Graph-Based Methods in Coreference Resolution

Presented by Huiqin Körkel-Qu
Department of Computer Linguistic, Heidelberg University

December 9, 2010
Structure of the report

- Introduction to coreference
- Build anaphoricity in graph for coreference resolution
- BestCut-method based on min-cut algorithm
- An one step solution: hypergraph in coreference resolution
- Compare the methods
What is coreference?

- **Entity**: an object or a set of objects in the real world.
- **Mention**: a textual reference to an entity
- **Coreference**: more mentions in language refer to the same entity
- **Eg**: Mary has a brother John, the boy is younger than the girl

entities: MARY, JOHN

mentions: Mary, a brother, John, the boy, the girl

coreference set: \{Mary, the girl\}, \{a brother, John, the boy\}
Anaphoricity

Eg: Mary has a brother John, the boy is younger than the girl

anaphoric: John, the boy, the girl
nonanaphoric: Mary, a brother

Eg: To repair the house will cost a lot of money
Two step methods

Eg: Mary has a brother John, the boy is younger than the girl

- **classification phase:** pair of mentions based on feature sets
 - **features:** e.g. the distance, string match feature, etc.
 - **methods:** decision trees, maximum entropy classifiers
 - **Eg:** (Mary, a brother), (a brother, John). etc

- **clusterization phase:** to decide the entities (mentions that are coreferent)

Methods for clustering:

- locally optimized clustering
- globally optimized clustering.
 Bell tree, ILP, graph algorithms

ananphoricity classifier: the probability if a mention is anaphoric or not
the results of coreference classification/anaphoricity classification

- $P_C(m_i, m_j)$, the probability that mentions m_i and m_j are coreferent
- $P_A(m_i)$, the probability that mention m_i is anaphoric
- $1 - P_A(m_i)$, the probability that mention m_i is nonanaphoric
Construction of the graph– add anaphoricity

- create the source vertex s: ANAPHORIC
- create the sink vertex t: NON ANAPHORIC
- for each mention m_i create one vertex i
- two edges $s i$ and it
- the weight of $s i$ w_{si} is $P_A(m_i)$, i.e. the probability that m_i is anaphoric
- the weight of it w_{it} is $1 - P_A(m_i)$, i.e. the probability that m_i is nonanaphoric
minimum s-t cut:

- assign any node (mention) i with $w_{si} > 0.5$, i.e. $P_A(m_i) > 0.5$ to s
- assign any node i with $w_{it} > 0.5$, i.e. $P_A(m_i) < 0.5$) to t
- remained nodes are assigned to one of s and t.

notice: 0.5 as threshold is too conservative, i.e too fewer mentions are classified as anaphoric

In this system, P_A is rearranged so that the decision for anaphor is not too conservative
Incorporating coreference probability

- add one edge for every mention pair \((m_i, m_j)\) (except \(s\) and \(t\) in the graph)
- the weight of edge between \(m_i\) and \(m_j\), \(w_{i,j}\) is \(P_C(m_i, m_j)\)

same as \(P_A\), the weight here is also rearranged by learning to get the better result.
minimum cut of the graph

the costs of the minimum $s - t$ cut is:

$$\min \sum_{m_i \in S - s, m_j \in T - t} w_{i,j} + \sum_{m \in S} w_{mt} + \sum_{n \in T} W_{sn}$$

Eg: two mentions m_i, m_j

$w_{ji} = w_{ij} = 0.8$

$w_{si} = 0.8, w_{it} = 0.2$

$w_{sj} = 0.3, w_{jt} = 0.7$
Problem with the algorithm above: tend to classify all mentions of a coreference as anaphoric! including the first mention of an entity.

Can we change the graph to be a directed graph?

- from anaphoric node to mention node
- from mention node to nonanaphoric node
- from mention node with smaller index to mention node with bigger index node
Add direction in the graph

Mary$_1$ has a brother$_2$ John$_3$
consider mentions m_2, m_3

\[
\begin{align*}
 w_{23} &= w_{32} = 0.8 \\
 w_{s3} &= 0.8, w_{3t} = 0.2 \\
 w_{s2} &= 0.3, w_{2t} = 0.7
\end{align*}
\]

the brother$_1$ John$_2$ is a student$_3$
consider mentions m_2, m_3

\[
\begin{align*}
 w_{23} &= w_{32} = 0.8 \\
 w_{s3} &= 0.3, w_{3t} = 0.7 \\
 w_{s2} &= 0.8, w_{2t} = 0.2
\end{align*}
\]
Baselines unter MUC-Score and CEAF-Score

- Berger(96), et al, no anaphoricity
- Ng(2004), where P_A and P_C are not coordinated
- Luo(2007), a heuristic search on Bell tree
- D&B(2007), Integer Linear Programming with anaphoricity as constraints (hard constraints)
- F&M(2008), ILP, with transitivity as hard constraints

Conclusion:
- Large gain in precision
- Small drop in recall
- Improvement of F-score.
BestCut: a globally clustering based on Min-cut on graph

Construction of weighted undirected graphs

- **Mention Detection:** 6 entity types
 PERSON, ORGANIZATION, LOCATION, FACILITY, GPE, UNK

- **classification:** $P_C(m_i, m_j)$, the probability that mention m_i and m_j are coreferent

- **Number of Graphs:** for every entity type, a graph will be constructed (6 graphs)
 the mentions from different type will not be coreferent

- **vertex:** every mention in the type is a vertex
- **edge:** the weight between two vertexes m_i, m_j (two mentions) is $P_C(m_i, m_j)$
BestCut: a globally clustering based on Min-cut on graph

Construction of weighted undirected graphs

- **Mention Detection**: 6 entity types
 PERSON, ORGANIZATION, LOCATION, FACILITY, GPE, UNK

- **Classification**: $P_C(m_i, m_j)$, the probability that mention m_i and m_j are coreferent

- **Number of Graphs**: for every entity type, a graph will be constructed (6 graphs)
 the mentions from different type will not be coreferent

 - **Vertex**: every mention in the type is a vertex
 - **Edge**: the weight between two vertexes m_i, m_j (two mentions) is $P_C(m_i, m_j)$
Mary$_1$ has a brother$_2$ John$_3$. The boy$_4$ is older than the girl$_5$.
When to stop the cut?

G: current graph.
S, T: the two parts after cut
$S.V, T.V$: the vertexes in the two parts. $|S.V| \geq |T.V|$
$S.E, T.E$: the edges in the two parts
$C.E$: the edges crossing the cut

Stop the cut or continue?
Features for stopping the cut

- $|S.V|/|T.V|
- |C.E|/|G.E|
- $\max(C.E)$, $\min(C.E)$, $\text{avg}(C.E)$
- etc
Procedure of a Cut

a sequence of s-t cuts, and the BestCut is one of them

Eg:
Procedure of a cut

Graph-Based Methods in Coreference Resolution
How to choose the BestCut

Scoring a cut (s-t cut from the above procedure)

- average weight to decide if a vertex belongs to its group.
- maximum weight to decide if a vertex belongs to its group.

Eg:
evaluated under EMC-F Score and MUC P, R, F Scores compared with two baselines: Belltree(Luo 04) and Link-Best

- outperform the baselines with true mentions and detected mentions (if the entity types are known).
- for undetected mentions it works not so well

Conclusion: the mention detections and the decision of entity types are important for this algorithm
A one step solution using hypergraph

The procedure of this system:

- learn the hyperedge weights
- create a hypergraph
- partition the hypergraph into subhypergraphs so that each subhypergraph represents an entity
Features used to construct the hypergraph

- StrMatch_Npron, StrMatch_Pron
- Alias
- Appositive
- distance, etc

Training result for hyperedge weight:

<table>
<thead>
<tr>
<th>Edge Name</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alias</td>
<td>0.777</td>
</tr>
<tr>
<td>StrMatch_Pron</td>
<td>0.702</td>
</tr>
<tr>
<td>Appositive</td>
<td>0.568</td>
</tr>
<tr>
<td>StrMatch_Npron</td>
<td>0.657</td>
</tr>
<tr>
<td>ContinuousDistAgree</td>
<td>0.403</td>
</tr>
</tbody>
</table>
An example

US President Barack Obama came to Toronto today. Obama discussed the nancial crisis with President Sarkozy. He talked to him about the recent downturn of the European markets. Barack Obama will leave Toronto tomorrow.

2 entities: BALACK OBAMA
 NICOLAS SARKOZY
partial string match:
{US President Barack Obama, Obama, Barack Obama}
{US President Barack Obama, President Sarkozy}

pronoun match: {he, him}

all speak: {Obama, he}
{President Sarkozy, him}
partition of the hypergraph

- recursive 2-way partitioning
- flat-K partitioning
Using $MUC, B^3_{sys}, CEAF_{sys}$ Scores
 B&R(2008), ’the best performance on ACE2004’

Conclusion:
 gain in recall
 drop in precision
 better F-Measure than B&R in most of the cases.
compare the 3 methods

- how many steps?
 - **Bestcut**: 2 steps, classification, and clustering
 - **s-t cut**: 3 steps, classification \((P_A, P_C)\), anaphoricity determination(s-t cut), coreference clustering
 - **Hypergraph**: 1 step, construct hypergraph based on features, and cut(spectral clustering)

- the emphasis(new idea) of the 3 methods
 - **Bestcut**: mincut in coreference clustering
 - **s-t cut**: combine anaphoricity and coreference in graph
 - **hypergraph**: all in one, no separation between ’classification’ and clustering
Cristina Nicolae, Gabriel Nicolae: BESTCUT: A Graph Algorithm for Coreference Resolution. EMNLP 2006:275-283

Vincent Ng: Graph-Cut-Based Anaphoricity Determination for Coreference Resolution. HLT-NAACL 2009: 575-583

Cai, Jie; Strube, Michael (2010). End-to-End Coreference Resolution via Hypergraph Partitioning In: COLING ’10, pp.143-151
The end ;-)