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- Fuzzy logic theory was developed by Lofti A. Zadeh in- Fuzzy logic theory was developed by Lofti A. Zadeh in
the 60‘s and is based on the theory of fuzzy sets.

- The membership of an element is not strickly false or
true({0,1}) like in boolean logic, but rather gradual.

- The degree of membership of an element in fuzzy logic
can be any real number in the interval [0,1].



- deal with the vagueness and imprecision of- deal with the vagueness and imprecision of
many real-world problems.

- to simulate human reasoning and its ability of
decision making based on not so precise
information.

- to model systems that have to process some
kind of vague terms like old, young, tall, high,
very, extremely, not so much, etc..



Some other important characteristics of fuzzy logic as outlined by
Zadeh (1992).

Some other important characteristics of fuzzy logic as outlined by
Zadeh (1992).

• Crisp sets as a particular case of fuzzy sets, where [0,1] is restricted
to {0,1}.

• Knowledge is interpreted as a collection of elastic, fuzzy constraints
on a collection of variables.

• Inference is viewed as a process of propagation of elastic
constraints.

• Any logical system can be “fuzzified.”



...or one could briefly define fuzzy logic quoting L.A. 

Zadeh:

Fuzzy logic is ‘computing with words.’  Fuzzy logic is ‘computing with words.’  



Fuzzy sets



Given a collection of objects U, a fuzzy set A in U is

defined as a set of ordered pairs

∈∈∈∈

defined as a set of ordered pairs

A ≡ {<x,μA(x)>|x ∈∈∈∈ U}

where 

μA(x)

is called the membership function for the set of allis called the membership function for the set of all

objects x in U, where to each x is related a real

number(membership grade) in the closed interval

[0,1].



Source: http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/jp6/article2.html



Source: http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/jp6/article2.html



Fig. 3 Two definitions of the set of "tall men", a crisp set and a fuzzy set.



Fig. 4 – Four commonly used membership functions



Union:

The membership function of the union of two fuzzy sets A and B with

membership functions µA and µB respectively is defined as the maximum

of the two individual membership functions:

µA∪B(x) := max{µA(x), µB(x)}

Source: http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/jp6/article2.html



Intersection:

The membership function of the intersection of two fuzzy sets A and B 

with membership functions µA and µB respectively is defined as the 

minimum of the two individual membership functions:

µA∩B(x) := min{µA(x), µB(x)}

Source: http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/jp6/article2.html



Complement:

The membership function of the complement of a The membership function of the complement of a 

Fuzzy set A with membership function is defined as

µ¬A(x) := 1 − µA(x)

Source: http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol2/jp6/article2.html



The fuzzy set operations of union, intersection and The fuzzy set operations of union, intersection and 

complement correspond to the logical operations 

disjuntion, conjunction and negation, respectively.

• Disjunction (OR): µA∨B(x) := max{µA(x), µB(x)}

• Conjunction (AND): µA∧B(x) := min{µA(x), µB(x)}

∨

• Conjunction (AND): µA∧B(x) := min{µA(x), µB(x)}

• Complement(NOT): µ¬A(x) := 1 − µA(x)



μyoung(John) = 0.5 AND μtall(John) = 0.8

then

μyoungANDtall(John) = min(μyoung(John), μtall(John))= 

∧

youngANDtall young tall

0.5∧0.8 = min(0.5,0.8)=0.5



Concept:Concept:

„By a linguistic variable we mean a variable 
whose values are words or sentences in a natural 
or artifical language. For example, Age is a 
linguistic variable if its values are linguistic rather 
than numerical, i.e., young, not young, very than numerical, i.e., young, not young, very 
young, quite young, old, not very old and not very 
young, etc.[...]“

(Zadeh, 1975)



- The name of a linguistic variable is its label.- The name of a linguistic variable is its label.

- The set of values that it can take is called its term set.

- Each value in the term set is a linguistic value or term

defined over an universe.defined over an universe.

- In summary: A linguistic variable takes a linguistic

value, which is a fuzzy set defined on the universe.



Example:Example:

Let x be a linguistic variable labelled ’Age’. Its term set T could 

be defined as

T (age)= {very young, young, not very young, more or less old, old}

Each term is defined on the universe, for example the integers

from 0 to 100 years.



source: http://de.wikipedia.org/wiki/Datei:Fuzzy-alter.svg



Recalling the classical logic modus ponens:Recalling the classical logic modus ponens:



The Generalized Modus Ponens (GMP) to fuzzy logic is the The Generalized Modus Ponens (GMP) to fuzzy logic is the 

core of fuzzy reasoning. Consider the argument:

Let A and A‘ be fuzzy sets defined on 

X, and B a fuzzy set defined on Y. 

Then, B‘ is given by

B‘ = A‘ o (A → B)B‘ = A‘ o (A → B)



The interaction of A and A’ determines the influence of B in the conclusion



The premise A’ is slightly different The premise A’ is slightly different 

from A and thus the conclusion B’ 

is slightly different from B. 

For instance, given the rule ’if x is 

high, then y is low’; if x in fact is high, then y is low’; if x in fact is 

’very high’ , we would like to 

conclude that y is ’very low’ .



- Given the rule:

‘if altitude is high, then oxygen is low’ ,‘if altitude is high, then oxygen is low’ ,

- a fuzzy set HIGH of altitude ranges:

HIGH = {<0,0>,<1000,0.25>,<2000,0.5>,<3000,0.75>, <4000,1>}

- and a fuzzy set LOW of percentages of oxygen content:

LOW = {<0,1>,<25,0.75>,<50,0.5>,<75,0.25>,<100,0>}

We construct the Relation R, where each element Rxy is the evaluation of  μHigh(x) 

≤ μLow(y)



Assuming altitude is High, we find by modus ponensAssuming altitude is High, we find by modus ponens

As expected, the result is identical to μLow



Assume instead altitude is Very High, 

μt = (0 .06 .25 .56 1) , the square of μ , modus ponens yieldsμt
VeryHigh = (0 .06 .25 .56 1) , the square of μHigh, modus ponens yields

that is, the result is identical to the square of μLow



- Digital image processing, such as edge detection- Digital image processing, such as edge detection

- Washing machines and other home appliances

- Video game artificial intelligence

- Simplified control of robots (Hirota, Fuji Electric, Toshiba, Omron)

- Substitution of an expert for the assessment of stock exchange activities

(Yamaichi, Hitachi)

- Efficient and stable control of car-engines (Nissan)

- Medicine technology: cancer diagnosis (Kawasaki Medical School)

- Combination of Fuzzy Logic and Neural Nets (Matsushita)

- Recognition of handwritten symbols with pocket computers (Sony)

Source: http://www.esru.strath.ac.uk/Reference/concepts/fuzzy/fuzzy_appl.10.htm



• Robust approach to solve many real-world problems.• Robust approach to solve many real-world problems.

• Employable in very complex systems, when there is no 
simple mathematical model for highly nonlinear processes. 

• Hence, low computational costs and ease at using it in 
embedded systems.embedded systems.

• Expert knowledge in complex systems can be formulated in 
ordinary language.



- The number of rules can grow exponentially inverse with the- The number of rules can grow exponentially inverse with the

accuracy level. Undesirable high complexity and rule-chaining

problem.(Castro, 1999)

- The rules and the membership function for (imprecise) data

must be (accurately) known and defined.

- Must be combined with an adaptive system (such as neural

networks) if some heuristics is desired.
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QUESTIONS?

Scientific American Magazine – July 1993 – p.77


