
Programmieren II

Threads

Alexander Fraser

fraser@cl.uni-heidelberg.de

(slides based on material from David Matuszek, U Penn and a few slides

from others, see attributions on individual slides)

July 10th, 2014

Admin

• Reminder: Commitment-Frist until 13.07

• CL students register if they have met the
requirements

• Non-CL students must email the ICL
Sekretariat (there is no form) to be registered
if they have met the requirements

• And some more breaking news...

Assignment 8

• We were thinking about doing a Bonus Blatt
after Assignment 8

• However, we are actually out of time

• Therefore Assignment 8 is OPTIONAL

– Highly recommended to do it though!

– You will most likely use opennlp in the future a lot
(or Stanford NLP which is quite similar)

Outline

• Recap

– GUIs with Swing

– Anonymous inner classes

– Listeners

• Event loops

• Threads

5

How to build a GUI with Swing

 Create a window in which to display things—usually a JFrame

(for an application), or a JApplet

 Use the setLayout(LayoutManager manager) method to

specify a layout manager

 Create some Components, such as buttons, panels, etc.

 Add your components to your display area, according to your

chosen layout manager

 Write some Listeners and attach them to your Components

 Interacting with a Component causes an Event to occur

 A Listener gets a message when an interesting event occurs, and executes

some code to deal with it

 Display your window

6

Anonymous inner classes

 Anonymous inner classes are convenient for short code
(typically a single method)

 b.addActionListener(anonymous inner class);

 The anonymous inner class can be either:
 new Superclass(args) { body }

 or

 new Interface() { body }

 Notice that no class name is given--only the name of the
superclass or interface

 If it had a name, it wouldn’t be anonymous, now would it?

 The args are arguments to the superclass’s constructor
(interfaces don’t have constructors)

7

Using an anonymous inner class

 Instead of:

 okButton.addActionListener(new MyOkListener());

class MyOkListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 // code to handle OK button click
 }
}

 You can do this:

 okButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent event) {
 // code to handle OK button click
 }
);

 Keep anonymous inner classes very short (typically just a call to
one of your methods), as they can really clutter up the code

8

Suggested program arrangement 2

 class SomeClass extends JFrame {

 // Declare components as instance variables
 // JFrame frame; // Don’t need this
 JButton button;

 public static void main(String[] args) {
 new SomeClass().createGui();
 }

 // Define components and attach listeners in a method
 void createGui() {
 // frame = new JFrame(); // Don’t need this
 button = new JButton("OK");
 add(button); // Was: frame.add(button);
 button.addActionListener(new MyOkListener());
 }

 // Use an inner class as your listener
 class MyOkButtonListener implements ActionListener {
 public void actionPerformed(ActionEvent event) {
 // Code to handle button click goes here
 }
 }
}

Inner Classes

• Note that the previous example defined a
named inner class

• This is not recommended

• Anonymous inner classes are OK (I personally
don't use them that much)

• The Java compiler saves inner classes in:
OuterClass$InnerClass.class

• Anonymous classes are numbered:
OuterClass$1.class

10-Jul-14

Event loops

11

Programming in prehistoric times

 Earliest programs were all “batch” processing

 There was no interaction with the user

Input

Output

Process

12

Very early interactive programs

 BASIC was an early

interactive language

 Still a central computer, with

terminals

 Style of interaction was

“filling out forms”

Process input

Ask user for input

Ask user for input

Process input

etc.

13

Command-driven programs
(30 years ago)

 Allow the user to enter

“commands”

 Much more flexible

 Still only a single source

of inputs

 Not good enough for

modern programs

Ask user for command

Read and parse

command

Execute command

quit

14

Modern event-driven programs

 Multiple sources of

input

 mouse clicks

 keyboard

 timers

 external events

 A new program

structure is required

Wait for event

Dispatch event

Quit

15

Java hides the event loop

 The event loop is built into Java GUIs

 GUI stands for Graphical User Interface

 Interacting with a GUI component (such as a button)

causes an event to occur

 An Event is an object

 You create Listeners for interesting events

 Listener is an interface; you create a Listener by

implementing that interface

 The Listener method gets the Event as a parameter

16

Building a GUI

 To build a GUI in Java,

 Create some Components

 Use a layout manager to arrange the Components in a

window

 Add Listeners, usually one per Component

 Put methods in the Listeners to do whatever it is you

want done

 That's it!

17

Vocabulary I

 Event – an object representing an external happening

that can be observed by the program

 event-driven programming – A style of programming

where the main thing the program does is respond to

Events

 event loop – a loop that waits for an Event to occur,

then dispatches it to the appropriate code

 GUI – a Graphical User Interface (user interacts with

the program via things on the screen)

18

Vocabulary II

 Component – an interface element, such as a Button or a

TextField

 Layout Manager – an object (provided by Java) that

arranges your Components in a window

 Listener – an interface you implement to execute some

code when an Event occurs

• I uploaded a file called ColorWindow.java to

Moodle.

– Look at this program to see how Listeners work in

detail.

20

Multiprocessing

 Modern operating systems are multiprocessing

 Appear to do more than one thing at a time

 Three general approaches:

 Cooperative multiprocessing

 Preemptive multiprocessing

 Really having multiple processors

Slide from Travis Brown, Rochester Tech

Slide from Travis Brown, Rochester Tech

What is a Thread?

• Individual and separate unit of execution
that is part of a process

– multiple threads can work together to
accomplish a common goal

• Video Game example

– one thread for graphics

– one thread for user interaction

– one thread for networking

Matt McCormick, Wisconsin Madison

Slide from Travis Brown, Rochester Tech

What is a Thread?

video

interaction

networking

Video Game

Process

Matt McCormick, Wisconsin Madison

Advantages

• easier to program

– 1 thread per task

• can provide better performance

– thread only runs when needed

– no polling to decide what to do

• multiple threads can share resources

• utilize multiple processors if available

Matt McCormick, Wisconsin Madison

Disadvantages

• multiple threads can lead to deadlock

– more on this later

• overhead of switching between threads

Matt McCormick, Wisconsin Madison

Threads

 Definition: Thread is a single Sequential Flow of Control

within a program.

 Other Names: Thread = Execution Context = Lightweight

Process

 Thread like a Sequential Program, has

 A beginning, a sequence, and an end.

 Has a single point of execution, at any given time

Slide from Moshe Fresko, Bar-Ilan

29

Multithreading

 Multithreading programs appear to do more than one

thing at a time

 Same ideas as multiprocessing, but within a single

program

 More efficient than multiprocessing

 Java tries to hide the underlying multiprocessing

implementation

30

Threads

 A Thread is a single flow of control

 When you step through a program, you are following a

Thread

 Your previous programs all had one Thread

 In Java, a Thread is an Object you can create and

control

31

Sleeping

 Every program uses at least one Thread

 Thread.sleep(int milliseconds);

 A millisecond is 1/1000 of a second

 try { Thread.sleep(1000); }

catch (InterruptedException e) { }

 sleep only works for the current Thread

32

States of a Thread

 A Thread can be in one of four states:

 Ready: all set to run

 Running: actually doing something

 Waiting, or blocked: needs something

 Dead: will never do anything again

 State names vary across textbooks

 You have some control, but the Java scheduler has more

33

State transitions

ready

waiting

running dead start

34

Two ways of creating Threads

 You can extend the Thread class:

 class Animation extends Thread {…}

 Limiting, since you can only extend one class

 Or you can implement the Runnable interface:

 class Animation implements Runnable {…}

 requires public void run()

 The second is recommended for most programs

35

Extending Thread

 class Animation extends Thread {
 @Override
 public void run() { code for this thread }
 Anything else you want in this class
}

 Animation anim = new Animation();
 A newly created Thread is in the Ready state

 To start the anim Thread running, call anim.start();

 start() is a request to the scheduler to run the Thread --it
may not happen right away

 The Thread should eventually enter the Running state

36

Implementing Runnable

 class Animation implements Runnable {…}

 The Runnable interface requires run()

 This is the “main” method of your new Thread

 Animation anim = new Animation();

 Thread myThread = new Thread(anim);

 To start the Thread running, call myThread.start();

 You do not write the start() method—it’s provided by Java

 As always, start() is a request to the scheduler to run the

Thread--it may not happen right away

37

Starting a Thread

 Every Thread has a start() method

 Do not write or override start()

 You call start() to request a Thread to run

 The scheduler then (eventually) calls run()

 You must supply public void run()

 This is where you put the code that the Thread is

going to run

38

Extending Thread: summary

class Animation extends Thread {

 public void run() {

 while (okToRun) { ... }

 }

}

Animation anim = new Animation();

anim.start();

39

Implementing Runnable: summary

class Animation extends Applet

 implements Runnable {

 public void run() {

 while (okToRun) { ... }

 }

}

Animation anim = new Animation();

Thread myThread = new Thread(anim);

myThread.start();

40

Things a Thread can do

 Thread.sleep(milliseconds)

 yield()

 Thread me = currentThread();

 int myPriority = me.getPriority();

 me.setPriority(NORM_PRIORITY);

 if (otherThread.isAlive()) { … }

 join(otherThread);

41

Animation requires two Threads

 Suppose you set up Buttons and attach Listeners to

those buttons...

 …then your code goes into a loop doing the

animation…

 …who’s listening?

 Not this code; it’s busy doing the animation

 sleep(ms) doesn’t help!

42

How to animate

 Create your buttons and attach listeners in your first

(original) Thread

 Create a second Thread to run the animation

 Start the animation

 The original Thread is free to listen to the buttons

 However,

 Whenever you have a GUI, Java automatically creates a

second Thread for you

 You only have to do this yourself for more complex programs

43

Things a Thread should NOT do

 The Thread controls its own destiny

 Deprecated methods:

 myThread.stop()

 myThread.suspend()

 myThread.resume()

 Outside control turned out to be a Bad Idea

 Don’t do this!

44

How to control another Thread

 Don’t use the deprecated methods!

 Instead, put a request where the other Thread can

find it

 boolean okToRun = true;

animation.start();

 public void run() {

 while (controller.okToRun) {…}

45

A problem

 What gets printed as the value of k?

 This is a trivial example of what is, in general, a

very difficult problem

int k = 0;

Thread #1:

 k = k + 1;

Thread #2:

 System.out.print(k);

46

Tools for a solution

 You can synchronize on an object:

 synchronized (obj) { ...code that uses/modifies obj... }

 No other code can use or modify this object at the same time

 Notice that synchronized is being used as a statement

 You can synchronize a method (uses this):

 synchronized void addOne(arg1, arg2, ...) { code }

 Only one synchronized method in a class can be used at a time

(other methods can be used simultaneously)

 Synchronization is a tool, not a solution—

multithreading is in general a very hard problem

The synchronized statement

 Synchronization is a way of providing exclusive access to data

 You can synchronize on any Object, of any type

 If two Threads try to execute code that is synchronized on the

same object, only one of them can execute at a time; the other has

to wait

 synchronized (someObject) { /* some code */ }

 This works whether the two Threads try to execute the same block of code,

or different blocks of code that synchronize on the same object

 Often, the object you synchronize on bears some relationship to

the data you wish to manipulate, but this is not at all necessary

47

synchronized methods

 Instance methods can be synchronized:

 synchronized public void myMethod(/* arguments */) {

 /* some statements */

}

 This is equivalent to

 public void myMethod(/* arguments */) {

 synchronized(this) {

 /* some statements */

 }

}

 Static methods can also be synchronized

 They are synchronized on the class object (a built-in object that represents

the class)

48

Summary

• Event loops and listeners

• Processes vs threads

• Threads in Java

• Need for syncronization

– "thread safety"

Literature

• Java Concurrency Tutorial

 http://docs.oracle.com/javase/tutorial/essential/concurrency/

• Ullenboom, Ch.

 Java ist auch eine Insel (Chapter 14)

 Galileo Computing, 2012

50

