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Abstract

We introduce a type of Deep Boltzmann Ma-
chine (DBM) that is suitable for extracting
distributed semantic representations from a
large unstructured collection of documents.
We overcome the apparent difficulty of train-
ing a DBM with judicious parameter tying.
This enables an efficient pretraining algo-
rithm and a state initialization scheme for
fast inference. The model can be trained
just as efficiently as a standard Restricted
Boltzmann Machine. Our experiments show
that the model assigns better log probability
to unseen data than the Replicated Softmax
model. Features extracted from our model
outperform LDA, Replicated Softmax, and
DocNADE models on document retrieval and
document classification tasks.

1 Introduction

Text documents are a ubiquitous source of informa-
tion. Representing the information content of a docu-
ment in a form that is suitable for solving real-world
problems is an important task. The aim of topic
modeling is to create such representations by discover-
ing latent topic structure in collections of documents.
These representations are useful for document classi-
fication and retrieval tasks, making topic modeling an
important machine learning problem.

The most common approach to topic modeling is to
build a generative probabilistic model of the bag of
words in a document. Directed graphical models,
such as Latent Dirichlet Allocation (LDA), CTM, H-
LDA, have been extensively used for this [3, 2, 8].
Non-parametric extensions of these models have also
been quite successful [13, 1, 5]. Even though exact
inference in these models is hard, efficient inference

schemes, including stochastic variational inference, on-
line inference, and collapsed Gibbs have been devel-
oped that make it feasible to train and use these meth-
ods [14, 16, 4]. Another approach is to use undi-
rected graphical models such as the Replicated Soft-
max model [12]. In this model, inferring latent topic
representations is exact and efficient. However, train-
ing is still hard and often requires careful hyperparam-
eter selection. These models typically perform better
than LDA in terms of both the log probability they
assign to unseen data and their document retrieval
and document classification accuracy. Recently, neural
network based approaches, such as Neural Autoregres-
sive Density Estimators (DocNADE) [7], have been to
shown to outperform the Replicated Softmax model.

The Replicated Softmax model is a family of Re-
stricted Boltzmann Machines (RBMs) with shared pa-
rameters. An important feature of RBMs is that they
solve the “explaining-way” problem of directed graph-
ical models by having a complementary prior over hid-
den units. However, this implicit prior may not be the
best prior to use and having some degree of flexibility
in defining the prior may be advantageous. One way of
adding this additional degree of flexibility, while still
avoiding the explaining-away problem, is to learn a two
hidden layer Deep Boltzmann Machine (DBM). This
model adds another layer of hidden units on top of the
first hidden layer with bi-partite, undirected connec-
tions. The new connections come with a new set of
weights. However, this additional implicit prior comes
at the cost of more expensive training and inference.
Therefore, we have the following two extremes: On
one hand, RBMs can be efficiently trained (e.g. us-
ing Contrastive Divergence), inferring the state of the
hidden units is exact, but the model defines a rigid,
implicit prior. On the other hand, a two hidden layer
DBM defines a more flexible prior over the hidden rep-
resentations, but training and performing inference in
a DBM model is considerably harder.

In this paper, we try to find middle ground between



these extremes and build a model that combines the
best of both. We introduce a two hidden layer DBM
model, which we call the Over-Replicated Softmax
model. This model is easy to train, has fast approxi-
mate inference and still retains some degree of flexibil-
ity towards manipulating the prior. Our experiments
show that this flexibility is enough to improve signifi-
cantly on the performance of the standard Replicated
Softmax model, both as generative models and as fea-
ture extractors even though the new model only has
one more parameter than the RBM model. The model
also outperforms LDA and DocNADE in terms of clas-
sification and retrieval tasks.

Before we describe our model, we briefly review the
Replicated Softmax model [12] which is a stepping
stone towards the proposed Over-Replicated Softmax
model.

2 Replicated Softmax Model

This model comprises of a family of Restricted Boltz-
mann Machines. Each RBM has “softmax” visible
variables that can have one of a number of different
states. Specifically, let K be the dictionary size, N
be the number of words appearing in a document, and
h ∈ {0, 1}F be binary stochastic hidden topic features.
Let V be a N×K observed binary matrix with vik = 1
if visible unit i takes on the kth value. We define the
energy of the state {V,h} as :

E(V,h;θ) = −
N∑
i=1

F∑
j=1

K∑
k=1

Wijkhjvik (1)

−
N∑
i=1

K∑
k=1

vikbik −N
F∑
j=1

hjaj ,

where θ = {W,a,b} are the model parameters; Wijk

is a symmetric interaction term between visible unit i
that takes on value k, and hidden feature j, bik is the
bias of unit i that takes on value k, and aj is the bias
of hidden feature j. The probability that the model
assigns to a visible binary matrix V is:

P (V;θ) =
1

Z(θ, N)

∑
h

exp (−E(V,h;θ)) (2)

Z(θ, N) =
∑
V′

∑
h′

exp (−E(V′,h′;θ)),

where Z(θ, N) is known as the partition function, or
normalizing constant.

The key assumption of the Replicated Softmax model
is that for each document we create a separate RBM
with as many softmax units as there are words in the
document, as shown in Fig. 1. Assuming that the order

h(1)

V

W1

W1
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W2
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Latent Topics Latent Topics

Softmax Visibles Multinomial
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Figure 1: The Replicated Softmax model. The top layer
represents a vector h of stochastic, binary topic features
and the bottom layer represents softmax visible units V.
All visible units share the same set of weights, connect-
ing them to binary hidden units. Left: The model for
a document containing three words. Right: A different
interpretation of the Replicated Softmax model, in which
N softmax units with identical weights are replaced by a
single multinomial unit which is sampled N times.

of the words can be ignored, all of these softmax units
can share the same set of weights, connecting them to
binary hidden units. In this case, the energy of the
state {V,h} for a document that contains N words is
defined as:

E(V,h) = −
F∑
j=1

K∑
k=1

Wjkhj v̂k −
K∑
k=1

v̂kbk −N
F∑
j=1

hjaj ,

where v̂k =
∑N
i=1 v

k
i denotes the count for the kth

word. The bias terms of the hidden variables are scaled
up by the length of the document. This scaling is im-
portant as it allows hidden units to behave sensibly
when dealing with documents of different lengths. The
conditional distributions are given by softmax and lo-
gistic functions:

P (h
(1)
j = 1) = σ

( K∑
k=1

Wjkv̂k +Naj

)
, (3)

P (vik = 1) =
exp

(∑F
j=1Wjkh

(1)
j + bk

)
∑K
k′=1 exp

(∑F
j=1Wjk′h

(1)
j + bk′

) . (4)

The Replicated Softmax model can also be interpreted
as an RBM model that uses a single visible multino-
mial unit with support {1, ...,K} which is sampled N
times (see Fig. 1, right panel).

For this model, exact maximum likelihood learning is
intractable, because computing the derivatives of the
partition function, needed for learning, takes time that
is exponential in min{D,F}, i.e the number of visible
or hidden units. In practice, approximate learning is
performed using Contrastive Divergence (CD) [6].

3 Over-Replicated Softmax Model

The Over-Replicated Softmax model is a family of two
hidden layer Deep Boltzmann Machines (DBM). Let



us consider constructing a Boltzmann Machine with
two hidden layers for a document containing N words,
as shown in Fig. 2. The visible layer V consists of N
softmax units. These units are connected to a binary
hidden layer h(1) with shared weights, exactly like in
the Replicated Softmax model in Fig. 1. The second
hidden layer consists of M softmax units represented
by H(2). Similar to V, H(2) is an M×K binary matrix

with h
(2)
mk = 1 if the m-th hidden softmax unit takes

on the k-th value.

The energy of the joint configuration {V,h(1),H(2)}
is defined as:

E(V,h(1),H(2);θ) = −
N∑
i=1

F∑
j=1

K∑
k=1

W
(1)
ijkh

(1)
j vik (5)

−
M∑
i′=1

F∑
j=1

K∑
k=1

W
(2)
i′jkh

(1)
j h

(2)
i′k −

N∑
i=1

K∑
k=1

vikb
(1)
ik

−(M +N)

F∑
j=1

h
(1)
j aj −

M∑
i=1

K∑
k=1

h
(2)
ik b

(2)
ik

where θ = {W(1),W(2),a,b(1),b(2)} are the model
parameters.

Similar to the Replicated Softmax model, we create a
separate document-specific DBM with as many vis-
ible softmax units as there are words in the docu-
ment. We also fix the number M of the second-
layer softmax units across all documents. Ignoring
the order of the words, all of the first layer softmax
units share the same set of weights. Moreover, the
first and second layer weights are tied. Thus we have

W
(1)
ijk = W

(2)
i′jk = Wjk and b

(1)
ik = b

(2)
i′k = bk. Compared

to the standard Replicated Softmax model, this model
has more replicated softmaxes (hence the name “Over-
Replicated”). Unlike the visible softmaxes, these addi-
tional softmaxes are unobserved and constitute a sec-
ond hidden layer1. The energy can be simplified to:

E(V,h(1),H(2);θ) = −
F∑
j=1

K∑
k=1

Wjkh
(1)
j

(
v̂k + ĥ

(2)
k

)
(6)

−
K∑
k=1

(
v̂k + ĥ

(2)
k

)
bk − (M +N)

F∑
j=1

h
(1)
j aj

where v̂k =
∑N
i=1 vik denotes the count for the kth

word in the input and ĥ
(2)
k =

∑M
i=1 h

(2)
ik denotes the

count for the kth “latent” word in the second hidden
layer. The joint probability distribution is defined as:

P (V,h(1),H(2);θ) =
exp (−E(V,h(1),H(2);θ))

Z(θ, N)
,

1This model can also be seen as a Dual-Wing Harmo-
nium [17] in which one wing is unclamped.
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Figure 2: The Over-Replicated Softmax model. The bot-
tom layer represents softmax visible units V. The middle
layer represents binary latent topics h(1). The top layer
represents softmax hidden units H(2). All visible and hid-
den softmax units share the same set of weights, connecting
them to binary hidden units. Left: The model for a docu-
ment containing N = 3 words with M = 2 softmax hidden
units. Right: A different interpretation of the model, in
which N softmax units with identical weights are replaced
by a single multinomial unit which is sampled N times and
the M softmax hidden units are replaced by a multinomial
unit sampled M times.

Note that the normalizing constant depends on the
number of words N in the corresponding document,
since the model contains as many visible softmax units
as there are words in the document. So the model can
be viewed as a family of different-sized DBMs that are
created for documents of different lengths, but with a
fixed-sized second-layer.

A pleasing property of the Over-Replicated Softmax
model is that it has exactly the same number of train-
able parameters as the Replicated Softmax model.
However, the model’s marginal distribution over V is
different, as the second hidden layer provides an addi-
tional implicit prior. The model’s prior over the latent
topics h(1) can be viewed as the geometric mean of the
two probability distributions: one defined by an RBM
composed of V and h(1), and the other defined by an
RBM composed of h(1) and H(2):2

P (h(1);θ) =
1

Z(θ, N)

(∑
v

exp

( F∑
j=1

K∑
k=1

Wjkv̂kh
(1)
j

))
︸ ︷︷ ︸

RBM with h(1) and v∑
H(2)

exp

( F∑
j=1

K∑
k=1

Wjkĥ
(2)
k h

(1)
j

)
︸ ︷︷ ︸

RBM with h(1) and H(2)

. (7)

Observe that
∑K
k=1 v̂k = N and

∑K
k=1 ĥ

(2)
k = M , so

the strength of this prior can be varied by changing the
numberM of second-layer softmax units. For example,

2We omit the bias terms for clarity of presentation.



if M = N , then the model’s marginal distribution over
h(1), defined in Eq. 7, is given by the product of two
identical distributions. In this DBM, the second-layer
performs 1/2 of the modeling work compared to the
first layer [11]. Hence, for documents containing few
words (N �M) the prior over hidden topics h(1) will
be dominated by the second-layer, whereas for long
documents (N � M) the effect of having a second-
layer will diminish. As we show in our experimental
results, having this additional flexibility in terms of
defining an implicit prior over h(1) significantly im-
proves model performance, particularly for small and
medium-sized documents.

3.1 Learning

Let h = {h(1),H(2)} be the set of hidden units in the
two-layer DBM. Given a collection of L documents
{V}Ll=1, the derivative of the log-likelihood with re-
spect to model parameters W takes the form:

1

L

L∑
l=1

∂ logP (Vl;θ)

∂Wjk
= EPdata

[
(v̂k + ĥ

(2)
k )h

(1)
j

]
−

EPModel

[
(v̂k + ĥ

(2)
k )h

(1)
j

]
,

where EPdata
[·] denotes an expectation with re-

spect to the data distribution Pdata(h,V) =
P (h|V;θ)Pdata(V), with Pdata(V) = 1

L

∑
l δ(V −Vl)

representing the empirical distribution, and EPModel
[·]

is an expectation with respect to the distribution de-
fined by the model. Similar to the Replicated Soft-
max model, exact maximum likelihood learning is in-
tractable, but approximate learning can be performed
using a variational approach [10]. We use mean-field
inference to estimate data-dependent expectations and
an MCMC based stochastic approximation procedure
to approximate the models expected sufficient statis-
tics.

Consider any approximating distribution Q(h|V;µ),
parameterized by a vector of parameters µ, for the
posterior P (h|V;θ). Then the log-likelihood of the
DBM model has the following variational lower bound:

logP (V;θ) ≥
∑
h

Q(h|V;µ) logP (V,h;θ) +H(Q),

where H(·) is the entropy functional. The bound be-
comes tight if and only if Q(h|V;µ) = P (h|V;θ).

For simplicity and speed, we approximate the true pos-
terior P (h|V;θ) with a fully factorized approximating
distribution over the two sets of hidden units, which
corresponds to the so-called mean-field approximation:

QMF (h|V;µ) =

F∏
j=1

q(h
(1)
j |V)

M∏
i=1

q(h
(2)
i |V), (8)

where µ = {µ(1),µ(2)} are the mean-field parame-

ters with q(h
(1)
j = 1) = µ

(1)
j and q(h

(2)
ik = 1) = µ

(2)
k ,

∀i ∈ {1, . . . ,M}, s.t.
∑K
k=1 µ

(2)
k = 1. Note that due to

the shared weights across all of the hidden softmaxes,

q(h
(2)
ik ) does not dependent on i. In this case, the vari-

ational lower bound takes a particularly simple form:

logP (V;θ) ≥
∑
h

QMF (h|V;µ) logP (V,h;θ) +H(QMF )

≥
(
v̂> + Mµ(2)>

)
Wµ(1) − logZ(θ, N) +H(QMF ),

where v̂ is a K×1 vector, with its kth element v̂k con-
taining the count for the kth word. Since

∑K
k=1 v̂k = N

and
∑K
k=1 µ

(2)
k = 1, the first term in the bound linearly

combines the effect of the data (which scales as N)
with the prior (which scales as M). For each training
example, we maximize this lower bound with respect
to the variational parameters µ for fixed parameters θ,
which results in the mean-field fixed-point equations:

µ
(1)
j ← σ

( K∑
k=1

Wjk

(
v̂k +Mµ

(2)
k

))
, (9)

µ
(2)
k ←

exp
(∑F

j=1Wjkµ
(1)
j

)
∑K
k′=1 exp

(∑F
j=1Wjk′µ

(1)
j

) , (10)

where σ(x) = 1/(1 + exp(−x)) is the logistic func-
tion. To solve these fixed-point equations, we simply
cycle through layers, updating the mean-field param-
eters within a single layer.

Given the variational parameters µ, the model param-
eters θ are then updated to maximize the variational
bound using an MCMC-based stochastic approxima-
tion [10, 15, 18]. Let θt and xt = {Vt,h

(1)
t,h

(2)
t} be

the current parameters and the state. Then xt and
θt are updated sequentially as follows: given xt, sam-
ple a new state xt+1 using alternating Gibbs sampling.
A new parameter θt+1 is then obtained by making a
gradient step, where the intractable model’s expecta-
tion EPmodel

[·] in the gradient is replaced by a point
estimate at sample xt+1.

In practice, to deal with variable document lengths, we
take a minibatch of data and run one Markov chain for
each training case for a few steps. To update the model
parameters, we use an average over those chains. Simi-
lar to Contrastive Divergence learning, in order to pro-
vide a good starting point for the sampling, we initial-
ize each chain at ĥ(1) by sampling from the mean-field
approximation to the posterior q(h(1)|V).

3.2 An Efficient Pretraining Algorithm

The proper training procedure for the DBM model de-
scribed above is quite slow. This makes it very impor-
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Figure 3: Pretraining a two-layer Boltzmann Machine
using one-step contrastive divergence. The second hidden
softmax layer is initialized to be the same as the observed
data. The units in the first hidden layer have stochastic
binary states, but the reconstructions of both the visible
and second hidden layer use probabilities, so both recon-
structions are identical.

tant to pretrain the model so that the model param-
eters start off in a nice region of space. Fortunately,
due to parameter sharing between the visible and hid-
den softmax units, there exists an efficient pretraining
method which makes the proper training almost re-
dundant.

Consider a DBM with N observed and M hidden soft-
max units. Let us first assume that the number of hid-
den softmaxesM is the same as the number of wordsN
in a given document. If we were given the initial state
vector H(2), we could train this DBM using one-step
contrastive divergence with mean-field reconstructions
of both the states of the visible and the hidden softmax
units, as shown in Fig. 3. Since we are not given the
initial state, one option is to set H(2) to be equal to the
data V. Provided we use mean-field reconstructions
for both the visible and second-layer hidden units, one-
step contrastive divergence is then exactly the same as
training a Replicated Softmax RBM with only one hid-
den layer but with bottom-up weights that are twice
the top-down weights.

To pretrain a DBM with different number of visible
and hidden softmaxes, we train an RBM with the
bottom-up weights scaled by a factor of 1 + M

N . In
other words, in place of using W to compute the con-
ditional probability of the hidden units (see Eq. 3), we
use (1 + M

N )W:

P (h
(1)
j = 1|V) = σ

(
(1 +

M

N
)

K∑
k=1

vkWkj

)
. (11)

The conditional probability of the observed softmax
units remains the same as in Eq. 4. This procedure is
equivalent to training an RBM with N +M observed
visible units with each of the M extra units set to be
the empirical word distribution in the document, i.e..

for i ∈ {N + 1, . . . , N +M},

vik =

∑N
j=1 vjk∑N

j=1

∑K
k′=1 vjk′

Thus the M extra units are not 1-of-K, but represent
distributions over the K words3.

This way of pretraining the Over-Replicated Softmax
DBMs with tied weights will not in general maximize
the likelihood of the weights. However, in practice
it produces models that reconstruct the training data
well and serve as a good starting point for generative
fine-tuning of the two-layer model.

3.3 Inference

The posterior distribution P (h(1)|V) represents the la-
tent topic structure of the observed document. Con-
ditioned on the document, these activation probabili-
ties can be inferred using the mean-field approximation
used to infer data-dependent statistics during training.

A fast alternative to the mean-field posterior is to mul-
tiply the visible to hidden weights by a factor of 1+ M

N
and approximate the true posterior with a single ma-
trix multiply, using Eq. 11. Setting M = 0 recovers
the proper posterior inference step for the standard
Replicated Softmax model. This simple scaling opera-
tion leads to significant improvements. The results re-
ported for retrieval and classification experiments used
the fast pretraining and fast inference methods.

3.4 Choosing M

The number of hidden softmaxes M affects the
strength of the additional prior. The value of M can
be chosen using a validation set. Since the value of
M is fixed for all Over-Replicated DBMs, the effect of
the prior will be less for documents containing many
words. This is particularly easy to see in Eq. 11. As
N becomes large, the scaling factor approaches 1, di-
minishing the part of implicit prior coming from the
M hidden softmax units. Thus the value of M can be
chosen based on the distribution of lengths of docu-
ments in the corpus.

4 Experiments

In this section, we evaluate the Over-Replicated Soft-
max model both as a generative model and as a feature
extraction method for retrieval and classification. Two
datasets are used - 20 Newsgroups and Reuters Corpus
Volume I (RCV1-v2).

3Note that when M = N , we recover the setting of
having the bottom-up weights being twice the top-down
weights.



4.1 Description of datasets

The 20 Newsgroups dataset consists of 18,845 posts
taken from the Usenet newsgroup collection. Each
post belongs to exactly one newsgroup. Following the
preprocessing in [12] and [7], the data was partitioned
chronologically into 11,314 training and 7,531 test ar-
ticles. After removing stopwords and stemming, the
2000 most frequent words in the training set were used
to represent the documents.

The Reuters RCV1-v2 contains 804,414 newswire ar-
ticles. There are 103 topics which form a tree hier-
archy. Thus documents typically have multiple labels.
The data was randomly split into 794,414 training and
10,000 test cases. The available data was already pre-
processed by removing common stopwords and stem-
ming. We use a vocabulary of the 10,000 most frequent
words in the training dataset.

4.2 Training details

The Over-Replicated Softmax model was first pre-
trained with Contrastive Divergence using the weight
scaling technique described in Sec. 3.2. Minibatches of
size 128 were used. A validation set was held out from
the training set for hyperparameter selection (1,000
cases for 20 newsgroups and 10,000 for RCV1-v2). The
value of M and number of hidden units were chosen
over a coarse grid using the validation set. Typically,
M = 100 performed well on both datasets. Increasing
the number of hidden units lead to better performance
on retrieval and classification tasks, until serious over-
fitting became a problem around 1000 hidden units.
For perplexity, 128 hidden units worked quite well and
having too many units made the estimates of the par-
tition function obtained using AIS unstable. Starting
with CD-1, the number of Gibbs steps was stepped up
by one after every 10,000 weight updates till CD-20.
Weight decay was used to prevent overfitting. Addi-
tionally, in order to encourage sparsity in the hidden
units, KL-sparsity regularization was used. We de-
cayed the learning rate as ε0

1+t/T , with T = 10, 000

updates. This approximate training was sufficient to
give good results on retrieval and classification tasks.
However, to obtain good perplexity results, the model
was trained properly using the method described in
Sec. 3.1. Using 5 steps for mean-field inference and
20 for Gibbs sampling was found to be sufficient. This
additional training gave improvements in terms of per-
plexity but the improvement on classification and re-
trieval tasks was not statistically significant.

We also implemented the standard Replicated Softmax
model. The training procedure was the same as the
pretraining process for the Over-Replicated Softmax
model. Both the models were implemented on GPUs.
Pretraining took 3-4 hours for the 2-layered Boltzmann

Table 1: Comparison of the average test perplexity per
word. All models use 128 topics.

20 News Reuters

Training set size 11,072 794,414
Test set size 7,052 10,000
Vocabulary size 2,000 10,000
Avg Document Length 51.8 94.6

Perplexities
Unigram 1335 2208
Replicated Softmax 965 1081
Over-Rep. Softmax (M = 50) 961 1076
Over-Rep. Softmax (M = 100) 958 1060

Machines (depending on M) and the proper training
took 10-12 hours. The DocNADE model was run us-
ing the publicly available code4. We used default set-
tings for all hyperparameters, except the learning rates
which were tuned separately for each hidden layer size
and data set.

4.3 Perplexity

We compare the Over-Replicated Softmax model
with the Replicated Softmax model in terms of per-
plexity. Computing perplexities involves comput-
ing the partition functions for these models. We
used Annealed Importance Sampling [9] for doing
this. In order to get reliable estimates, we ran
128 Markov chains for each document length. The
average test perplexity per word was computed as

exp
(
−1/L

∑L
l=1 1/Nl log p(vl)

)
, where Nl is the num-

ber of words in document l. Table 1 shows the per-
plexity averaged over L = 1000 randomly chosen test
cases for each data set. Each of the models has 128
latent topics. Table 1 shows that the Over-Replicated
Softmax model assigns slightly lower perplexity to the
test data compared to the Replicated Softmax model.
For the Reuters data set the perplexity decreases from
1081 to 1060, and for 20 Newsgroups, it decreases from
965 to 958. Though the decrease is small, it is sta-
tistically significant since the standard deviation was
typically ±2 over 10 random choices of 1000 test cases.
Increasing the value of M increases the strength of the
prior, which leads to further improvements in perplex-
ities. Note that the estimate of the log probability
for 2-layered Boltzmann Machines is a lower bound on
the actual log probability. So the perplexities we show
are upper bounds and the actual perplexities may be
lower (provided the estimate of the partition function
is close to the actual value).

4http://www.dmi.usherb.ca/~larocheh/code/
DocNADE.zip



20 Newsgroups
(a) 128 topics (b) 512 topics

Reuters RCV1-V2
(c) 128 topics (d) 512 topics

Figure 4: Comparison of Precision-Recall curves for document retrieval. All Over-Replicated Softmax models use M =
100 latent words.

4.4 Document Retrieval

In order to do retrieval, we represent each document
V as the conditional posterior distribution P (h(1)|V).
This can be done exactly for the Replicated Softmax
and DocNADE models. For two-layered Boltzmann
Machines, we extract this representation using the fast
approximate inference as described in Sec. 3.3. Per-
forming more accurate inference using the mean-field
approximation method did not lead to statistically
different results. For the LDA, we used 1000 Gibbs
sweeps per test document in order to get an approxi-
mate posterior over the topics.

Documents in the training set (including the valida-
tion set) were used as a database. The test set was
used as queries. For each query, documents in the
database were ranked using cosine distance as the sim-
ilarity metric. The retrieval task was performed sep-
arately for each label and the results were averaged.
Fig. 4 compares the precision-recall curves. As shown
by Fig. 4, the Over-Replicated Softmax DBM out-

performs other models on both datasets, particularly
when retrieving the top few documents.

To find the source of improvement, we analyzed the
effect of document length of retrieval performance.
Fig. 5 plots the average precision obtained for query
documents arranged in order of increasing length. We
found that the Over-Replicated Softmax model gives
large gains on documents with small numbers of words,
confirming that the implicit prior imposed using a
fixed value of M has a stronger effect on short doc-
uments. As shown in Fig. 5, DocNADE and Repli-
cated Softmax models often do not do well for docu-
ments with few words. On the other hand, the Over-
Replicated softmax model performs significantly bet-
ter for short documents. In most document collections,
the length of documents obeys a power law distribu-
tion. For example, in the 20 newsgroups dataset 50%
of the documents have fewer than 35 words (Fig. 5c).
This makes it very important to do well on short doc-
uments. The Over-Replicated Softmax model achieves
this goal.



20 Newsgroups

(a) 128 topics (b) 512 topics (c) Document length distribution

Reuters

(d) 128 topics (e) 512 topics (f) Document length distribution

Figure 5: Effect of document size on retrieval performance for different topic models. The x-axis in Figures (a), (b),
(d), (e) represents test documents arranged in increasing order of their length. The y-axis shows the average precision
obtained by querying that document. The plots were smoothed to make the general trend visible. Figures (c) and (f) show
the histogram of document lengths for the respective datasets. The dashed vertical lines denote 10-percentile boundaries.
Top : Average Precision on the 20 Newsgroups dataset. Bottom : Mean Average Precision on the Reuters dataset. The
Over-Replicated Softmax models performs significantly better for documents with few words. The adjoining histograms
in each row show that such documents occur quite frequently in both data sets.

4.5 Document Classification

In this set of experiments, we evaluate the learned rep-
resentations from the Over-Replicated Softmax model
for the purpose of document classification. Since the
objective is to evaluate the quality of the represen-
tation, simple linear classifiers were used. Multino-
mial logistic regression with a cross entropy loss func-
tion was used for the 20 newsgroups data set. The
evaluation metric was classification accuracy. For the
Reuters dataset, we used independent logistic regres-
sions for each label since it is a multi-label classifica-
tion problem. The evaluation metric was Mean Aver-
age Precision.

Table 2 shows the results of these experiments. The
Over-Replicated Softmax model performs significantly
better than the standard Replicated Softmax model
and LDA across different network sizes on both
datasets. For the 20 newsgroups dataset using 512
topics, LDA gets 64.2% accuracy. Replicated Softmax
(67.7%) and DocNADE (68.4%) improve upon this.
The Over-Replicated Softmax model further improves

Table 2: Comparison of Classification accuracy on 20
Newsgroups dataset and Mean Average Precision on
Reuters RCV1-v2.

Model
20 News Reuters
128 512 128 512

LDA 65.7 64.2 0.304 0.351
DocNADE 67.0 68.4 0.388 0.417
Replicated Softmax 65.9 67.7 0.390 0.421
Over-Rep. Softmax 66.8 69.1 0.401 0.453

the result to 69.4%. The difference is larger for the
Reuters dataset. In terms of Mean Average Precision
(MAP), the Over-Replicated Softmax model achieves
0.453 which is a very significant improvement upon
DocNADE (0.427) and Replicated Softmax (0.421).

We further examined the source of improvement by
analyzing the effect of document length on the clas-
sification performance. Similar to retrieval, we found
that the Over-Replicated Softmax model performs well
on short documents. For long documents, the perfor-
mance of the different models was similar.



5 Conclusion

The Over-Replicated Softmax model described in this
paper is an effective way of defining a flexible prior
over the latent topic features of an RBM. This model
causes no increase in the number of trainable param-
eters and only a minor increase in training algorithm
complexity. Deep Boltzmann Machines are typically
slow to train. However, our fast approximate train-
ing method makes it possible to train the model with
CD, just like an RBM. The features extracted from
documents using the Over-Replicated Softmax model
perform better than features from the standard Repli-
cated Softmax and LDA models and are comparable
to DocNADE across different network sizes.

While the number of hidden softmax units M , con-
trolling the strength of the prior, was chosen once and
fixed across all DBMs, it is possible to have M de-
pend on N . One option is to set M = cN , c > 0. In
this case, for documents of all lengths, the second-layer
would perform perform c/c+1 of the modeling work
compared to the first layer. Another alternative is to
set M = Nmax −N , where Nmax is the maximum al-
lowed length of all documents. In this case, our DBM
model will always have the same number of replicated
softmax units Nmax = N +M , hence the same archi-
tecture and a single partition function. Given a docu-
ment of length N, the remaining Nmax−N words can
be treated as missing. All of these variations improve
upon the standard Replicated Softmax model, LDA,
and DocNADE models, opening up the space of new
deep undirected topics to explore.
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