
On Random Weights and
Unsupervised Feature Learning

Andrew M. Saxe, Pang Wei Koh, Zhenghao Chen,
Maneesh Bhand, Bipin Suresh, and Andrew Y. Ng

Stanford University
Stanford, CA 94305

{asaxe,pangwei,zhenghao,mbhand,bipins,ang}@cs.stanford.edu

Abstract

Recently two anomalous results in the literature have shown that certain feature
learning architectures can perform very well on object recognition tasks, without
training. In this paper we pose the question, why do random weights sometimes do
so well? Our answer is that certain convolutional pooling architectures can be in-
herently frequency selective and translation invariant, even with random weights.
Based on this we demonstrate the viability of extremely fast architecture search
by using random weights to evaluate candidate architectures, thereby sidestepping
the time-consuming learning process. We then show that a surprising fraction of
the performance of certain state-of-the-art methods can be attributed to the archi-
tecture alone.

1 Introduction

Recently two anomalous results in the literature have shown that certain feature learning architec-
tures with random, untrained weights can do very well on object recognition tasks. In particular,
Jarrett et al. [1] found that features from a one-layer convolutional pooling architecture with com-
pletely random filters, when passed to a linear classifier, could achieve an average recognition rate of
53% on Caltech101, while unsupervised pretraining and discriminative finetuning of the filters im-
proved performance only modestly to 54.2%. This surprising finding has also been noted by Pinto et
al. [2], who evaluated thousands of architectures on a number of object recognition tasks and again
found that random weights performed only slightly worse than pretrained weights (James DiCarlo,
personal communication and see [3]).

This leads us to two questions: (1) Why do random weights sometimes do so well? and (2) Given
the remarkable performance of architectures with random weights, what is the contribution of unsu-
pervised pretraining and discriminative finetuning?

We start by studying the basis of the good performance of these convolutional pooling object recog-
nition systems. Section 2 gives two theorems which show that convolutional pooling architectures
can be inherently frequency selective and translation invariant, even when initialized with random
weights. We argue that these properties underlie their performance.

In answer to the second question, we show in Section 3 that, for a fixed architecture, unsupervised
pretraining and discriminative finetuning improve classification performance relative to untrained
random weights. However, we find that the performance improvement can be modest and some-
times smaller than the performance differences due to architectural parameters. The key to good
performance, then, lies not only in improving the learning algorithms but also in searching for the
most suitable architectures [1]. This motivates a fast heuristic for architecture search in Section 4,
based on our observed empirical correlation between the random-weight performance and the pre-
trained/finetuned performance of any given network architecture. This method allows us to sidestep

1

f

Convolution layer

Input layer

Pooling layer

x
n

𝑓𝑇(⋅)

⋅ 2

k

f

n

k

Valid

Circular

Figure 1: Left: Convolutional square pooling architecture. In our notation x is the portion of the input layer
seen by a particular pooling unit (shown in red), and f is the convolutional filter applied in the first layer (shown
in green). Right: Valid convolution applies the filter only at locations where f fits entirely; circular convolution
applies f at every position, and permits f to wrap around.

the time-consuming learning process by evaluating candidate architectures using random weights as
a proxy for learned weights.

We conclude by showing that a surprising fraction of performance can be contributed by the ar-
chitecture alone. In particular, we present a convolutional square-pooling architecture with random
weights that achieves competitive results on the NORB dataset, without any feature learning. This
demonstrates that a sizeable component of a system’s performance can come from the intrinsic
properties of the architecture, and not from the learning system. We suggest distinguishing the con-
tributions of architectures from those of learning systems by reporting random weight performance.

2 Analytical characterization of the optimal input

Why might random weights perform so well? As Jarrett et al. [1] found that only some architectures
yielded good performance with random weights, a reasonable hypothesis is that particular archi-
tectures can naturally compute features well-suited to object recognition tasks. Indeed, Jarrett et
al. numerically computed the optimal input to each neuron using gradient descent in the input space,
and found that the optimal inputs were often sinusoid and insensitive to translations. To better under-
stand what features of the input these random-weight architectures might compute, we analytically
characterize the optimal input to each neuron for the case of convolutional square-pooling architec-
tures. The convolutional square-pooling architecture can be envisaged as a two layer neural network
(Fig. 1). In the first “convolution” layer, a bank of filters is applied at each position in the input
image. In the second “pooling” layer, neighboring filter responses are combined together by squar-
ing and then summing them. Intuitively, this architecture incorporates both selectivity for a specific
feature of the input due to the convolution stage, and robustness to small translations of the input
due to the pooling stage. In response to a single image I ∈ Rl×l, the convolutional square-pooling
architecture will generate many pooling unit outputs. Here we consider a single pooling unit which
views a restricted subregion x ∈ Rn×n, n ≤ l of the original input image, as shown in Fig. 1. The
activation of this pooling unit pv(x) is calculated as follows: First, a filter f ∈ Rk×k, k ≤ n is
convolved with x using “valid” convolution. Valid convolution means that f is applied only at each
position inside x such that f lies entirely within x (Fig. 1, top right). This produces a convolution
layer of size n − k + 1 × n − k + 1 which feeds into the pooling layer. The final activation of the
pooling unit is the sum of the squares of the elements in the convolution layer. This transformation
from the input x to the activation can be written as

pv(x) =
n−k+1∑
i=1

n−k+1∑
j=1

(f ∗v x)2ij

where ∗v denotes the “valid” convolution operation.

To understand the sort of input features preferred by this architecture, it would be useful to know
the set of inputs that maximally activate the pooling unit. For example, intuitively, this architecture
should exhibit some translation invariance due to the pooling operation. This would reveal itself as

2

Filter

2 4 6

2

4

6

Filter spectrum

5 10 15 20

5

10

15

20

Optimal input (circular)

5 10 15 20

5

10

15

20

Spectrum (circular)

5 10 15 20

5

10

15

20

Optimal input (valid)

5 10 15 20

5

10

15

20

Spectrum (valid)

5 10 15 20

5

10

15

20

Figure 2: Left to right: Randomly sampled filter used in the convolution. Square of the magnitude of the Fourier
coefficients of the filter. Input that would maximally activate a pooling unit in the case of circular convolution.
Magnitude of the Fourier transform of the optimal input. Optimal input for valid convolution. Magnitude of
the Fourier transform of the optimal input for valid convolution.

a family of optimal inputs, each differing only by a translation. While the translation invariance of
this architecture is simple enough to grasp intuitively, one might also expect that the selectivity of
the architecture will be approximately similar to that of the filter f used in the convolution. That is,
if the filter f is highly frequency selective, we might expect that the optimal input would be close
to a sinusoid at the maximal frequency in f , and if the filter f were diffuse or random, we might
think that the optimal input would be diffuse or random. Our analysis shows that this latter intuition
is in fact false; regardless of the filter f, the optimal input will be near a sinusoid at the maximal
frequency or frequencies present in the filter.

To achieve this result, we first make one modification to the convolutional square-pooling architec-
ture to permit an analytical solution: rather than treating the case of “valid” convolution, we will
instead consider “circular” convolution. Recall that valid convolution applies the filter f only at
locations where f lies entirely within x, yielding a result of size n− k+ 1×n− k+ 1. By contrast
circular convolution applies the filter at every position in x, and allows the filter to “wrap around”
in cases where it does not lie entirely within x, as depicted in Fig. 1, right. Both valid and circular
convolution produce identical responses in the interior of the input region but differ at the edges,
where circular convolution is clearly less natural; however with it we will be able to compute the
optimal input exactly, and subsequently we will show that the optimal input for the case of circular
convolution is near-optimal for the case of valid convolution.

Theorem 2.1 Let f ∈ Rk×k and an input dimension n ≥ k be given. Let f̃ be formed by zero-
padding f to size n × n, let M = {(v1, h1), (v2, h2), . . . , (vq, hq)} be the set of frequencies of
maximal magnitude in the discrete Fourier transform of f̃ , and suppose that the zero frequency
component is not maximal.1 Then the set of norm-one inputs that maximally activate a circular
convolution square-pooling unit pc isxopt | xopt[m, s] =

√
2
n

q∑
j

aj cos
(

2πmvj
n

+
2πshj
n

+ φj

)
, ‖a‖ = 1, a ∈ Rq, φ ∈ Rq

 .

Proof The proof is given in Appendix A.

Although Theorem 2.1 allows for the case in which there are multiple maximal frequencies in f , if
the coefficients of f are drawn independently from a continuous probability distribution, then with
probability one M will have just one maximal frequency, M = {(v, h)}. In this case, the optimal
input is simply a sinusoid at this frequency, of arbitrary phase:

xopt[m, s] =
√

2
n

cos
(

2πmv
n

+
2πsh
n

+ φ

)
This equation reveals two key features of the circular convolution, square-pooling architecture.

1. The frequency of the optimal input is the frequency of maximum magnitude in the filter f .
Hence the architecture is frequency selective.

2. The phase φ is unspecified, and hence the architecture is translation invariant.
1For notational simplicity we omit the case where the zero frequency component is maximal, which requires

slightly different conditions on a and φ.

3

Even if the filter f contains a number of frequencies of moderate magnitude, such as might occur in
a random filter, the best input will still come from the maximum magnitude frequency. An example
of this optimization for one random filter is shown in Fig. 2. In particular, note that the frequency of
the optimal input (as shown in the plot of the spectrum) corresponds to the maximum in the spectrum
of the random filter.

2.1 Optimal input for circular convolution is near-optimal for normal convolution

The above analysis computes the optimal input for the case of circular convolution; object recog-
nition systems, however, typically use valid convolution. Because circular convolution and valid
convolution differ only near the edge of the input region, we might expect that the optimal input for
one would be quite good for the other. In Fig. 2, the optimal input for valid and circular convolution
differs dramatically only near the border of the input region. We make this rigorous in the result
below.

Theorem 2.2 Let pv(x) denote the activation of a single pooling unit in a valid convolution, square-
pooling architecture in response to an input x, and let xoptv and xoptc denote the optimal norm-one
inputs for valid and circular convolution, respectively. Then if xoptc is composed of a single sinusoid,

lim
n→∞

∣∣pv (xoptv

)
− pv

(
xoptc

)∣∣ = 0.

Proof The proof is supplied in Appendix B (deferred to the supplementary material due to space
constraints).

Figure 3: Empirical demonstration of the convergence.

An empirical example illustrating the conver-
gence is given in Fig. 3. This result, in combi-
nation with Theorem 2.1, shows that valid con-
volutional square-pooling architectures will re-
spond near-optimally to sinusoids at the maxi-
mum frequency present in the filter. These re-
sults hold for arbitrary filters, and hence they
hold for random filters. We suggest that these
two properties contribute to the good perfor-
mance reported by Jarrett et al. [1] and Pinto
et al [2]. Frequency selectivity and translation
invariance are ingredients well-known to pro-
duce high-performing object recognition sys-
tems. Although many systems attain frequency
selectivity via oriented, band-pass convolutional filters such as Gabor filters, this is not necessary
for convolutional square-pooling architectures; even with random weights, these architectures are
sensitive to Gabor-like features of their input.

2.2 Empirical evaluation of the effect of convolution

To show that convolutional networks indeed detect more salient features, we tested the classification
performance of both convolutional and non-convolutional square-pooling networks across a variety
of architectural parameters on variants of the NORB and CIFAR-10 datasets. For NORB, we took
the left side of the stereo images in the normalized-uniform set and downsized them to 32x32, and
for CIFAR-10, we converted each 32x32 image from RGB to grayscale. We term these modified
datasets NORB-mono and CIFAR-10-mono.

Classification experiments were run on 11 different architectures with varying filter sizes {4x4, 8x8,
12x12, 16x16}, pooling sizes {3x3, 5x5, 9x9} and filter strides {1, 2}. On NORB-mono, we used
10 unique sets of convolutional and 10 unique sets of non-convolutional random weights for each
architecture, giving a total of 220 networks, while we used 5/5 sets on CIFAR-10-mono, for a total
of 110 networks. The classification accuracies of the sets of random weights were averaged to give
a final score for the convolutional and non-convolutional versions of each architecture. We used a
linear SVM [4] for classification, with regularization parameter C determined by cross-validation
over {10−3, 10−1, 101}. Algorithms were initially prototyped on the GPU with Accelereyes Jacket.

4

Figure 4: Classification performance of convolutional
architectures vs non-convolutional architectures

As expected, the convolutional random-weight
networks outperformed the non-convolutional
random-weight networks by an average of 3.8±
0.29% on NORB-mono (Fig.4) and 1.5±0.93%
on CIFAR-10-mono. We found that the dis-
tribution the random weights were drawn from
(e.g. uniform, Laplacian, Gaussian) did not af-
fect their classification performance, so long as
the distribution was centered about 0.

Finally, we note that non-convolutional net-
works still performed significantly better than
the raw-pixel baseline of 72.6% on NORB-
mono and 28.2% on CIFAR-10-mono. More-
over, on CIFAR-10-mono, some networks performed equally well with or without convolution, even
though convolutional networks did better on average. While we would expect an improvement over
the raw-pixel baseline just from the fact that the neural networks work in a higher-dimensional space
(e.g., see [5]), preliminary experiments indicate that the observed performance of non-convolutional
random networks stem from other architectural factors such as filter locality and the form of the non-
linearities applied to each hidden unit activation. This suggests that convolution is just one among
many different architectural features that play a part in providing good classification performance.

3 What is the contribution of pretraining and fine tuning?

The unexpectedly high performance of random-weight networks on NORB-mono leads us to a cen-
tral question: is unsupervised pretraining and discriminative finetuning necessary, or can the right
architecture compensate?

We investigate this by comparing the performance of pretrained and finetuned convolutional net-
works with random-weight convolutional networks on the NORB and CIFAR-10 datasets. Our
convolutional networks were pretrained in an unsupervised fashion through local receptive field To-
pographic Independent Components Analysis (TICA), a feature-learning algorithm introduced by
Le et al. [6] that was shown to achieve high performance on both NORB and CIFAR-10, and which
operates on the same class of square-pooling architectures as our networks. We use the same experi-
mental settings as before, with 11 architectures and 10 random initializations per architecture for the
NORB dataset and 5 random initializations per architecture for the CIFAR-10 dataset. Pretraining
these with TICA and then finetuning them gives us a total of 110 random-weight and 110 trained
networks for NORB, and likewise 55 / 55 networks for CIFAR-10. Finetuning was carried out by
backpropagating softmax error signals. For speed, we terminate after just 80 iterations of L-BFGS
[7].

As one would expect, the top-performing networks had trained weights, and pretraining and fine-
tuning invariably increased the performance of a given architecture. This was especially true for
CIFAR-10, where the top architecture using trained weights achieved an accuracy of 59.5 ±0.3%,
while the top architecture using random weights only achieved 53.2 ±0.3%. Within our range of
parameters, at least, pretraining and finetuning was necessary to attain near-top classification perfor-
mance on CIFAR-10.

More surprising, however, was finding that many learnt networks lose out in terms of performance
to random-weight networks with different architectural parameters. For instance, the architecture
with 8x8 filters, a convolutional stride size of 1 and a pooling region of 5x5 gets 89.6 ±0.3% with
random weights on NORB, while the (8x8, 2, 3x3) architecture gets 86.5 ±0.5% with pretrained
and finetuned weights. Likewise, on CIFAR-10, the (4x4, 1, 3x3) architecture gets 53.2 ±0.3% with
random weights, while the (16x16, 1, 3x3) architecture gets 50.9 ±1.7% with trained weights.

We can hence conclude that to get good performance, one cannot solely focus on the learning algo-
rithm and neglect a search over a range of architectural parameters, especially since we often only
have a broad architectural prior to work with. An important consideration, then, is to be able to
perform this search efficiently. In the next section, we present and justify a heuristic for doing so.

5

Figure 5: Classification performance of random-weight networks vs pretrained and finetuned networks.
Left: NORB-mono. Right: CIFAR-10-mono (Error bars represent a 95% confidence interval about the mean)

4 Fast architecture selection

When we plot the classification performance of random-weight architectures against trained-weight
architectures, a distinctive trend emerges: we see that architectures which perform well with random
weights also tend to perform well with pretrained and finetuned weights, and vice versa (Fig. 5). In-
tuitively, our analysis in Section 2 suggests that random-weight performance is not truly random but
should correlate with the corresponding trained-weight performance, as both are linked to intrinsic
properties of the architecture. Indeed, this happens in practice.

This suggests that large-scale searches of the space of possible network architectures can be carried
out by evaluating the mean performance of such architectures over several random initializations.
This would allow us to determine suitable values for architecture specific parameters without the
need for computationally expensive pretraining and finetuning. A subset of the best performing
architectures could then be selected to be pretrained and finetuned.2

As classification is significantly faster than pretraining and finetuning, this process of heuristic ar-
chitecture search provides a commensurate speedup over the normal approach of evaluating each
pretrained and finetuned network, as shown in Fig. 1.3

Table 1: Time comparison between normal architecture search and random weight architecture search

As a concrete example, we see from Fig. 5 that if we had performed this random-weight architectural
search and selected the top three random-weight architectures for pretraining and finetuning, we
would have found the top-performing overall architecture for both NORB-mono and CIFAR-10-
mono.

5 Distinguishing the contributions of architecture and learning

We round off the paper by presenting evidence that current state-of-the-art feature detection sys-
tems derive a surprising amount of performance just from their architecture alone. In particular, we
focus once again on local receptive field TICA [6], which has achieved classification performance
superior to many other methods reported in the literature. As TICA involves a square-pooling ar-
chitecture with sparsity-maximizing pretraining, we investigate how well a simple convolutional

2We note that it is insufficient to evaluate an architecture based on a single random initialization because
the performance difference between random initializations is not generally negligible. Also, while there was a
significant correlation between the mean performance of an architecture using random weights and its perfor-
mance after training, a particular high performing initialization did not generally perform well after pretraining
and finetuning.

3Different architectures have different numbers of hidden units and consequently take different amounts
of time to train, but the trend is similar across all architectures, so here we only report the speedup with one
representative architecture.

6

square-pooling architecture can perform without any learning. It turns out that a convolutional and
expanded version4 of Le et al.’s top-performing architecture is sufficient to obtain highly competitive
results on NORB, as shown in Table 2 below.

With such results, it becomes important to distinguish the contributions of architectures from those
of learning systems by reporting the performance of random weights. At the least, recognizing these
separate contributions will help us to hone in towards the good learning algorithms, which might not
always give the best reported performances if they are paired with bad architectures; similarly, we
will be better able to sift out the good architectures independently from the learning algorithms.

Table 2: Classification results for various methods on NORB

6 Conclusion

The performance of random-weight networks with convolutional pooling architectures demonstrates
the important role architecture plays in feature representation for object recognition. We find that
random-weight networks reflect intrinsic properties of their architecture; for instance, convolutional
pooling architectures enable even random-weight networks to be frequency selective, and we prove
this in the case of square pooling.

One major practical result from this study is a new method for fast architectural selection, as experi-
mental results show that the performance of random-weight networks is significantly correlated with
the performance of such architectures after pretraining and finetuning. While random weights are
no substitute for pretraining and finetuning, we hope their use for architecture search will improve
the performance of state-of-the-art systems.

Acknowledgments This work was supported by the DARPA Deep Learning program under contract
number FA8650-10-C-7020. AMS is supported by NDSEG and Stanford Graduate fellowships. We
warmly thank Quoc Le, Will Zou, Chenguang Zhu, and three anonymous reviewers for helpful
comments.

A Optimal input for circular convolution

The appendices provide proofs of Theorems 2.1 and 2.2. They assume some familiarity with Fourier
transforms and linear algebra. Because of space constraints, please refer to the supplementary ma-
terial for Appendix B.

The activation of a single pooling unit is determined by first convolving a filter f̂ ∈ Rn×n with a
portion of the input image x̂ ∈ Rn×n, and then computing the sum of the squares of the convolution
coefficients. Since convolution is a linear operator, we can recast the above problem as a matrix
norm problem

max
x∈<N2

‖Acx‖22 (1)

subject to ||x||2 = 1.

where the matrix Ac implements the two-dimensional circular convolution convolution of f and x,
where f and x are formed by flattening f̂ and x̂, respectively, into a column vector in column-major
order.

4The architectural parameters of this network are the same as that of the 96.2%-scoring architecture in
[6], with the exception that ours is convolutional, and has 48 maps instead of 16, since without supervised
finetuning, random-weight networks are less prone to overfitting.

7

The matrix Ac has special structure that we can exploit to find the optimal solution. In particular,
Ac is block circulant, i.e., each row of blocks is a circular shift of the previous row,

A =

A1 A2 · · · An−1 An
An A1 · · · An−2 An−1

...
...

. . .
...

...
A3 A4 · · · A1 A2

A2 A3 · · · An A1

 .
Additionally each block An is itself circulant, i.e., each row is a circular shift of the previous row,

Ai =

a1 a2 · · · an−1 an
an a1 · · · an−2 an−1

...
...

. . .
...

...
a3 a4 · · · a1 a2

a2 a3 · · · an a1

 ,
where each row contains an appropriate subset of the filter coefficients used in the convolution.
Hence the matrixAc is doubly block circulant. Returning to (2), we obtain the optimization problem

max
x∈Rn2 ,x 6=0

x∗A∗cAcx

x∗x
. (2)

This is a positive semidefinite quadratic form, for which the solution is the eigenvector associated
with the maximal eigenvalue of A∗cAc. To obtain an analytical solution we will reparametrize the
optimization to diagonalize A∗cAc so that the eigenvalues and eigenvectors may be read off of the
diagonal. We change variables to z = Fx where F is the unitary 2D discrete Fourier transform
matrix. The objective then becomes

x∗A∗cAcx

x∗x
=

z∗FA∗cAcF
∗z

z∗F ∗Fz
(3)

=
z∗FA∗cF

∗FAcF
∗z

z∗z
(4)

=
z∗D∗Dz

z∗z
(5)

where from (3) to (4) we have twice used the fact that the Fourier transform is unitary (F ∗F = I),
and from (4) to (5) we have used the fact that the Fourier transform diagonalizes block circulant
matrices (which corresponds to the convolution theorem F {f ∗ x} = FfFx), that is, FAcF ∗ =
D. The matrix D is diagonal, with coefficients Dii = n(Ff)i, equal to the Fourier coefficients of
the convolution filter f scaled by n. Hence we obtain the equivalent optimization problem

max
z∈Cn2 ,z 6=0

z∗|D|2z
z∗z , (6)

subject to F ∗z ∈ R (7)
where the matrix |D|2 is diagonal with entries |D|2ii = n2|(Ff)i|2, the square of the magnitude of
the Fourier coefficients of f scaled by n2. The constraint F ∗z ∈ R ensures that x is real, despite z
being complex. Because the coefficient matrix is diagonal, we can read off the eigenvalues as λi =
n2|D|2ii with corresponding eigenvector ei, the ith unit vector. The global solution to the optimization
problem, setting aside the reality condition, is any mixture of eigenvectors corresponding to maximal
eigenvalues, scaled to have unit norm.

To establish the optimal input taking account of the reality constraint, we must ensure that Fourier
coefficients corresponding to negative frequencies are their complex conjugate, that is, the solution
must satisfy the reality condition z−i = zi. One choice for satisfying the reality condition is to take

zj =

a|j|√

2
eisgn(j)φ|j| λj ∈ maxλ

0 otherwise
where a, φ ∈ Rq are vectors of arbitrary coefficients, one for each maximal frequency in Ff , and
||a|| = 1. Then, for nonzero zj , z−j = a|j|√

2
eisgn(−j)φ|j| = a|j|√

2
eisgn(j)φ|j| = zj so the reality

condition holds. Since this attains the maximum for the problem without the reality constraint, it
must also be the maximum for the complete problem. Converting z back to the time domain proves
the result. �

8

References

[1] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architec-
ture for object recognition? In ICCV, 2009.

[2] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput screening approach
to discovering good forms of biologically inspired visual representation. PLoS computational
biology, 5(11), November 2009.

[3] N. Pinto and D.D. Cox. An evaluation of the invariance properties of a biologically-inspired
system for unconstrained face recognition. In BIONETICS, 2010.

[4] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for
large linear classification. Journal of Machine Learning Research, 9:1871–1874, 2008.

[5] A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization
with randomization. In NIPS, 2008.

[6] Q.V. Le, J. Ngiam, Z. Chen, P. Koh, D. Chia, and A. Ng. Tiled convolutional neural networks.
In NIPS, in press, 2010.

[7] M. Schmidt. minFunc, http://www.cs.ubc.ca/ schmidtm/Software/minFunc.html. 2005.
[8] Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition with

invariance to pose and lighting. In CVPR, 2004.
[9] Y. Boureau, J. Ponce, and Y. LeCun. A Theoretical Analysis of Feature Pooling in Visual

Recognition. In ICML, 2010.
[10] G. J. Tee. Eigenvectors of block circulant and alternating circulant matrices. New Zealand

Journal of Mathematics, 36:195–211, 2007.
[11] R. M. Gray. Toeplitz and Circulant Matrices: A review. Foundations and Trends in Communi-

cations and Information Theory, 2(3), 2005.
[12] N. K. Bose and K. J. Boo. Asymptotic Eigenvalue Distribution of Block-Toeplitz Matrices.

Signal Processing, 44(2):858–861, 1998.
[13] A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Tech-

nical report, Computer Science Department, University of Toronto, 2009.
[14] D. Erhan, Y. Bengio, A. Courville, P. Manzagol, P. Vincent, and S. Bengio. Why does unsuper-

vised pre-training help deep learning? Journal of Machine Learning Research, 11:625–660,
2010.

[15] G. Hinton, S. Osindero, and Y. Teh. A fast learning algorithm for deep belief nets. Neural
Computation, 18(7):1527–1554, 2006.

[16] V. Nair and G. Hinton. 3D Object Recognition with Deep Belief Nets. In NIPS, 2009.
[17] Y. Bengio and Y. LeCun. Scaling learning algorithms towards A.I. In Large-Scale Kernel

Machines. MIT Press, 2007.
[18] R. Salakhutdinov and H. Larochelle. Efficient learning of deep boltzmann machines. In AIS-

TATS, 2010.

9

