Wisconsin Madison

Disadvantages

• multiple threads can lead to deadlock

– more on this later

• overhead of switching between threads

Matt McCormick, Wisconsin Madison

Threads

 Definition: Thread is a single Sequential Flow of Control

within a program.

 Other Names: Thread = Execution Context = Lightweight

Process

 Thread like a Sequential Program, has

 A beginning, a sequence, and an end.

 Has a single point of execution, at any given time

Slide from Moshe Fresko, Bar-Ilan

29

Multithreading

 Multithreading programs appear to do more than one

thing at a time

 Same ideas as multiprocessing, but within a single

program

 More efficient than multiprocessing

 Java tries to hide the underlying multiprocessing

implementation

30

Threads

 A Thread is a single flow of control

 When you step through a program, you are following a

Thread

 Your previous programs all had one Thread

 In Java, a Thread is an Object you can create and

control

31

Sleeping

 Every program uses at least one Thread

 Thread.sleep(int milliseconds);

 A millisecond is 1/1000 of a second

 try { Thread.sleep(1000); }

catch (InterruptedException e) { }

 sleep only works for the current Thread

32

States of a Thread

 A Thread can be in one of four states:

 Ready: all set to run

 Running: actually doing something

 Waiting, or blocked: needs something

 Dead: will never do anything again

 State names vary across textbooks

 You have some control, but the Java scheduler has more

33

State transitions

ready

waiting

running dead start

34

Two ways of creating Threads

 You can extend the Thread class:

 class Animation extends Thread {…}

 Limiting, since you can only extend one class

 Or you can implement the Runnable interface:

 class Animation implements Runnable {…}

 requires public void run()

 The second is recommended for most programs

35

Extending Thread

 class Animation extends Thread {
 @Override
 public void run() { code for this thread }
 Anything else you want in this class
}

 Animation anim = new Animation();
 A newly created Thread is in the Ready state

 To start the anim Thread running, call anim.start();

 start() is a request to the scheduler to run the Thread --it
may not happen right away

 The Thread should eventually enter the Running state

36

Implementing Runnable

 class Animation implements Runnable {…}

 The Runnable interface requires run()

 This is the “main” method of your new Thread

 Animation anim = new Animation();

 Thread myThread = new Thread(anim);

 To start the Thread running, call myThread.start();

 You do not write the start() method—it’s provided by Java

 As always, start() is a request to the scheduler to run the

Thread--it may not happen right away

37

Starting a Thread

 Every Thread has a start() method

 Do not write or override start()

 You call start() to request a Thread to run

 The scheduler then (eventually) calls run()

 You must supply public void run()

 This is where you put the code that the Thread is

going to run

38

Extending Thread: summary

class Animation extends Thread {

 public void run() {

 while (okToRun) { ... }

 }

}

Animation anim = new Animation();

anim.start();

39

Implementing Runnable: summary

class Animation extends Applet

 implements Runnable {

 public void run() {

 while (okToRun) { ... }

 }

}

Animation anim = new Animation();

Thread myThread = new Thread(anim);

myThread.start();

40

Things a Thread can do

 Thread.sleep(milliseconds)

 yield()

 Thread me = currentThread();

 int myPriority = me.getPriority();

 me.setPriority(NORM_PRIORITY);

 if (otherThread.isAlive()) { … }

 join(otherThread);

41

Animation requires two Threads

 Suppose you set up Buttons and attach Listeners to

those buttons...

 …then your code goes into a loop doing the

animation…

 …who’s listening?

 Not this code; it’s busy doing the animation

 sleep(ms) doesn’t help!

42

How to animate

 Create your buttons and attach listeners in your first

(original) Thread

 Create a second Thread to run the animation

 Start the animation

 The original Thread is free to listen to the buttons

 However,

 Whenever you have a GUI, Java automatically creates a

second Thread for you

 You only have to do this yourself for more complex programs

43

Things a Thread should NOT do

 The Thread controls its own destiny

 Deprecated methods:

 myThread.stop()

 myThread.suspend()

 myThread.resume()

 Outside control turned out to be a Bad Idea

 Don’t do this!

44

How to control another Thread

 Don’t use the deprecated methods!

 Instead, put a request where the other Thread can

find it

 boolean okToRun = true;

animation.start();

 public void run() {

 while (controller.okToRun) {…}

45

A problem

 What gets printed as the value of k?

 This is a trivial example of what is, in general, a

very difficult problem

int k = 0;

Thread #1:

 k = k + 1;

Thread #2:

 System.out.print(k);

46

Tools for a solution

 You can synchronize on an object:

 synchronized (obj) { ...code that uses/modifies obj... }

 No other code can use or modify this object at the same time

 Notice that synchronized is being used as a statement

 You can synchronize a method (uses this):

 synchronized void addOne(arg1, arg2, ...) { code }

 Only one synchronized method in a class can be used at a time

(other methods can be used simultaneously)

 Synchronization is a tool, not a solution—

multithreading is in general a very hard problem

The synchronized statement

 Synchronization is a way of providing exclusive access to data

 You can synchronize on any Object, of any type

 If two Threads try to execute code that is synchronized on the

same object, only one of them can execute at a time; the other has

to wait

 synchronized (someObject) { /* some code */ }

 This works whether the two Threads try to execute the same block of code,

or different blocks of code that synchronize on the same object

 Often, the object you synchronize on bears some relationship to

the data you wish to manipulate, but this is not at all necessary

47

synchronized methods

 Instance methods can be synchronized:

 synchronized public void myMethod(/* arguments */) {

 /* some statements */

}

 This is equivalent to

 public void myMethod(/* arguments */) {

 synchronized(this) {

 /* some statements */

 }

}

 Static methods can also be synchronized

 They are synchronized on the class object (a built-in object that represents

the class)

48

Summary

• Event loops and listeners

• Processes vs threads

• Threads in Java

• Need for syncronization

– "thread safety"

Literature

• Java Concurrency Tutorial

 http://docs.oracle.com/javase/tutorial/essential/concurrency/

• Ullenboom, Ch.

 Java ist auch eine Insel (Chapter 14)

 Galileo Computing, 2012

50

