
Programmieren II

XML/HTML/SGML

Alexander Fraser

fraser@cl.uni-heidelberg.de

(slides based on material from David Matuszek, U Penn and Terran

Lane, UNM)

July 17th, 2014

Introduction

• CL data sets are often stored in XML, HTML or SGML

• At the highest level of abstraction:
– HTML is a language for formatting web pages

– XML is a family of languages for storing data

– SGML is also a family of languages for storing data

• XML is a subset of SGML

• SGML is old

• SGML is still used a lot in publishing even now (for instance, my favorite
corpus, the Proceedings of the European Parliament (Europarl))

– The focus today is XML, I will mention HTML too

• If you do get something in SGML, look at HTML parsing tools, they often
actually support SGML

– I'm also going to mention JSON, YAML, DOC and PDF

– And serialization!

3

HTML and XML, I

XML stands for eXtensible Markup Language

HTML is used to mark up

text so it can be displayed to

users

XML is used to mark up

data so it can be processed

by computers

HTML describes both

structure (e.g. <p>, <h2>,

) and appearance (e.g.

, , <i>)

XML describes only

content, or “meaning”

HTML uses a fixed,

unchangeable set of tags

In XML, you make up

your own tags

4

HTML and XML, II

 HTML and XML look similar, because they are
both SGML languages (SGML = Standard
Generalized Markup Language)

 Both HTML and XML use elements enclosed in tags
(e.g. <body>This is an element</body>)

 Both use tag attributes (e.g.,
)

 Both use entities (<, >, &, ", ')

 More precisely,

 HTML is defined in SGML

 XML is a (very small) subset of SGML

5

HTML and XML, III

 HTML is for humans

 HTML describes web pages

 You don’t want to see error messages about the web pages you

visit

 Browsers ignore and/or correct as many HTML errors as they can,

so HTML is often sloppy

 XML is for computers

 XML describes data

 The rules are strict and errors are not allowed

 In this way, XML is like a programming language

 Current versions of most browsers can display XML

 However, browser support of XML is spotty at best

6

XML-related technologies

 DTD (Document Type Definition) and XML Schemas are used to

define legal XML tags and their attributes for particular purposes

 CSS (Cascading Style Sheets) describe how to display HTML or

XML in a browser

 XSLT (eXtensible Stylesheet Language Transformations) and

XPath are used to translate from one form of XML to another

 DOM (Document Object Model), SAX (Simple API for XML,

and JAXP (Java API for XML Processing) are all APIs for XML

parsing

7

Example XML document

<?xml version="1.0"?>

<weatherReport>

 <date>7/14/97</date>

 <city>North Place</city>, <state>NX</state>

 <country>USA</country>

 High Temp: <high scale="F">103</high>

 Low Temp: <low scale="F">70</low>

 Morning: <morning>Partly cloudy, Hazy</morning>

 Afternoon: <afternoon>Sunny & hot</afternoon>

 Evening: <evening>Clear and Cooler</evening>

</weatherReport>

From: XML: A Primer, by Simon St. Laurent

8

Overall structure

 An XML document may start with one or more

processing instructions (PIs) or directives:

 <?xml version="1.0"?>

<?xml-stylesheet type="text/css" href="ss.css"?>

 Following the directives, there must be exactly one tag,

called the root element, containing all the rest of the

XML:

 <weatherReport>

 ...

</weatherReport>

9

XML building blocks

 Aside from the directives, an XML document is

built from:

 elements: high in <high scale="F">103</high>

 tags, in pairs: <high scale="F">103</high>

 attributes: <high scale="F">103</high>

 entities: <afternoon>Sunny & hot</afternoon>

 character data, which may be:

 parsed (processed as XML)--this is the default

 unparsed (all characters stand for themselves)

10

Elements and attributes

 Attributes and elements are somewhat interchangeable

 Example using just elements:

 <name>
 <first>David</first>
 <last>Matuszek</last>
</name>

 Example using attributes:

 <name first="David" last="Matuszek"></name>

 You will find that elements are easier to use in your programs--
this is a good reason to prefer them

 Attributes often contain metadata, such as unique IDs

 Generally speaking, browsers display only elements (values
enclosed by tags), not tags and attributes

11

Well-formed XML

 Every element must have both a start tag and an end tag, e.g.
<name> ... </name>

 But empty elements can be abbreviated: <break />.

 XML tags are case sensitive

 XML tags may not begin with the letters xml, in any
combination of cases

 Elements must be properly nested, e.g. not <i>bold and
italic</i>

 Every XML document must have one and only one root element

 The values of attributes must be enclosed in single or double
quotes, e.g. <time unit="days">

 Character data cannot contain < or &

12

Entities

 Five special characters must be written as entities:

 & for & (almost always necessary)

 < for < (almost always necessary)

 > for > (not usually necessary)

 " for " (necessary inside double quotes)

 ' for ' (necessary inside single quotes)

 These entities can be used even in places where they

are not absolutely required

 These are the only predefined entities in XML

15

Comments

 <!-- This is a comment in both HTML and XML -->

 Comments can be put anywhere in an XML document

 Comments are useful for:

 Explaining the structure of an XML document

 Commenting out parts of the XML during development and testing

 Comments are not elements and do not have an end tag

 The blanks after <!-- and before --> are optional

 The character sequence -- cannot occur in the comment

 The closing bracket must be -->

 Comments are not displayed by browsers, but can be seen by

anyone who looks at the source code

16

CDATA

 By default, all text inside an XML document is parsed

 You can force text to be treated as unparsed character data by

enclosing it in <![CDATA[...]]>

 Any characters, even & and <, can occur inside a CDATA

 Whitespace inside a CDATA is (usually) preserved

 The only real restriction is that the character sequence]]> cannot

occur inside a CDATA

 CDATA is useful when your text has a lot of illegal characters

(for example, if your XML document contains some HTML text)

22

Another well-structured example

 <novel>
 <foreword>
 <paragraph> This is the great American novel.
 </paragraph>
</foreword>
 <chapter number="1">
 <paragraph>It was a dark and stormy night.
 </paragraph>
 <paragraph>Suddenly, a shot rang out!
 </paragraph>
 </chapter>
</novel>

23

XML as a tree

 An XML document represents a hierarchy; a hierarchy is a tree

novel

foreword chapter

number="1"

paragraph paragraph paragraph

This is the great

American novel.

It was a dark

and stormy night.

Suddenly, a shot

rang out!

24

Valid XML

 You can make up your own XML tags and attributes, but...

 ...any program that uses the XML must know what to expect!

 A DTD (Document Type Definition) defines what tags are legal

and where they can occur in the XML

 An XML document does not require a DTD

 XML is well-structured if it follows the rules given earlier

 In addition, XML is valid if it declares a DTD and conforms to

that DTD

 A DTD can be included in the XML, but is typically a separate

document

 Errors in XML documents will stop XML programs

 Some alternatives to DTDs are XML Schemas and RELAX NG

26

Example XML document, revised

<?xml version="1.0"?>

<weatherReport>

 <date>7/14/97</date>

 <place><city>North Place</city>

 <state>NX</state>

 <country>USA</country>

 </place>

 <temperatures><high scale="F">103</high>

 <low scale="F">70</low>

 </temperatures>

 <forecast><time>Morning</time>

 <predict>Partly cloudy, Hazy</predict>

 </forecast>

 <forecast><time>Afternoon</time>

 <predict>Sunny & hot</predict>

 </forecast>

 <forecast><time>Evening</time>

 <predict>Clear and Cooler</predict>

</weatherReport>

27

Viewing XML

 XML is designed to be processed by computer
programs, not to be displayed to humans

 Nevertheless, almost all current browsers can display
XML documents

 They don’t all display it the same way

 They may not display it at all if it has errors

 For best results, update your browsers to the newest available
versions

 Remember:
 HTML is designed to be viewed,
 XML is designed to be used

28

Extended document standards

 You can define your own XML tag sets, but here are
some already available:

 XHTML: HTML redefined in XML

 SMIL: Synchronized Multimedia Integration Language

 MathML: Mathematical Markup Language

 SVG: Scalable Vector Graphics

 DrawML: Drawing MetaLanguage

 ICE: Information and Content Exchange

 ebXML: Electronic Business with XML

 cxml: Commerce XML

 CBL: Common Business Library

29

Vocabulary

 SGML: Standard Generalized Markup Language

 XML : Extensible Markup Language

 DTD: Document Type Definition

 element: a start and end tag, along with their contents

 attribute: a value given in the start tag of an element

 entity: a representation of a particular character or string

 PI: a Processing Instruction, to possibly be used by a
program that processes this XML

 namespace: a unique string that references a DTD

 well-formed XML: XML that follows the basic syntax rules

 valid XML: well-formed XML that conforms to a DTD

17-Jul-14

SAX

(Abbreviated)

31

XML Parsers

 SAX and DOM are standards for XML parsers--

program APIs to read and interpret XML files

 DOM is a W3C standard

 SAX is an ad-hoc (but very popular) standard

 SAX was developed by David Megginson and is open source

 XOM is a parser by Elliott Rusty Harold

 StAX is a newer parser from Sun and BEA Systems

 Some others are XNI and JDOM

 Unlike many XML technologies, XML parsers are

relatively easy

32

Types of XML parsers

 XML parsers can be classified as tree-based or event-based

 Tree-based parsers read the entire XML document into memory and

stores it as a tree data structure

 Tree-based parsers allow random access to the XML, hence are usually

more convenient to work with

 It’s usually possible to manipulate the tree and write out the modified

XML

 Parse trees can take up a lot of memory

 DOM and XOM are tree-based

 Event-based (or streaming) parsers read sequentially through the

XML file

 Event-based parsers are faster and take very little memory—this is

important for large documents and for web sites

 SAX and StAX are event-based

33

Types of streaming XML parsers

 Streaming XML parsers can be classified as push or

pull parsers

 Push parsers take control and call your methods with the

XML constituents as they are encountered

 This type of programming is unnatural for Java programmers

 SAX and XNI are push parsers

 Pull parsers let you ask for the next XML constituent

 Pull parsers are similar to iterators

 StAX is a pull parser

34

SAX vs. StAX

 At this point, there seems to be no reason to use SAX rather than

StAX--if you have a choice

 SAX and StAX are both streaming parsers

 StAX is faster and simpler

 With StAX your program has control, rather than being controlled by the

parser

 This means:

 You can choose what tags to look at, rather than having to deal with them

all

 You can stop whenever you like

 However,

 StAX is newer, so many existing projects use SAX

 Many ideas, such as the use of factories, are the same for each

35

SAX uses callbacks

 SAX works through callbacks: you call the parser, it

calls methods that you supply

Your program

main(...)

startDocument(...)

startElement(...)

characters(...)

endElement()

endDocument()

parse(...)

The SAX parser

36

Simple SAX program

 The following program is adapted from CodeNotes® for

XML by Gregory Brill, pages 158-159

 The program consists of two classes:

 Sample -- This class contains the main method; it

 Gets a factory to make parsers

 Gets a parser from the factory

 Creates a Handler object to handle callbacks from the parser

 Tells the parser which handler to send its callbacks to

 Reads and parses the input XML file

 Handler -- This class contains handlers for three kinds of callbacks:

 startElement callbacks, generated when a start tag is seen

 endElement callbacks, generated when an end tag is seen

 characters callbacks, generated for the contents of an element

37

The Sample class, I

 import javax.xml.parsers.*; // for both SAX and DOM

import org.xml.sax.*;

import org.xml.sax.helpers.*;

 // For simplicity, we let the operating system handle exceptions

// In "real life" this is poor programming practice

public class Sample {

 public static void main(String args[]) throws Exception {

 // Create a parser factory

 SAXParserFactory factory = SAXParserFactory.newInstance();

 // Tell factory that the parser must understand namespaces

 factory.setNamespaceAware(true);

 // Make the parser

 SAXParser saxParser = factory.newSAXParser();

 XMLReader parser = saxParser.getXMLReader();

38

The Sample class, II

 In the previous slide we made a parser, of type XMLReader

 // Create a handler (Handler is my class)

 Handler handler = new Handler();

 // Tell the parser to use this handler

 parser.setContentHandler(handler);

 // Finally, read and parse the document

 parser.parse("hello.xml");

 } // end of Sample class

 You will need to put the file hello.xml :

 In the same directory, if you run the program from the command line

 Or where it can be found by the particular IDE you are using

39

The Handler class, I

 public class Handler extends DefaultHandler {

 DefaultHandler is an adapter class that defines these methods and others
as do-nothing methods, to be overridden as desired

 We will define three very similar methods to handle (1) start tags, (2)
contents, and (3) end tags--our methods will just print a line

 Each of these three methods could throw a SAXException

 // SAX calls this method when it encounters a start tag
 public void startElement(String namespaceURI,
 String localName,
 String qualifiedName,
 Attributes attributes)
 throws SAXException {
 System.out.println("startElement: " + qualifiedName);
 }

40

The Handler class, II

 // SAX calls this method to pass in character data
 public void characters(char ch[], int start, int length)
 throws SAXException {
 System.out.println("characters: \"" +
 new String(ch, start, length) + "\"");
 }

 // SAX call this method when it encounters an end tag
 public void endElement(String namespaceURI,
 String localName,
 String qualifiedName)
 throws SAXException {
 System.out.println("Element: /" + qualifiedName);
 }

} // End of Handler class

41

Results

 If the file hello.xml contains:

 <?xml version="1.0"?>

 <display>Hello World!</display>

 Then the output from running java Sample will be:

 startElement: display

 characters: "Hello World!"

 Element: /display

42

More results

 Now suppose the file

hello.xml contains:

 <?xml version="1.0"?>

<display>

 <i>Hello</i> World!

</display>

 Notice that the root element,

<display>, now contains a

nested element <i> and some

whitespace (including

newlines)

 The result will be as shown at

the right:

 startElement: display

characters: ""

characters: "

"

characters: " "

startElement: i

characters: "Hello"

endElement: /i

characters: "World!"

characters: "

"

endElement: /display

// empty string

// newline

// spaces

// another newline

43

Factories

 SAX uses a parser factory

 A factory is an alternative to constructors

 Factories allow the programmer to:

 Decide whether or not to create a new object

 Decide what kind (subclass, implementation) of object to create

 Trivial example:

 class TrustMe {
 private TrustMe() { } // private constructor

 public static TrustMe makeTrust() { // factory method
 if (/* test of some sort */)
 return new TrustMe();
 }
 }
}

44

Parser factories

 To create a SAX parser factory, call this method:

SAXParserFactory.newInstance()

 This returns an object of type SAXParserFactory

 It may throw a FactoryConfigurationError

 You can then customize your parser:

 public void setNamespaceAware(boolean awareness)

 Call this with true if you are using namespaces

 The default (if you don’t call this method) is false

 public void setValidating(boolean validating)

 Call this with true if you want to validate against a DTD

 The default (if you don’t call this method) is false

 Validation will give an error if you don’t have a DTD

45

Getting a parser

 Once you have a SAXParserFactory set up (say it’s named

factory), you can create a parser with:

 SAXParser saxParser = factory.newSAXParser();

 XMLReader parser = saxParser.getXMLReader();

 Note: older texts may use Parser in place of XMLReader

 Parser is SAX1, not SAX2, and is now deprecated

 SAX2 supports namespaces and some new parser properties

 Note: SAXParser is not thread-safe; to use it in multiple threads,

create a separate SAXParser for each thread

 This is unlikely to be a problem in small projects

46

Declaring which handler to use

 Since the SAX parser will be calling our methods, we need to

supply these methods

 In the example these are in a separate class, Handler

 We need to tell the parser where to find the methods:
 Handler handler = new Handler();

 parser.setContentHandler(handler);

 These statements could be combined:

 parser.setContentHandler(new Handler());

 Finally, we call the parser and tell it what file to parse:
 parser.parse("hello.xml");

 Everything else will be done in the handler methods

47

SAX handlers

 A callback handler for SAX must implement these four
interfaces:

 interface ContentHandler
 This is the most important interface

 Handles elements (tags), attributes, and text content

 Again, done by callbacks--you have to supply a method for each type

 interface DTDHandler
 Handles only notation and unparsed entity declarations

 interface EntityResolver
 Does customized handling for external entities

 interface ErrorHandler
 Must be implemented or parsing errors will be ignored!

 Adapter classes are provided for these interfaces

48

Whitespace

 Whitespace is usually a problem when parsing XML

 A nonvalidating parser cannot ignore whitespace, because it

cannot distinguish it from real data

 You have to write code to recognize and discard whitespace

 A validating parser ignores whitespace where character data

is not allowed

 For processing XML, this is usually what you want

 However, if you are manipulating and writing out XML, discarding

whitespace ruins your indentation

 To capture ignorable whitespace, SAX provides a method

ignorableWhitespace that you can override

17-Jul-14

DOM

51

Difference between SAX and DOM

 DOM reads the entire XML document into memory and

stores it as a tree data structure

 SAX reads the XML document and sends an event for each

element that it encounters

 Consequences:

 DOM provides “random access” into the XML document

 SAX provides only sequential access to the XML document

 DOM is slow and requires huge amounts of memory, so it cannot

be used for large XML documents

 SAX is fast and requires very little memory, so it can be used for

huge documents (or large numbers of documents)

 This makes SAX much more popular for web sites

 Some DOM implementations have methods for changing the XML

document in memory; SAX implementations do not

52

Simple DOM program, I

 This program is adapted from CodeNotes® for XML by Gregory
Brill, page 128

 import javax.xml.parsers.*;
import org.w3c.dom.*;

 public class SecondDom {
 public static void main(String args[]) {
 try {
 ...Main part of program goes here...
 } catch (Exception e) {
 e.printStackTrace(System.out);
 }
 }
}

53

Simple DOM program, II

 First we need to create a DOM parser, called a
“DocumentBuilder”

 The parser is created, not by a constructor, but by
calling a static factory method

 This is a common technique in advanced Java programming

 The use of a factory method makes it easier if you later switch
to a different parser

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder builder =
 factory.newDocumentBuilder();

54

Simple DOM program, III

 The next step is to load in the XML file

 Here is the XML file, named hello.xml:
 <?xml version="1.0"?>
 <display>Hello World!</display>

 To read this file in, we add the following line to our
program:
 Document document = builder.parse("hello.xml");

 Notes:

 document contains the entire XML file (as a tree); it is the
Document Object Model

 If you run this from the command line, your XML file should be in
the same directory as your program

 An IDE may look in a different directory for your file; if you get a
java.io.FileNotFoundException, this is probably why

55

Simple DOM program, IV

 The following code finds the content of the root

element and prints it:

 Element root = document.getDocumentElement();

 Node textNode = root.getFirstChild();

 System.out.println(textNode.getNodeValue());

 The output of the program is: Hello World!

56

Reading in the tree

 The parse method reads in the entire XML
document and represents it as a tree in memory

 For a large document, parsing could take a while

 If you want to interact with your program while it is
parsing, you need to parse in a separate thread

 Once parsing starts, you cannot interrupt or stop it

 Do not try to access the parse tree until parsing is done

 An XML parse tree may require up to ten times as
much memory as the original XML document

 If you have a lot of tree manipulation to do, DOM is
much more convenient than SAX

 If you don’t have a lot of tree manipulation to do,
consider using SAX instead

57

Structure of the DOM tree

 The DOM tree is composed of Node objects

 Node is an interface

 Some of the more important subinterfaces are Element,

Attr, and Text
 An Element node may have children

 Attr and Text nodes are leaves

 Additional types are Document, ProcessingInstruction,

Comment, Entity, CDATASection and several others

 Hence, the DOM tree is composed entirely of Node

objects, but the Node objects can be downcast into

more specific types as needed

Manipulating DOM trees

 DOM, unlike SAX, gives you the ability to create and modify

XML trees

 There are a few roadblocks along the way

 Practically everything in the JAXP implementation is an interface, with a

few abstract classes

 Interfaces, such as Node, don’t have constructors; this makes it hard to get

started

 Since DOM was designed to be applicable from a number of languages,

many things are not done “the Java way”

 Once you get past these problems, the individual methods are

pretty straightforward

 Even with straightforward methods, working with trees is seldom simple

Writing out the DOM as XML

 There are no Java-supplied methods for writing out a

DOM as XML

 Writing out a DOM is conceptually simple—it’s just a

tree walk

 However, there are a lot of details—various node types and so

on—so doing a good job isn’t complicated, but it is lengthy

DOM

• I'm skipping a lot of details on DOM

• Consider using DOM only if you want the full tree in memory
(this is unusual)

17-Jul-14

StAX

Streaming API for XML

XML parser comparisons

 DOM is

 Memory intensive

 Read-write

 Typically used for documents smaller than 10 MB

 SAX is

 Memory efficient

 Read only

 Typically used for documents larger than 10 MB

 StAX is

 Memory efficient

 Read-write

 Appropriate for documents of all sizes

 Easier to use than DOM or SAX

 Source: Murach’s Java SE 6

Creating a StAX reader

 Everything you need specifically for working with StAX is in
javax.xml.stream
 import javax.xml.stream.*

 As with SAX and DOM, you first need to get a factory by calling a static
method
 XMLInputFactory factory = XMLInputFactory.newInstance();

 You can set some properties on this factory
 factory.setProperty("javax.xml.stream.isValidating", "true");

 factory.setProperty("javax.xml.stream.isCoalescing", "true");

 You will need to have some way to supply the XML, usually from an
InputStream or a Reader
 FileReader fileReader = new FileReader("somefile.xml");

 This line could throw a FileNotFoundException

 You can then create a reader for the XML
 XMLStreamReader reader = factory.createXMLStreamReader(fileReader);

 This line could throw an XMLStreamException

Using the StAX parser

 A StaAX parser (reader) behaves similar to an Iterator

 The boolean hasNext() method tells you if there is another “event” to
read

 The int next() method reads the next event

 However, what it returns is an int that tells what kind of event it was

 Some values are START_ELEMENT, END_ELEMENT, ATTRIBUTE,
CHARACTERS (content), COMMENT, SPACE, END

 After doing next(), the parser has a “current element,” and can
be asked questions about that element

 For example, getLocalName() returns the name of the current element

 It is important to remember that the parser only moves forward;
it’s easy to go past the information you need

 It’s easier to parse a document if you know its structure

 A validating parser can check the structure against a DTD

 isValidating is a supported feature of Java’s current StAX parser

Using getLocalName()

 getLocalName() returns the tag name as a String

 Your code will probably look something like this:

 String name = reader.getLocalName();

if (name.equals(someTag)) { ... }

else if (name.equals(someOtherTag)) { ... }

else if (name.equals(someOtherTag)) { ... }

...

 Or you could use a switch statement (Java 1.7+)

Constants

 next() moves to the next event, and returns an int to tell what type it is

 START_DOCUMENT

 END_DOCUMENT

 START_ELEMENT

 END_ELEMENT

 ATTRIBUTE

 CHARACTERS

 COMMENT

 SPACE

 DTD

 PROCESSING_INSTRUCTION

 NAMESPACE

 CDATA

 ENTITY_REFERENCE

 These are all constants defined in the XMLStreamReader object

Methods

 There are numerous methods defined in the XMLStreamReader object; here
are some of the most important:

 boolean hasNext() – true if there is another “event”

 int next() – gets next parsing event, return its type

 int nextTag() – gets next start or end element, return its type

 getEventType() – gets next parsing event, returns its type

 getLocalName() – gets the name of the current element or entity reference

 getAttributeCount() – gets the number of attributes of the current element

 getAttributeLocalName(index) – gets the name of the current attribute

 getAttributeValue(index) – gets the value of the current attribute

 getElementText() – returns the coalesced text of a START_ELEMENT; after the
call, the current event will be the corresponding END_ELEMENT

 getText() – returns the text value of a CHARACTERS, COMMENT,
ENTITY_REFERENCE, CDATA, SPACE, or DTD

Creating a StAX writer

 Everything you need specifically for working with StAX is in
javax.xml.stream

 import javax.xml.stream.*

 As with SAX and DOM, you first need to get a factory by calling a static
method

 XMLOutputFactory factory = XMLOutputFactory.newInstance();

 You will need to have somewhere to put the XML, usually to an
OutputStream or a Writer

 FileWriter fileWriter = new FileWriter("somefile.xml");

 This line could throw an IOException

 You can then create a writer for the XML

 XMLStreamWriter writer = factory.createXMLStreamWriter(fileWriter);

 This line could throw an XMLStreamException

Methods

 There are numerous methods defined in the XMLStreamWriter

object; here are some of the most important:

 writeStartDocument(version) – writes the XML header

 writeStartElement(name) – writes a start tag

 writeAttribute(name, value) – writes an attribute

 writeCharacters(value) – writes text, encoding < > & characters

 writeComment(value) – writes a comment

 writeDTD(value) – writes an (entire) DTD

 writeEndElement() – writes an end tag for the current start tag

 flush() – forces buffered output to be actually written

 close() – close the writer

Conclusions

 Advantages of StAX:

 Simpler to use than SAX, in part because it doesn’t use callbacks

 Can write XML files as well as read them

 Disadvantages of StAX

 Practically forces you to use an extended if-then-else to recognize what

has been parsed

 As with SAX, you can only go forward

 Comparison with DOM:

 StAX is much faster, more memory efficient, and somewhat simpler

 DOM lets you manipulate trees in memory

HTML

• HTML/SGML parsers have to be much more
robust to incorrect markup than XML parsers

• I would recommend JSoup

• JSoup example here:

– http://www.programcreek.com/2012/05/parse-
html-in-java/

– Downloads a web page and extracts links

• TagSoup may also be of interest

DOC/PDF

• If you need to process DOC (or DOCX, or other
Microsoft formats), use:

– http:://poi.apache.org

• If you need to process PDF:

– First test the PDF file to see if you can copy/paste
the text.

– If you can copy/paste, then you can use:

– http://pdfbox.apache.org

17-Jul-14

JSON

JSON example

 “JSON” stands for “JavaScript Object Notation”

 Despite the name, JSON is a (mostly) language-independent way of
specifying objects as name-value pairs

 Example (http://secretgeek.net/json_3mins.asp):

 {"skillz": {
 "web":[
 { "name": "html",
 "years": 5
 },
 { "name": "css",
 "years": 3
 }]
 "database":[
 { "name": "sql",
 "years": 7
 }]
}}

JSON syntax, I

 An object is an unordered set of name/value pairs

 The pairs are enclosed within braces, { }

 There is a colon between the name and the value

 Pairs are separated by commas

 Example: { "name": "html", "years": 5 }

 An array is an ordered collection of values

 The values are enclosed within brackets, []

 Values are separated by commas

 Example: ["html", ”xml", "css"]

JSON syntax, II

 A value can be: A string, a number, true, false, null, an

object, or an array

 Values can be nested

 Strings are enclosed in double quotes, and can contain

the usual assortment of escaped characters

 Numbers have the usual C/C++/Java syntax, including

exponential (E) notation

 All numbers are decimal--no octal or hexadecimal

 Whitespace can be used between any pair of tokens

JSON in Java

• The Jackson JSON library is recommended

• It can write Java Objects into their JSON
representation

• It can also read JSON and instantiate a Java
Object

Comparison of JSON and XML

 Similarities:
 Both are human readable

 Both have very simple syntax

 Both are hierarchical

 Both are language independent

 Both can be used by Ajax

 Differences:
 Syntax is different

 JSON is less verbose

 JSON includes arrays

 XML can be validated

YAML

 YAML can be taken as an acronym for either

 Yet Another Markup Language

 YAML Ain’t Markup Language

 Like JSON, the purpose of YAML is to represent

typical data types in human-readable notation

 YAML is (almost) a superset of JSON, with many more

capabilities (lists, casting, etc.)

 Except: YAML doesn’t handle escaped Unicode characters

 Consequently, JSON can be parsed by YAML parsers

 When JSON isn’t enough, consider YAML

YAML Example

• Cool example:
http://en.wikipedia.org/wiki/YAML#Sample_d
ocument

Serialization

• Serialization allows us to save and load Java
objects

• (Based on material from Terran Lane, UNM)

So you want to save your data…

 Common problem:

 You’ve built a large, complex object

 Spam/Normal statistics tables

 Game state

 Database of student records

 Etc…

 Want to store on disk and retrieve later

 Or: want to send over network to another Java
process

 In general: want your objects to be persistent --
outlive the current Java process

Answer I: Homebrew file formats

 You’ve got file I/O nailed, so…

 Write a set of methods for saving/loading each
class that you care about

public class MyClass {

 public void saveYourself(Writer o)

 throws IOException { … }

 public static MyClass loadYourself(Reader r)

 throws IOException { … }

}

Coolnesses of Approach 1:

 Can produce arbitrary file formats

 Know exactly what you want to store and get
back/don’t store extraneous stuff

 Can build file formats to interface w/ other
codes/programs

 XML

 Tab-delimited/spreadsheet

 Etc.

 If your classes are nicely hierarchical, makes
saving/loading simple

Saving/Loading Recursive Data Structs

public interface Saveable {

 public void saveYourself(Writer w)

 throws IOException;

 // should also have this

 // public static Object loadYourself(Reader r)

 // throws IOException;

 // but you can’t put a static method in an

 // interface in Java

}

Saving, cont’d
public class MyClassA implements Saveable {

 public MyClassA(int arg) {

 // initialize private data members of A

 }

 public void saveYourself(Writer w)

 throws IOException {

 // write MyClassA identifier and private data on

 // stream w

 }

 public static MyClassA loadYourself(Reader r)

 throws IOException {

 // parse MyClassA from the data stream r

 MyClassA tmp=new MyClassA(data);

 return tmp;

 }

}

Saving, cont’d

public class MyClassB implements Saveable {

 public void MyClassB(int arg) { … }

 private MyClassA _stuff;

 public void saveYourself(Writer w) {

 // write ID for MyClassB

 _stuff.saveYourself(w);

 // write other private data for MyClassB

 w.flush();

 }

 public static MyClassB loadYourself(Reader r) {

 // parse MyClassB ID from r

 MyClassA tmp=MyClassA.loadYourself(r);

 // parse other private data for MyClassB

 return new MyClassB(tmp);

 }

}

Painfulnesses of Approach 1:

 This is called recursive descent parsing (and
formatting)

 We’ll use it in project 2, and there are plenty of
places in the Real World (TM) where it’s terribly
useful.

 But... It’s also a pain in the a**

 If all you want to do is store/retrieve data, do
you really need to go to all of that effort?

 Fortunately, no. Java provides a shortcut that
takes a lot of the work out.

Approach 2: Enter Serialization...

 Java provides the serialization mechanism for
object persistence

 It essentially automates the grunt work for you

 Short form:

public class MyClassA implements Serializable { ... }

// in some other code elsewhere...

MyClassA tmp=new MyClassA(arg);

FileOutputStream fos=new FileOutputStream(“some.obj”);

ObjectOutputStream out=new ObjectOutputStream(fos);

out.writeObject(tmp);

out.flush();

out.close();

In a bit more detail...

 To (de-)serialize an object, it must
implements Serializable

 All of its data members must also be marked
serializable

 And so on, recursively...
 Primitive types (int, char, etc.) are all

serizable automatically

 So are Strings, most classes in java.util, etc.

 This saves/retrieves the entire object graph,
including ensuring uniqueness of objects

To read it back in
try

{

 fis = new FileInputStream(filename);

 in = new ObjectInputStream(fis);

 myInstance = (MyClassA)in.readObject();

 in.close();

}

catch(IOException ex) {

 ex.printStackTrace();

}

catch(ClassNotFoundException ex) {

 ex.printStackTrace();

}

Note that if the class definition is different,
 this will fail with a class not found exception!

Literature

• Ullenboom, Ch.

 Java ist auch eine Insel (Chapter 18 (especially 18.5) and 17.10)

 Galileo Computing, 2012

• Head First Java

 Chapter 14

