Programmieren ||
Threads

Alexander Fraser
fraser@cl.uni-heidelberg.de

(slides based on material from David Matuszek, U Penn and a few slides
from others, see attributions on individual slides)

July 10th, 2014

Admin

Reminder: Commitment-Frist until 13.07

CL students register if they have met the
requirements

Non-CL students must email the ICL
Sekretariat (there is no form) to be registered
if they have met the requirements

And some more breaking news...

Assignment 8

 We were thinking about doing a Bonus Blatt

after Assignment 8

* However, we are actually out of time
* Therefore Assignment 8 is OPTIONAL

— Highly recommended to do it thoug

— You will most likely use opennlp in t
(or Stanford NLP which is quite simi

N |
ne future a lot

ar)

Outline

* Recap
— GUIs with Swing
— Anonymous inner classes
— Listeners

« Event loops
* Threads

How to build a GUI with Swing

= Create a window in which to display things—usually a JFrame
(for an application), or a JApplet

= Use the setLayout(LayoutManager manager) method to
specify a layout manager

= Create some Components, such as buttons, panels, etc.

= Add your components to your display area, according to your
chosen layout manager

= \Write some Listeners and attach them to your Components
= Interacting with a Component causes an Event to occur

= A Listener gets a message when an interesting event occurs, and executes
some code to deal with it

= Display your window

Anonymous Inner classes

Anonymous Inner classes are convenient for short code
(typically a single method)
b.addActionListener(anonymous inner class);
The anonymous inner class can be either:
new Superclass(args) { body }
or
new Interface() { body }
Notice that no class name is given--only the name of the

superclass or interface
= Ifit had a name, it wouldn’t be anonymous, now would it?

The args are arguments to the superclass’s constructor
(interfaces don’t have constructors)

Using an anonymous Inner class

= |Instead of:
= okButton.addActionListener(new MyOKkListener());

class MyOkListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
// code to handle OK button click
3

}
= You can do this:

= okButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent event) {
// code to handle OK button click
3

);
= Keep anonymous inner classes very short (typically just a call to
one of your methods), as they can really clutter up the code

Suggested program arrangement 2

class SomeClass extends JFrame {

n // Declare components as instance variables
// JFrame frame; // Don’t need this
JButton button;

n public static void main(String[] args) {
new SomeClass().createGui();
3
n // Define components and attach listeners in a method

void createGui() {
// frame = new JFrame(); // Don’t need this
button = new JButton("OK");
add(button); // Was: frame.add(button);
button.addActionListener(new MyOkListener());

}

n // Use an inner class as your listener
class MyOkButtonListener implements ActionListener {
public void actionPerformed(ActionEvent event) {
// Code to handle button click goes here
}

3
3

Inner Classes

Note that the previous example defined a
named inner class

This is not recommended

Anonymous inner classes are OK (I personally
don't use them that much)

The Java compiler saves inner classes in:
OuterClassSInnerClass.class

Anonymous classes are numbered:
OuterClassS1.class

{ Event loops

M-

10-Jul-14

{L Programming in prehistoric times

= Earliest programs were all “batch™ processing
= There was no interaction with the user

v

Input

\ 4

Process

;

Output

v

11

= BASIC was an early
Interactive language

= Still a central computer, with
terminals

= Style of interaction was
“filling out forms™

{ Very early interactive programs

v

Ask user for input

\ 4

Process input

v

Ask user for input

v

Process input

v

etc.

{ Command-driven programs
(30 years ago)

= Allow the user to enter
“commands”

= Much more flexible

= Still only a single source
of inputs

= Not good enough for
modern programs

||

Ask user for command

v

Read and parse
command

\ 4

Execute command

quiti

13

‘—'L Modern event-driven programs

= Multiple sources of

Input l i

= mouse clicks .
Wait for event
= keyboard i

= timers

= external events Dispatch event

= A new program Quitl

structure Is required

'! Java hides the event loop

= The event loop is built into Java GUIs
= GUI stands for Graphical User Interface

= Interacting with a GUI component (such as a button)
causes an event to occur

= An Event is an object

= You create Listeners for interesting events

= Listener is an interface; you create a Listener by
Implementing that interface

= The Listener method gets the Event as a parameter

15

‘—'L Building a GUI

= To builda GUI In Java,

= Create some Components

= Use a layout manager to arrange the Components in a
window

= Add Listeners, usually one per Component

= Put methods in the Listeners to do whatever it Is you
want done

= That's it!

16

'! Vocabulary |

= Event — an object representing an external happening
that can be observed by the program

= event-driven programming — A style of programming
where the main thing the program does is respond to
Events

= event loop — a loop that waits for an Event to occur,
then dispatches it to the appropriate code

= GUI — a Graphical User Interface (user interacts with
the program via things on the screen)

17

'! Vocabulary I

= Component — an interface element, such as a Button or a
TextField

= Layout Manager — an object (provided by Java) that
arranges your Components in a window

= Listener — an interface you implement to execute some
code when an Event occurs

18

* | uploaded a file called ColorWindow.java to
Moodle.

— Look at this program to see how Listeners work In
detail.

'! Multiprocessing

= Modern operating systems are multiprocessing
= Appear to do more than one thing at a time

= Three general approaches:
= Cooperative multiprocessing
= Preemptive multiprocessing
= Really having multiple processors

20

What is a Process? ¥ y

4/27/12

* Here's what happens when

you run this Java program public class MyProgram {
and launch 3 instances while pu;:r:;c:i Eicag_'c void main(String args[1) {
monitoring with top while (true) {
* On a single CPU architecture, 3 i=i+1
the operating system }
manages how processes 3

share CPU time

process

java #1 | | - i >
java #2 ﬁ

java #3

Others... - '

2 time

¥

¥

Slide from Travis Brown, Rochester Tech

What is a Process? 'S y

4/27/12

 Besides running your program, the Java

interpreter process must do other tasks
- Example: manage memory for your code,
including garbage collection

* How does the interpreter perform multiple
tasks within a single process?

threads

3

Slide from Travis Brown, Rochester Tech

What 1s a Thread?

» Individual and separate unit of execution
that Is part of a process

— multiple threads can work together to
accomplish a common goal

* Video Game example
— one thread for graphics
— one thread for user interaction
— one thread for networking

Matt McCormick, Wisconsin Madison

What is a Thread? ‘o

4/27/12

* A thread is a flow of execution

* Java has built-in multithreading
- Multiple tasks run concurrently in 1 process

* Multiple processes and threads share CPU

time

Process #1 | Tt | T2 | T3 13—

Process #2 |13 |11 | 14—
4

Slide from Travis Brown, Rochester Tech

What 1s a Thread?

Video Game

Process
/

video networking
Interaction

Matt McCormick, Wisconsin Madison

Advantages

* easier to program
— 1 thread per task

e can provide better performance
— thread only runs when needed
— no polling to decide what to do

« multiple threads can share resources
» utilize multiple processors if available

Matt McCormick, Wisconsin Madison

Disadvantages

« multiple threads can lead to deadlock
— more on this later

 overhead of switching between threads

Matt McCormick, Wisconsin Madison

Threads

o Definition: Thread is a single Sequential Flow of Control
within a program.

0 Other Names: Thread = Execution Context = Lightweight
Process

0 Thread like a Sequential Program, has
A beginning, a sequence, and an end.
Has a single point of execution, at any given time

o £

A
Thread

=
A Program = ? & Program ~<
=

Twvo
Threads

Slide from Moshe Fresko, Bardlan

{L Multithreading

= Multithreading programs appear to do more than one
thing at a time

= Same ideas as multiprocessing, but within a single
program
= More efficient than multiprocessing

= Java tries to hide the underlying multiprocessing
Implementation

29

{ Threads

= A Thread is a single flow of control

= When you step through a program, you are following a
Thread

= Your previous programs all had one Thread

= InJava, a Thread is an Object you can create and
control

30

{ Sleeping

= Every program uses at least one Thread

= Thread.sleep(int milliseconds);
= A millisecond i1s 1/1000 of a second

s try { Thread.sleep(1000); }
catch (InterruptedException e) { }

= sleep only works for the current Thread

31

{L States of a Thread

= A Thread can be in one of four states:
= Ready: all set to run
= Running: actually doing something
= Waiting, or blocked: needs something
= Dead: will never do anything again

= State names vary across textbooks
= You have some control, but the Java scheduler has more

32

{ State transitions

start

G
DG

33

{ Two ways of creating Threads

= You can extend the Thread class:
= class Animation extends Thread {...}
= Limiting, since you can only extend one class

= Or you can implement the Runnable interface:
= class Animation implements Runnable {...}
= requires public void run()

= The second Is recommended for most programs

34

{ Extending Thread

= class Animation extends Thread {
@0verride
public void run() { code for this thread }
Anything else you want in this class

}

= Animation anim = new Animation();
= A newly created Thread is in the Ready state

= To start the anim Thread running, call anim.start();

= start() is a request to the scheduler to run the Thread --it
may not happen right away

= The Thread should eventually enter the Running state

35

{ Implementing Runnable

= class Animation implements Runnable {...}

= The Runnable interface requires run()

= This is the “main” method of your new Thread
= Animation anim = new Animation();
= Thread myThread = new Thread(anim);

= To start the Thread running, call myThread.start();
= You do not write the start() method—It’s provided by Java

= As always, start() is a request to the scheduler to run the
Thread--it may not happen right away

36

{ Starting a Thread

Every Thread has a start() method

Do not write or override start()

You call start() to request a Thread to run
The scheduler then (eventually) calls run()

You must supply public void run()

= This is where you put the code that the Thread is
going to run

37

{ Extending Thread: summary

class Animation extends Thread {
public void run() {
while (okToRun) { ... }

3
}

Animation anim = new Animation();
anim.start();

38

{ Implementing Runnable: summary

class Animation extends Applet
implements Runnable {
public void run() {
while (okToRun) { ... }

}
}

Animation anim = new Animation();
Thread myThread = new Thread(anim);
myThread.start();

39

{ Things a Thread can do

= Thread.sleep(milliseconds)

= yield()

= Thread me = currentThread();

= int myPriority = me.getPriority();
= me.setPriority(NORM_PRIORITY);
= if (otherThread.isAlive()) {... }

= join(otherThread);

40

{ Animation requires two Threads

= Suppose you set up Buttons and attach Listeners to
those buttons...

= ...then your code goes 1nto a loop doing the
animation...

= ...who’s listening?
= Not this code; it’s busy doing the animation

= sleep(ms) doesn’t help!

41

{L How to animate

Create your buttons and attach listeners in your first
(original) Thread

Create a second Thread to run the animation
Start the animation
The original Thread is free to listen to the buttons

However,

= Whenever you have a GUI, Java automatically creates a
second Thread for you

= You only have to do this yourself for more complex programs

42

{ Things a Thread should NOT do

= The Thread controls its own destiny

= Deprecated methods:
= myThread.stop()
= myThread.suspend()
= myThread.resume()

= Outside control turned out to be a Bad Idea
= Don’t do this!

43

{ How to control another Thread

= Don’t use the deprecated methods!

= Instead, put a request where the other Thread can
find it

= boolean okToRun = true;
animation.start();

= public void run() {
while (controller.okToRun) {...}

44

{ A problem

int k =0;
Thread #1: Thread #2:
K=K+ 1; System.out.print(k);

= What gets printed as the value of k?

= This is a trivial example of what is, in general, a
very difficult problem

45

{ Tools for a solution

= YO0u can synchronize on an object:
= synchronized (obj) { ...code that uses/modifies obj... }
= No other code can use or modify this object at the same time
= Notice that synchronized is being used as a statement

= You can synchronize a method (uses this):

= synchronized void addOne(argl, arg?, ...) { code }

= Only one synchronized method in a class can be used at a time
(other methods can be used simultaneously)

= Synchronization is a tool, not a solution—
multithreading is in general a very hard problem

46

The synchronized statement

Synchronization is a way of providing exclusive access to data
You can synchronize on any Object, of any type

If two Threads try to execute code that is synchronized on the
same object, only one of them can execute at a time; the other has
to wait

= synchronized (someObject) { /* some code */ }

= This works whether the two Threads try to execute the same block of code,

or different blocks of code that synchronize on the same object

Often, the object you synchronize on bears some relationship to
the data you wish to manipulate, but this is not at all necessary

47

synchronized methods

= Instance methods can be synchronized:

= synchronized public void myMethod(/* arguments */) {
/* some statements */

3
= This is equivalent to

= public void myMethod(/* arguments */) {
synchronized(this) {
/* some statements */

}
}

= Static methods can also be synchronized

= They are synchronized on the class object (a built-in object that represents
the class)

48

Summary

Event loops and listeners
Processes vs threads
Threads in Java

Need for syncronization
— "thread safety"

Literature

 Java Concurrency Tutorial
http://docs.oracle.com/javase/tutorial/essential/concurrency/

« Ullenboom, Ch.
Java ist auch eine Insel (Chapter 14)
Galileo Computing, 2012

50

