
Übungsaufgaben 
Logik in der Praxis - Logikprogrammierung (Prolog)

Abgabe bis 21.10.08

Exercise 3.1 (1 Punkt)
Do you know these wooden Russian dolls, where smaller ones are contained in bigger 
ones? Here is schematic picture of such dolls.

First, write a knowledge base using the predicate directlyIn/2 which encodes which doll 
is directly contained in which other doll. Then, define a (recursive) predicate in/2, that tells 
us which doll is (directly or indirectly) contained in which other doll. E.g. the query 
in(katarina,natasha) should evaluate to true, while in(olga, katarina) should fail.

Exercise 3.2 (1 Punkt)
Define a predicate greater_than/2 that takes two numerals in the notation that we 
introduced in this lecture (i.e. 0, succ(0), succ(succ(0)) ...) as arguments and decides 
whether the first one is greater than the second one. E.g:
?- greater_than(succ(succ(succ(0))),succ(0)).
yes
?- greater_than(succ(succ(0)),succ(succ(succ(0)))).
no

Exercise 3.3 (3 Punkte)
Binary trees are trees where all internal nodes have exactly two childres. The smalles 
binary trees consist of only one leaf node. We will represent leaf nodes as leaf(Label). 
For instance, leaf(3) and leaf(7) are leaf nodes, and therefore small binary trees. Given 
two binary trees B1 and B2 we can combine them into one binary tree using the predicate 
tree: tree(B1,B2). So, from the leaves leaf(1) and leaf(2) we can build the binary tree 



tree(leaf(1), leaf(2)). And from the binary trees tree(leaf(1), leaf(2)) and leaf(4) 
we can build the binary tree tree(tree(leaf(1), leaf(2)), leaf(4)).
Now, define a predicate swap/2, which produces a mirror image of the binary tree that is its 
first argument. For example:
?- swap(tree(tree(leaf(1), leaf(2)), leaf(4)),T).
T = tree(leaf(4), tree(leaf(2), leaf(1))).
yes

Exercise 3.4 (2 Punkte)
In the lecture, we saw the predicate
descend(X,Y) :- child(X,Y).
descend(X,Y) :- child(X,Z),  
                descend(Z,Y).
Could we have formulated this predicate as follows?
descend(X,Y) :- child(X,Y).
descend(X,Y) :- descend(X,Z),  
                descend(Z,Y).
Compare the declarative and the procedural meaning of this predicate definition.

Hint: What happens when you ask the query descend(rose,martha)?

Exercise 3.5 (3 Punkte)
We have the following knowledge base:
directTrain(forbach,saarbruecken).
directTrain(freyming,forbach).
directTrain(fahlquemont,stAvold).
directTrain(stAvold,forbach).
directTrain(saarbruecken,dudweiler).
directTrain(metz,fahlquemont).
directTrain(nancy,metz).
That is, this knowledge base holds facts about towns it is possible to travel between by 
taking a direct train. But of course, we can travel further by “chaining together” direct train 
journeys. Write a recursive predicate travelBetween/2 that tells us when we can travel by 
train between two towns. For example, when given the query
travelBetween(nancy,saarbruecken).
it should reply `yes'.
It is, furthermore, plausible to assume that whenever it is possible to take a direct train 
from A to B, it is also possible to take a direct train from B to A. Can you encode this in 
Prolog? You program should e.g. answer `yes' to the following query:
travelBetween(saarbruecken,nancy).
Do you see any problems you program may run into?


