
Deep Semantic Embedding

Hao Wu∗

Department of Computer
Science

University of Southern
California

hwu732@usc.edu

Martin Renqiang Min
Department of Machine

Learning
NEC Labs America

renqiang@nec-labs.com

Bing Bai
Department of Machine

Learning
NEC Labs America

bbai@nec-labs.com

ABSTRACT
We introduce Deep Semantic Embedding (DSE), a super-
vised learning algorithm which computes semantic repre-
sentation for text documents by respecting their similarity
to a given query. Unlike other methods that use single-
layer learning machines, DSE maps word inputs into a low-
dimensional semantic space with deep neural network, and
achieves a highly nonlinear embedding to model the human
perception of text semantics. Through discriminative fine-
tuning of the deep neural network, DSE is able to encode
the relative similarity between relevant/irrelevant document
pairs in training data, and hence learn a reliable ranking
score for a query-document pair. We present test results on
datasets including scientific publications and user-generated
knowledge base.

Keywords
Deep Learning, Nonlinear Embedding, Semantic Indexing,
Ranking

1. INTRODUCTION
In this paper, we consider modeling underlying structure of
text documents for information retrieval. The goal is to find
concise representation of text semantics while preserving dis-
criminative features that are useful for similarity judgment
in ranking documents with respect to a query.

Modern Internet search is built on the fundamental task
of ranking documents from database and returning rele-
vant ones to a given query. The quality of document rank-
ing largely depends on measuring the semantic similarity of
query-document pairs. Typically, semantic similarity can be
measured in terms of occurrences of “words” or “terms”. For
example, the popular TFIDF [19] scheme represents each
document using frequency count of words in a basic vocab-
ulary, and normalize the values using inverse document fre-

∗Most of this work was done when the author was an intern
at NEC Labs America.

quency count. In ranking tasks, the relevance score is usu-
ally measured by similarity metrics, typically cosine similar-
ity between query-document pairs in terms of TFIDF vector
representation.

While the TFIDF scheme has been successfully adopted in
practical search engines due to its simplicity and efficiency,
the approach reveals little statistical structure in text cor-
pus, e.g., the occurrences of words within or between doc-
uments. The exact match of words ignores the similarity
between synonyms and cannot distinguish polysemy. To ad-
dress these issues, directed graphical models, notably prob-
abilistic Latent Semantic Indexing (pLSI [11]), as a variant
of Latent Semantic Indexing (LSI [6]) and Latent Dirichlet
Allocation (LDA [3]) are proposed. pLSI and LDA model
each document as mixing proportions for latent components
which are viewed as “topics”, and a topic is represented as a
probabilistic distribution over words to capture their corre-
lations.

Recent approaches [18, 12, 22] using undirected graphical
models are based on Restricted Boltzmann Machines (RBMs).
RBMs factorize data distributions into a particular form of
the Product of Experts (PoE) rather than a mixture of latent
aspects, and have a complementary prior over hidden units
to solve the “explaining-away” problem of directed graphical
models. These models hence generally outperform pLSI and
LDA.

However, all the above-mentioned models consider little su-
pervised information for ranking documents in search tasks.
The supervised information could come from human label-
ing, or more abundant in the form of implicit relevance feed-
back, e.g., in query log where the web documents clicked-
through by users can be deemed to be more relevant to a
query than the others. Recent models attempt to use the su-
pervised signal to discriminatively train a mapping from the
word content in a query-document pair to a relevance score.
Supervised Semantic Indexing (SSI [1]) and its variant Poly-
nomial Semantic Indexing (PSI [2]) using extended high-
order word features fall into this research category. Despite
having a nonlinear function to calculate a similarity score
from word features in a query-document pair, the low-rank
approximation makes the models boil down to finding the
linear mapping from word content to a latent space, in which
the similarity of a query-document pair is computed. Never-
theless, the linear word embeddings are not powerful enough
to capture the profound semantics in text documents. It has

been shown that deep nonlinear feature embedding can sig-
nificantly improve classification performance in other tasks
[16, 15], so we expect that deep nonlinear feature mapping
will help document ranking similarly.

In this paper, we consider learning nonlinear semantic em-
beddings from word content. We present a model called
Deep Semantic Embedding (DSE), which exploits the non-
linearity between word features and latent semantics with
Deep Neural Network (DNN) composed of stacked RBMs
[9]. With word inputs, the activation of hidden units on the
top layer of the DNN serves as the coordinate of a docu-
ment in the latent semantic space. By learning from the rel-
ative similarity between relevant/irrelevant document pairs
in training data, DSE is able to preserve the discriminative
features for computing a reliable ranking score of a query-
document pair. For disciminative learning, we use gradient
descent method to fine-tune the DNN in a back-propagation
manner. To evaluate DSE, we present empirical analysis on
real data including NIPS publications, and Wipipedia web
pages.

2. DEEP SEMANTIC EMBEDDING
In typical search tasks, we are interested in retrieving rel-
evant documents from a text corpus to respond to a given
query. Suppose we represent a query using vector q ∈ R

D,
and the set of N documents in the corpus as D = {d(i)}N

i=1 ⊂
R

D, where D is the vocabulary size of words. The choices of
vector representation can be term frequency, or its variants
such as TFIDF, or binary occurrence of words. We use qj

and dj to denote the jth feature dimension of a query q and
a document d respectively.

2.1 The Algorithm
Given observation v which denotes input q or d, we con-
sider nonlinear models Φ : R

D 7→ R
C which map word fea-

tures into a latent semantic space and output C dimensional
embedding h = Φ(v). Here, C < D in typical cases of di-
mension reduction. It is worthy to notice q and d are het-
erogeneous in real data. Queries are usually much shorter
and have different word distributions, compared to docu-
ments. However, for simplicity, we deem a query as a spe-
cial type of document and model q and d in a uniform way
using the same Φ(·). This is typically useful in the setting of
document-document retrieval. One may also easily general-
ize our model to common cases of query-document retrieval,
e.g., use different Φ(·) for q and d respectively.

To model the degree of relevance between q and d, we com-
pute the similarity of their latent embeddings using the fol-
lowing bilinear model:

s(q,d) = Φ(q)⊤AΦ(d) (1)

where A ∈ R
C×C is the weight matrix to be learned. With-

out loss of generality, we would like the learning power of
A to be absorbed by Φ(·), and set A as identity matrix I .
The model hence can be simplified as

s(q,d) = Φ(q)⊤Φ(d) (2)

To learn Φ(·), we choose a multi-layer deep neural network
(DNN) pre-trained with stacked Restricted Boltzmann Ma-

chines (RBMs), which is deemed to have more representa-
tional power of learning semantics in text than a single RBM
or other single-layer learning machines [13]. RBM is an undi-
rected graphical model with visible units and hidden units
bipartitely connected. A L-layer DNN with stacked RBMs
takes observation v = h0 as input in the first layer, and
learns hidden units hk for k = 1, 2, · · · , L in each of L layers
respectively. The word features pass through DNN and get
digested layer by layer to represent semantics in this pro-
cess. This is to simulate the way of human interpretation of
semantics in a document, where DNN models the function
of human brain, as there is intriguing connection between
them [9]. The learned hidden units hL in the top layer is
used as the final semantic representation, that is Φ(v) = hL.

2.2 Restricted Boltzmann Machines
During the pre-training of the DNN as stacked RBMs, each
RBM takes hk−1 as input, and output hk which is fur-
ther used as input for layer k + 1. The joint probability
p(hk−1,hk) of RBM in each layer is defined as

p(hk−1
, hk) =

1

Z
exp(−E(hk−1

,hk)) (3)

where Z is a partition function defined as the sum of
exp(−E(hk−1,hk) over all possible configurations. With
stochastic binary units modeling both the input and the
output in RBM, the energy term E(hk−1,hk) is defined as

E(hk−1
,hk) = −

X

ij

W
k
ijh

k−1
i h

k
j −

X

i

h
k−1
i b

k
i −

X

j

h
k
j c

k
j

(4)
where Wk is the weight matrix for layer k, and bk and ck

are the bias vectors. Given the hidden states hk in layer
k, the states hk−1

j are conditionally independent. We have

p(hk−1|hk) =
Q

i p(hk−1
i |hk), and

p(hk−1
i = 1|hk) = σ(bk

i +
X

j

W
k
ijh

k
j) (5)

where σ(x) = 1
1+exp(−x)

is the sigmoid function. p(hk|hk−1)

has the similar form p(hk|hk−1) =
Q

j p(hk
j |h

k−1), and the

conditional probabilities p(hk
j = 1|hk−1) are expressed as

p(hk
j = 1|hk−1) = σ(ck

j +
X

i

W
k
ijh

k−1
i) (6)

We can also model output hk as Gaussian latent variables
[23]. This unsupervised model represents an undirected al-
ternative of pLSI [11]. The energy function is given by:

E(hk−1
, hk) = −

X

ij

W
k
ijh

k−1
i

hk
j

σk
j

−
X

i

h
k−1
i b

k
i −

X

j

(hk
j − ck

j)2

2(σk
j)2

(7)
where σk

j is the variance of hk
j . And the conditional proba-

bilities can be rewritten as:

p(hk−1
i = 1|hk) = σ(bk

i +
X

j

W
k
ijh

k
j) (8)

p(hk
j = h|hk−1) = N (h, c

k
j + σ

k
j

X

i

W
k
ijh

k−1
i , σ

k
j) (9)

where N (x,µ, σ) = 1

σ
√

2π
exp(− (x−µ)2

2σ2) is a Gaussian distri-

bution with mean µ and variance σ.

The marginal distribution over hk−1 is given by

p(hk−1) =
1

Z

X

hk

exp(−E(hk−1
,hk)) (10)

To learn the parameters Θ = {Wk}L
k=1, we use the greedy

procedure proposed in [8] to train the DNN in a bottom-
up layer-wise manner. Gradient ascent is used to maxi-
mize the log-likelihood of p(hk−1) and we get the gradients
∂logp(hk−1)

∂W k
ij

. For binary hk, the parameter updates are given

by:

∆W
k
ij = ǫ(< h

k−1
i h

k
j >data − < h

k−1
i h

k
j >model) (11)

were ǫ is the learning rate, < · >data defines the expectation
with respect to the data distribution and < · >model is the
expectation with respect to the distribution defined by the
model. For Gaussian hk, the updates become:

∆W
k
ij = ǫ(< h

k−1
i

hk
j

σk
j

>data − < h
k−1
i

hk
j

σk
j

>model) (12)

In practice, we fix variance at (σk
j)2 = 1 for all units hk

j , and
in this case Eq. (12) becomes the same as defined in Eq.
(11).

To avoid computing < · >model which cannot be achieved
analytically in less than exponential time, contrastive diver-
gence can be used [7]:

∆W
k
ij = ǫ(< h

k−1
i h

k
j >data − < h

k−1
i h

k
j >T) (13)

where we run T steps Gibbs sampling to approximate the
expectation with respect to model distribution. In practice,
large values of T are seldom needed and even T = 1 can
approximate maximum likelihood learning well [8].

2.3 Discriminative Fine-tuning
While using RBMs [18, 12, 22] in deep architecture can ex-
ploit the learning power of generative models, there is little
supervised information used. In real search settings, we may
consider human labeling of relevant/irrelevant documents
with respect to a query. However, it maybe expensive to ob-
tain label information. Search query logs are another valu-
able resource which is abundantly available. Typically, there
are user feedback information in search sessions recorded.
We can deem the web documents that were clicked-through
by users are more relevant than those were not.

Formally, we consider training data in the form of tuples t =
(q,d+,d−), where d+ is a relevant document with respect to
a query q, and d− is an irrelevant document. After training
the DNN with RBMs, we have Φ(·) pre-trained. In this
discriminative learning stage, we impose the ranking score
s(q,d+) should be sufficiently larger than s(q,d−) so that
d+ would be ranked higher than d−. We penalize those
tuples that are not ranked in the correct order, and define
the margin ranking loss function [20] as:

F =
X

t

f(t) =
X

t=(q,d+,d−)

max(0, 1 − s(q,d+) + s(q,d−)),

(14)
where max(0, x) defines the hinge loss function. The op-
timal parameters Θ∗ = {Wk}L

k=1 should minimize F . To

learn the model, we use stochastic gradient descent. Given
a random sample t, the procedure updates Wk using

∆W
k
ij = ǫ

∂f(t)

∂W k
ij

(15)

If the sample t yields 1− s(q,d+)+ s(q,d−) <= 0, f(t) = 0
and updating the weight matrices is not needed. But if it
results in a margin violation that 1 − s(q,d+) + s(q,d−) >
0, we have to update the weights. In the case of margin
violation, we may rewrite f(t) as

f(t) = 1 − s(q,d+) + s(q,d−) (16)

Substituting s(q,d+) and s(q,d−) with Eq. (2), we have

f(t) = 1 − Φ(q)⊤Φ(d+) + Φ(q)⊤Φ(d−) (17)

We update {Wk}L
k=1 layer by layer in top-down manner.

Let hL(·) = Φ(·) denote the hidden representation output in
top layer (i.e., layer L). Eq. (17) can be rewritten as

f(t) = 1 − (hL(q))⊤hL(d+) + (hL(q))⊤hL(d−) (18)

Let HL = [hL(q),hL(d+),hL(d−)]⊤ be the representation
matrix denoting the output of t = (q,d+,d−) on the top
layer of DNN. The derivatives of f(t) with respect to HL is
given by:

∂f(t)

∂HL
= [hL(d−) − hL(d+)

,−hL(q)
, hL(q)]⊤ ≡ ∆L (19)

We then update WL in the top layer. Using chain rule, we

compute the derivatives ∂f(t)

∂W L
ij

∂f(t)

∂WL
=

X

mj

∆L
mj

∂∆L
mj

∂WL
(20)

where ∆L
mj is the (m, j)th element of ∆L. Using binary units

for output on the top layer, the above computation can be
obtained:

∂f(t)

∂WL
= (HL−1)⊤(∆L ◦ HL ◦ (1 − HL)) (21)

where HL−1 is the representation matrix for the output on
layer L − 1, and ◦ denotes the Hadamard (element-wise)
product. If we model the output using Gaussian units on
the top layer, we have

∂f(t)

∂WL
= (HL−1)⊤∆L (22)

The derivatives ∂f(t)

∂Wk for k = L−1, L−2, · · · , 1 are computed
layer-wise in top down manner using back-propagation algo-
rithm. We first compute the derivatives of f(t) with respect
to the output Hk on layer k

∂f(t)

∂Hk
=

X

mj

∆k+1
mj

∂∆k+1
mj

∂Hk
(23)

which uses the derivatives propagated from the upper layer

(i.e., layer k + 1) ∂f(t)

∂Hk+1 ≡ ∆k+1. The computation results
of the above equation are

∂f(t)

∂Hk
= (∆k+1 ◦Hk+1 ◦ (1−Hk+1))(Wk+1)⊤ ≡ ∆k (24)

∂f(t)

∂Hk
= ∆k+1(Wk+1)⊤ ≡ ∆k (25)

for binary output and Gaussian output respectively. To

compute the derivatives ∂f(t)

∂Wk =
P

mj ∆k
mj

∂∆k
mj

∂Wk , we may

reuse Eq. (21) and Eq.(22) for a specific layer (layer k).

3. RELATIONSHIP TO OTHER MODELS
3.1 Siamese networks
The proposed model can be viewed as a Siamese network [5]
with pretraining of RBM. As proved in deep learning liter-
ature, such pretraining is crucial in many cases, especially
when dimensionality of the problem is large.

3.2 Supervised Semantic Indexing
Supervised Semantic Indexing (SSI [1]) learns a ranking score
s(q,d) in the form

s(q,d) = q⊤Ad, (26)

where A is the weight matrix. Low-rank decomposition is
used to approximate A. If we consider a symmetric decom-
position in the form A = U⊤U+ I, s(q,d) can be rewritten
as:

s(q,d) = q⊤(U⊤U + I)d = (Uq)⊤(Ud) + q⊤d. (27)

The right term q⊤d represents the similarity of q and d in
original word space. If we use normalized TFIDF vectors as
inputs, q⊤d is equivalent to the TFIDF scheme using co-
sine similarity. The left term can be deemed as to firstly
learn linear embeddings for q and d using transformation
matrix U, then measure their similarity based on the em-
bedding. Our DSE measures similarity on embeddings in
latent space as well, but the embeddings are achieved us-
ing nonlinear transformation Φ(·) which have more learning
power for model word semantics.

3.3 Deep Match
Deep match [14] is a ranking algorithm using deep neural
networks. This work features a deep network structure that
connections between layers are learned from a clever clus-
tering algorithm using LDA. In comparison, our work falls
on classical pretraining-finetuning style of deep learning.

3.4 Deep Ranknet
Deep ranknet [21] is an effort to extend ranknet [4] to use
deep neural networks. Unlike the other works mentioned
above, ranknet doesn’t generated individual embeddings for
a query and a document, but make features directly us-
ing both query and document (e.g BM25 similarity between
query and document).

4. EXPERIMENTS
For evaluation, we compare DSE with Supervised Semantic
Indexing (SSI [1]) which significantly outperforms other un-
supervised algorithms such as LSI and TFIDF scheme. For
that, we used the same wikipedia link prediction dataset
used in [1]. We added NIPS conference dataset to look into
more details of DSE, e.g., when training set is small.

It will be good to compare to a dataset that is more common
in IR community. However, the benchmark set like LETOR

or TREC usually only provide similarity or statistics fea-
tures (e.g. BM25 for query and title of doc). The goal of
our algorithm is to learn from low level features like words
without much feature engineering, which will it more adap-
tive to new tasks, especially when the query and documents
are of different modality (e.g. Image retrieval).

Also note that comparison to a VSM model using TFIDF
was done in [1] that showed superiority of SSI. Since we out-
perform SSI, we skipped baseline of BM25, since BM25 and
TFIDF are similar in principle, and in many experimental
evaluations.

4.1 Parameter Setting of DSE
We train DSE typically with an architecture D− 1

2
D− 1

2
D−

D − C, where D is the feature dimensionality and C the
dimensionality of the resulting embeddings. We use binary
units in first three layers of DSE and linear units with Gaus-
sian noise in the top layer. The weights were initialized with
small random values sampled from a normal distribution.
The weights are updated using a learning rate in the range
of [0.01, 1], a momentum of 0.9 to speed up convergence and
a weight decay rate of 0.0001 to avoid overfitting.

4.2 NIPS Conference Papers
We first validate our method on a small data of scientific
articles. We use the NIPS 0-12 dataset1, which contains
papers from the NIPS conferences between 1987 and 1999.
The papers are organized into 9 sections according to dif-
ferent scientific fields. We randomly sample 50 papers from
each section and use them for the ranking task. Each paper
is deemed as relevant to another if both of them belong to
the same section, and otherwise they are not relevant. We
use binary features of word-document occurrence. For pre-
processing, we remove the words that occur in more than
200 documents and less than 50 documents. Those words
are either two common without any discriminative informa-
tion or too specific (not generalize well). This results in
1082 distinct words in vocabulary, and we use top 200 of
them to show more clearly the capability difference between
DSE and SSI. We generate all possible tuples (q,d+, d−)
for the dataset. To train the models, we use tuples with a
portion of randomly sampled distinct positive links (q,d+).
We first use 40% of all positive links to train DSE with a
architecture 200− 100− 100− 200−C with C = 2, and SSI
with same 2 dimensional embeddings as output. We visual-
ize the resulting 2 dimensional embeddings for each model in
Fig. 1. DSE can easily distinguish each section of papers in
the latent semantic space, while the class boundaries in SSI
are not that clear. It should be noted that as we increase
the number of word features to 1082, SSI can also achieve
perfect class boundary. But it is clear that DSE has bet-
ter capability to model the supervised signal from a small
number of input features, than a linear model like SSI.

To get a more complete picture of their performance dif-
ference, we vary the portion of positive links (q,d+) for
training in the range of {5%, 10%, 20%, 40%}, and the di-
mensionality of embeddings C ∈ {2, 5, 10, 20, 40}. We re-
port the test results of DSE and SSI in Table 1 respectively.
DSE significantly outperforms SSI when using limited word

1http://www.stats.ox.ac.uk/~teh/data.html

1

2

3

4

5

6

7

8

9

(a) DSE

1
2
3
4
5
6
7
8
9

(b) SSI

Figure 1: Embeddings of the NIPS papers with the dimensionality C = 2, produced by DSE and SSI using
40% distinct positive links for training. The section numbers of the papers are shown as well.

Table 1: Test results (rank loss %) on NIPS data
DSE C=2 C=5 C=10 C=20 C=50 SSI C=2 C=5 C=10 C=20 C=50

40% train 0 0 0 0 0 40% train 13.6 7.4 6.3 9.2 14.2
20% train 0 0 0 0 0 20% train 13.3 9.5 9.4 15.5 24.9
10% train 0.01 0 0.03 0.15 1.39 10% train 16.2 11.5 14.9 22.8 29.5
5% train 0.64 0.85 3.22 8.08 17.47 5% train 20.4 19.9 25.6 31.9 35.7

features. Using just a small percentage (e.g., 10% or 20%)
of training data, DSE can achieve near zero ranking loss in
test. Both methods tend to overfit with little training data
(e.g., < 5%) and/or higher dimensionality, but the case in
SSI is a lot worse. We also notice that when embedding
dimension gets very small, the testing error of SSI also in-
crease. As we found out, it is because the training errors
were also high, which is a good indicator of limitation of its
learning capability. In other words, SSI only exploits the lin-
earity to induce the latent semantic embeddings and suffer
from scarcity of word features, while DSE can capture the
nonlinear interaction between word features to induce the
latent semantic embeddings, hence alleviate the problem of
feature scarcity. With more training data, both DSE and
SSI perform better.

To provide anecdotal evidence that DSE can infer semantic
relationships, we use each single word as input, and find K-
nearest-neighbors of the word in terms of latent embeddings
output by the first layer of DSE. Table 2 shows some exam-
ples, where we select 40 words such as “images”, “neuron”,
“classification”, “propagation” and “maximum” for illustra-
tion. Using DSE, we can identify words that are similar
in semantics or they are part of a phrase. For example,
when “propagation” is taken as input, the probable words
associated to it are “back”, “class”, “distributed”, “gradient”
and “classifier”. They are indeed relevant in neural network
literature. We may also automatically identify synthetic
synonyms. For example, given the word “neuron”, we have
“neuron”as the most relevant word. Other examples include
“class : classes”, “representation : representations”, “images
: image”, “node : nodes”, “cells : cell” and so on.

100K 1M 10M 100M
1

2

3

4

5

6

7

of training tuples

ra
nk

 lo
ss

 %

DSE+TFIDF
DSE
SSI(U⊤U + I)

SSI(U⊤U)

TFIDF

Figure 2: Test results using top 1000 most frequent
words.

4.3 Wikipedia Web Pages
We then apply DSE to document ranking for a large-scale
Wikipedia dataset, which consists of 1, 828, 645 English Wikipedia
web pages with 24, 667, 286 links between them. We deem
two documents with a link are relevant, and otherwise they
are irrelevant. We randomly generate 70/30 splits of the
links. The models are trained and validated on the 70%
data, and test results on the remaining 30% data are re-
ported. Figure 2 shows the test results using top 1,000 most
frequent words, where the DNN architecture is empirically
tuned as 1000-500-500-1000-100, and the normalized TFIDF
features are used as input in the first layer of DNN. We re-
port test results using different number of randomly gener-
ated training tuples. We compare DSE with SSI, and use
TFIDF scheme as baseline. When using a small number of

Table 2: Interpretion of semantic relationships between words on NIPS data. We use each word as input,
then find 5-nearest neighbors for each word on the semantic embedding output by the first layer of DSE.

WORD 5 Nearest Neighbors

propagation back class distributed gradient classifier
recognition classification word classifier mixture speech

neuron neurons synaptic firing continuous frequency
class classes classifier finite multi analog

matrix mixture em class basis vectors
visual image cortex frequency spatial synaptic
feature classifier features cortex frequency measure
cells cell firing spatial frequency circuit
field receptive spatial variable images cells

response stimulus frequency orientation analog phase
representation representations firing analog images statistical

images image orientation features position visual
generalization classifier receptive classification dimension vectors

speech signals multi markov word frequency
states markov likelihood circuit orientation dynamics

gradient vectors propagation dimension class simulations
activity stimulus synaptic firing frequency signals
variables variable regression likelihood sample bayesian
distance vectors position bayesian specific regression

connections synaptic continuous firing net recurrent
synaptic firing approximation sample frequency connections

node nodes spatial bayesian net tree
maximum likelihood probabilities mixture classification regression

components component mixture vectors density continuous
outputs vol multi continuous orientation receptive
back propagation continuous classifier circuit multi

convergence regression vectors em long equations
analog circuit class equations frequency dimension

properties stimulus frequency type cells firing
likelihood mixture probabilities bayesian log frequency
component components vectors orientation representation mixture
procedure synaptic firing generalization threshold dynamics
adaptive mixture search cells likelihood receptive
mixture likelihood em variance gaussian multi
action firing search position scale synaptic
circuit analog cells type firing feedback

stimulus frequency orientation firing filter response
bayesian likelihood probabilities prior mixture spatial

probabilities likelihood bayesian markov mixture type
simulations simulation firing net synaptic recurrent

training samples (e.g., 100K tuples), DSE does not perform
well, and tends to overfit. However, with sufficient training
tuples, DSE consistently outperforms SSI. A linear combi-
nation of DSE output and the orginal TFIDF yields even
larger performance gain. Both supervised learning methods
(DSE and SSI) perform significantly better than the baseline
TFIDF scheme, which does not use any label information.

We also investigate how the number of word features in the
form of TFIDF affect the performance of DSE. Table 3 shows
not only the linear embedding model SSI, but also a non-
linear ranking model PSI [2]. In SSI and PSI, we use the
same embedding dimension of 100. Note PSI has two sets
of embeddings for documents in the 3-way dotproduct (see
the paper for details). We can see that that DSE outper-
forms SSI and PSI by a large margin when using top 500,
1000, 1500 features. The rank loss decreases as the number
of input features increase.

We also observe the convergence of DSE is slow using a
large number of word features (e.g., top 5,000 words) in

Table 3: Test results (rank loss) on Wikipedia data
using different number of top frequent words

of words 500 1000 1500
DSE % 2.10 1.03 0.92
SSI % 3.79 2.19 1.50
PSI % 2.35 1.50 1.20

the form of TFIDF. Instead, we exploit binary features of
word-document occurrence which works well in practice in
terms of convergence time, compared to the TFIDF features.
With 100M tuples for training, the ranking loss of DSE using
top 5,000 word features is 0.56%, while SSI yields a value
of 0.76%, and TFIDF scheme has a ranking loss 2.96%. We
found the performance of DSE using top 5,000 word features
is significantly better than TFIDF scheme using even all
the 2.5 million words which has a ranking loss 0.84%. This
has practical implication that DSE may use a much reduced
size of word vocabulary for indexing, while preserving the

accuracy of document retrieval.

5. CONCLUSION
In this paper, we consider using deep architecture with RBMs
to model the semantics in text document. We proposed Deep
Semantic Embedding (DSE), which achieves nonlinear em-
beddings in latent semantic space for word inputs by re-
specting similarity of query-document pairs. DSE is trained
in supervised learning on tuples with relevant and irrelevant
document pairs given a query, and capable to preserving
discriminative features for ranking documents. Test results
on ranking scientific articles and Wikipedia web pages show
the effectiveness of DSE. For future work, we would like
to explore rectified linear units [17] and dropout [10] meth-
ods to speed up convergence of our model and alleviate co-
adaptation of word features.

6. REFERENCES
[1] B. Bai, J. Weston, D. Grangier, R. Collobert,

K. Sadamasa, Y. Qi, O. Chapelle, and K. Weinberger.
Supervised semantic indexing. In Proceedings of the
18th ACM conference on Information and knowledge
management, pages 187–196. ACM, 2009.

[2] B. Bai, J. Weston, D. Grangier, R. Collobert,
K. Sadamasa, Y. Qi, C. Cortes, and M. Mohri.
Polynomial semantic indexing. In NIPS, pages 64–72,
2009.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. Advances in neural information
processing systems, 1:601–608, 2002.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In ICML 2005, pages
89–96, New York, NY, USA, 2005. ACM Press New
York, NY, USA.

[5] S. Chopra, R. Hadsell, and Y. LeCun. Learning a
similarity metric discriminatively, with application to
face verïıňA֒cation. In CVPR, 2005.

[6] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. JASIS, 41(6):391–407, 1990.

[7] G. E. Hinton. Training products of experts by
minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

[8] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast
learning algorithm for deep belief nets. Neural
computation, 18(7):1527–1554, 2006.

[9] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, 2006.

[10] G. E. Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature
detectors. arXiv preprint arXiv:1207.0580, 2012.

[11] T. Hofmann. Probabilistic latent semantic indexing. In
Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 50–57. ACM, 1999.

[12] H. Larochelle and S. Lauly. A neural autoregressive
topic model. In NIPS, pages 2717–2725, 2012.

[13] N. Le Roux and Y. Bengio. Representational power of
restricted boltzmann machines and deep belief

networks. Neural Computation, 20(6):1631–1649, 2008.

[14] Z. Lu and H. Li. A deep architecture for matching
short texts. 2013.

[15] M. R. Min, D. A. Stanley, Z. Yuan, A. J. Bonner, and
Z. Zhang. A deep non-linear feature mapping for
large-margin knn classification. In W. W. 0010,
H. Kargupta, S. Ranka, P. S. Yu, and X. Wu, editors,
ICDM, pages 357–366. IEEE Computer Society, 2009.

[16] M. R. Min, L. van der Maaten, Z. Yuan, A. J. Bonner,
and Z. Zhang. Deep supervised t-distributed
embedding. In J. FÃijrnkranz and T. Joachims,
editors, ICML, pages 791–798. Omnipress, 2010.

[17] V. Nair and G. E. Hinton. Rectified linear units
improve restricted boltzmann machines. In
Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807–814, 2010.

[18] R. Salakhutdinov and G. E. Hinton. Replicated
softmax: an undirected topic model. In NIPS,
volume 22, pages 1607–1614, 2009.

[19] G. Salton and M. J. McGill. Introduction to modern
information retrieval. 1983.

[20] A. J. Smola. Advances in large margin classifiers. MIT
press, 2000.

[21] Y. Song, H. Wang, and X. He. Adapting deep ranknet
for personalized search. In WSDM, 2014.

[22] N. Srivastava, R. R. Salakhutdinov, and G. E. Hinton.
Modeling documents with deep boltzmann machines.
In UAI, 2013.

[23] M. Welling, M. Rosen-Zvi, and G. E. Hinton.
Exponential family harmoniums with an application
to information retrieval. In Nips, volume 17, pages
1481–1488, 2004.

