
Expected Policy Gradients

Kamil Ciosek and Shimon Whiteson
Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford OX1 3QD
{kamil.ciosek,shimon.whiteson}@cs.ox.ac.uk

Abstract

We propose expected policy gradients (EPG), which unify
stochastic policy gradients (SPG) and deterministic policy gra-
dients (DPG) for reinforcement learning. Inspired by expected
sarsa, EPG integrates across the action when estimating the
gradient, instead of relying only on the action in the sampled
trajectory. We establish a new general policy gradient theorem,
of which the stochastic and deterministic policy gradient the-
orems are special cases. We also prove that EPG reduces the
variance of the gradient estimates without requiring determin-
istic policies and, for the Gaussian case, with no computational
overhead. Finally, we show that it is optimal in a certain sense
to explore with a Gaussian policy such that the covariance
is proportional to eH , where H is the scaled Hessian of the
critic with respect to the actions. We present empirical results
confirming that this new form of exploration substantially out-
performs DPG with the Ornstein-Uhlenbeck heuristic in four
challenging MuJoCo domains.

Introduction
Policy gradient methods (Sutton et al., 2000; Peters and
Schaal, 2006, 2008b; Silver et al., 2014), which optimise
policies by gradient ascent, have enjoyed great success in
reinforcement learning problems with large or continuous
action spaces. The archetypal algorithm optimises an actor,
i.e., a policy, by following a policy gradient that is estimated
using a critic, i.e., a value function.

The policy can be stochastic or deterministic, yielding
stochastic policy gradients (SPG) (Sutton et al., 2000) or
deterministic policy gradients (DPG) (Silver et al., 2014).
The theory underpinning these methods is quite fragmented,
as each approach has a separate policy gradient theorem
guaranteeing the policy gradient is unbiased under certain
conditions.

Furthermore, both approaches have significant shortcom-
ings. For SPG, variance in the gradient estimates means that
many trajectories are usually needed for learning. Since gath-
ering trajectories is typically expensive, there is a great need
for more sample efficient methods.

DPG’s use of deterministic policies mitigates the problem
of variance in the gradient but raises other difficulties. The
theoretical support for DPG is limited since it assumes a

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

critic that approximates ∇aQ when in practice it approxi-
mates Q instead. In addition, DPG learns off-policy1, which
is undesirable when we want learning to take the cost of ex-
ploration into account. More importantly, learning off-policy
necessitates designing a suitable exploration policy, which
is difficult in practice. In fact, efficient exploration in DPG
is an open problem and most applications simply use inde-
pendent Gaussian noise or the Ornstein-Uhlenbeck heuristic
(Uhlenbeck and Ornstein, 1930; Lillicrap et al., 2015).

In this paper, we propose a new approach called expected
policy gradients (EPG) that unifies policy gradients in a way
that yields both theoretical and practical insights. Inspired
by expected sarsa (Sutton and Barto, 1998; van Seijen et al.,
2009), the main idea is to integrate across the action selected
by the stochastic policy when estimating the gradient, instead
of relying only on the action selected during the sampled
trajectory.

EPG enables two theoretical contributions. First, we estab-
lish a number of equivalences between EPG and DPG, among
which is a new general policy gradient theorem, of which
the stochastic and deterministic policy gradient theorems are
special cases. Second, we prove that EPG reduces the vari-
ance of the gradient estimates without requiring deterministic
policies and, for the Gaussian case, with no computational
overhead over SPG.

EPG also enables a practical contribution: a principled
exploration strategy for continuous problems. We show that
it is optimal in a certain sense to explore with a Gaussian
policy such that the covariance is proportional to eH , where
H is the scaled Hessian of the critic with respect to the
actions. We present empirical results confirming that this new
approach to exploration substantially outperforms DPG with
Ornstein-Uhlenbeck exploration in four challenging MuJoCo
domains.

Background
A Markov decision process is a tuple (S,A,R, p, p0, γ)
where S is a set of states, A is a set of actions (in practice
either A = Rd or A is finite), R(s, a) is a reward function,
p(s′ | a, s) is a transition kernel, p0 is an initial state distri-
bution, and γ ∈ [0, 1) is a discount factor. A policy π(s, a)

1We show in this paper that, in certain settings, off-policy DPG
is equivalent to EPG, our on-policy method.

ar
X

iv
:1

70
6.

05
37

4v
2

 [
st

at
.M

L
]

 1
1

Se
p

20
17

is a distribution over actions given a state. We denote tra-
jectories as τπ = (s0, a0, r0, s1, a1, r1, . . .), where s0 ∼ p0,
at ∼ π(st−1, ·) and rt is a sample reward. A policy π induces
a Markov process with transition kernel pπ(s′ | s) =

∫
a
π(a |

s)p(s′ | a, s). We assume the induced Markov process is er-
godic with a single invariant measure defined for the whole
state space. The value function is V π = Eτ [

∑
i γiri] where

actions are sampled from π. The Q-function is Qπ(s, a) =
ER [r | s, a] + γEp(s |s) [V π(s′) | s] and the advantage func-
tion is Aπ(s, a) = Qπ(s, a) − V π(s). An optimal policy
maximises the total return J =

∫
s
p0(s)V π(s). Since we

consider only on-policy learning with just one current policy,
we drop the π super/subscript where it is redundant.

If π is parameterised by θ, then stochastic policy gradients
(SPG) (Sutton et al., 2000; Peters and Schaal, 2006, 2008b)
perform gradient ascent on∇J , the gradient of J with respect
to θ (gradients without a subscript are always with respect to
θ). For stochastic policies, we have:

∇J =
∫
s
dρ(s)

∫
a
dπ(a | s)∇ log π(a | s)(Q(s, a) + b(s)),

(1)

where ρ is the discounted-ergodic occupancy measure, de-
fined in the supplement, and b(s) is a baseline, which can
be any function that depends on the state but not the action,
since

∫
a
π(a | s)∇ log π(a | s)b(s) = 0. Typically, (1) is

approximated from samples from a trajectory τ of length T :

∇̂J =
∑T
t=0 γ

t∇ log π(at | st)(Q̂(st, at) + b(st)). (2)

If the policy is deterministic, we can use deterministic policy
gradients (Silver et al., 2014) instead:

∇J =
∫
s
dρ(s)∇µ∇aQ(s, µ). (3)

This update is then approximated using samples:

∇̂J =
∑T
t=0 γ

t∇µ∇aQ̂(st, µt). (4)

Since the policy is deterministic, the problem of exploration
is addressed using an external source of noise, typically
modeled using a zero-mean Ornstein-Uhlenbeck (OU) pro-
cess (Uhlenbeck and Ornstein, 1930; Lillicrap et al., 2015)
parametrized by ψ and σ:

ni ← −ni−1ψ +N (0, σI) a ∼ π(s) + ni. (5)

In (2) and (4), Q̂ is a critic that approximates Q and can
be learned by sarsa (Rummery and Niranjan, 1994; Sutton,
1996):

Q̂(st, at)←Q̂(st, at) +

α
[
rt+1 + γQ̂(st+1, at+1)− Q̂(st, at)

]
. (6)

Alternatively, we can use expected sarsa (Sutton and Barto,
1998; van Seijen et al., 2009), which marginalises out at+1,
the distribution over which is specified by the known policy,
to reduce the variance in the update:

Q̂(st, at)← Q̂(st, at) +

α
[
rt+1 + γ

∫
a
dπ(a | s)Q̂(st+1, a)− Q̂(st, at)

]
. (7)

We could also use advantage learning (Baird and others,
1995) or LSTDQ (Lagoudakis and Parr, 2003). If the critic’s
function approximator is compatible, then the actor, i.e., π,
converges (Sutton et al., 2000).

Instead of learning Q̂, we can set b(s) = −V (s) so
that Q(a, s) + b(s) = A(s, a) and then use the TD error
δ(r, s′, s) = r + γV (s′)− V (s) as an estimate of A(s, a):

∇̂J =
∑T
t=0 γ

t∇ log π(at | st)(r + γV̂ (s′)− V̂ (s)), (8)

where V̂ (s) is an approximate value function learned us-
ing any policy evaluation algorithm. (8) works because
E [δ(r, s′, s) | a, s] = A(s, a), i.e., the TD error is an un-
biased estimate of the advantage function. The benefit of this
approach is that it is sometimes easier to approximate V than
Q and that the return in the TD error is unprojected, i.e., it
is not distorted by function approximation. However, the TD
error is noisy, introducing variance in the gradient.

To cope with this variance, we can reduce the learning rate
when the variance of the gradient would otherwise explode,
using, e.g., Adam (Kingma and Ba, 2014), natural policy
gradients (Kakade, 2002; Amari, 1998; Peters and Schaal,
2008a) or Newton’s method (Furmston and Barber, 2012).
However, this results in slow learning when the variance is
high.

We can also eliminate all variance caused by the policy at
the cost of making the policy deterministic and using the DPG
update, which usually necessitates performing off-policy ex-
ploration. EPG, presented below, reduces to DPG in many
useful cases, while providing a principled way to explore and
also allowing for stochastic policies.

Yet another way to eliminate variance in the actor is not
to have an actor at all, instead selecting actions soft-greedily
with respect to Q̂ learned using sarsa. This is trivial for dis-
crete actions and can also be done with a one-step Newton’s
method for Q-functions that are quadric in the actions (Gu et
al., 2016b).

Expected Policy Gradients
In this section, we propose expected policy gradients (EPG).

Main Algorithm
First, we introduce IQπ (s) to denote the inner integral in (1):

∇J =

∫
s

dρ(s)

∫
a

dπ(a | s)∇ log π(a | s)(Q(s, a) + b(s))︸ ︷︷ ︸
IQπ (s)

=

∫
s

dρ(s)IQπ (s). (9)

This suggests a new way to write the approximate gradient:

∇̂J =

T∑
t=0

γtÎQ̂π (st)︸ ︷︷ ︸
gt

, (10)

where ÎQ̂π (s) is some approximation to IQ̂π (s) =
∫
a
dπ(a |

s)∇ log π(a | s)(Q̂(a, s) + b(s)). This approach makes ex-
plicit that one step in estimating the gradient is to evaluate

an integral to estimate IQ̂π (s). The main insight behind EPG
is that, given a state, IQ̂π (s) is expressed fully in terms of
known quantities. Hence we can manipulate it analytically to
obtain a formula or we can just compute the integral using any
numerical quadrature if an analytical solution is impossible.

SPG as given in (2) performs this quadrature using a simple
one-sample Monte Carlo method. However, relying on such
a method is unnecessary. In fact, the actions used to interact
with the environment need not be used at all in the evaluation
of ÎQπ (s) since a is a bound variable in the definition of IQπ (s).
The motivation is thus similar to that of expected sarsa but
applied to the actor’s gradient estimate instead of the critic’s
update rule. EPG, shown in Algorithm 1, uses (10) to form
a policy gradient algorithm that repeatedly estimates ÎQπ (s)
with an integration subroutine.

Algorithm 1 Expected Policy Gradients
1: s← s0, t← 0
2: initialise optimiser
3: while not converged do
4: gt ← γt DO-INTEGRAL(Q̂, s, πθ)
5: . We have

∑
t gt = ∇̂J as in (10)

6: θ ← θ + optimiser.UPDATE(gt)
7: a ∼ π(s, ·)
8: s′, r ← simulator.PERFORM-ACTION(a)
9: Q̂.UPDATE(s, a, r, s′)

10: t← t+ 1
11: s← s′

12: end while

EPG has benefits even when an analytical solution is not
possible: if the action space is low dimensional, numerical
quadrature is cheap; if it is high dimensional, it is still often
worthwhile to balance the expense of simulating the system
with the cost of quadrature. Actually, even in the extreme case
of expensive quadrature but cheap simulation, the limited re-
sources available for quadrature could still be better spent
on EPG with smart quadrature than SPG with simple Monte
Carlo. One of the motivations of DPG was precisely that
the simple one-sample Monte-Carlo quadrature implicitly
used by SPG often yields high variance gradient estimates,
even with a good baseline. To see why, consider Figure 1
(left). A simple Monte Carlo method evaluates the integral
by sampling one or more times from π(a | s) (blue) and
evaluating ∇µ log π(a | s)Q(a, s) (red) as a function of a. A
baseline can decrease the variance by adding a multiple of
∇µ log π(a | s) to the red curve, but the problem remains that
the red curve has high values where the blue curve is almost
zero. Consequently, substantial variance persists, whatever
the baseline, even with a simple linear Q-function, as shown
in Figure 1 (right). DPG addressed this problem for determin-
istic policies but EPG extends it to stochastic ones.

Relationship to Other Methods

EPG has some similarities with VINE sampling (Schulman
et al., 2015), which uses Monte Carlo quadrature with many

−1.0 −0.5 0.0 0.5 1.0
a

0

5

10

15

−0.70 −0.65 −0.60 −0.55 −0.50 −0.45 −0.40 −0.35 −0.30
0

1

2

Figure 1: At left, π(a | s) for a Gaussian policy at a given
state (blue) and ∇µ log π(a | s)Q(a, s) for Q = 1

2 + 1
2a

(red). At right, the variance of a simple single-sample Monte
Carlo estimator as a function of the baseline. In a simple
multi-sample Monte Carlo method, the variance would go
down as the square root of the number of samples.

samples.2 However, the example in Figure 1 shows that even
with a computationally expensive many-sample Monte Carlo
method, the problem of variance remains.

EPG is also related to variance minimisation techniques
that interpolate between two estimators, e.g., (Gu et al.,
2016a, Eq. 7) is similar to Corollary 4. However, EPG uses
a quadric (not linear) approximation to the critic, which is
crucial for exploration. Furthermore, it completely eliminates
variance in the inner integral, as opposed to just reducing it.

The idea behind EPG was also independently and concur-
rently developed as Mean Actor Critic (Asadi et al., 2017),
though only for discrete actions and without a supporting
theoretical analysis.

Gaussian Policies
EPG is particularly useful when we make the common as-
sumption of a Gaussian policy: we can then perform the in-
tegration analytically under reasonable conditions. We show
below (see Lemma 3) that the update to the policy mean com-
puted by EPG is equivalent to the DPG update. Moreover, a
simple formula for the covariance can be derived (see Lemma
2). Algorithms 2 and 3 show the resulting special case of EPG,
which we call Gaussian policy gradients (GPG).

Algorithm 2 Gaussian Policy Gradients
1: s← s0, t← 0
2: initialise optimiser
3: while not converged do
4: gt ← γt DO-INTEGRAL-GAUSS(Q̂, s, πθ)
5: θ ← θ + optimiser.UPDATE(gt)
6: . θ is updated using gradient
7: Σ1/2 ← GET-COVARIANCE(Q̂, s, πθ)
8: . Σ1/2 computed from scratch
9: a ∼ π(·, s) = N(µ(θ, s),Σ)

10: s′, r ← simulator.PERFORM-ACTION(a)
11: Q̂.UPDATE(s, a, r, s′)
12: t← t+ 1
13: s← s′

14: end while

2VINE sampling also differs from EPG by performing indepen-
dent rollouts of Q, requiring a simulator with reset.

Algorithm 3 Gaussian Integrals

1: function DO-INTEGRAL-GAUSS(Q̂, s, πθ)
2: IQπ(s),µ ← (∇µ)∇aQ(s, µ) . Use Lemma 1

3: return IQπ(s),µ

4: end function
5:
6: function GET-COVARIANCE(Q̂, s, πθ)
7: H ← COMPUTE-HESSIAN(Q̂(µ, ·))
8: return σ0e

cH . Use Lemma 2
9: end function

Surprisingly, GPG is on-policy but nonetheless fully equiv-
alent to DPG, an off-policy method, with a particular form of
exploration. Hence, GPG, by specifying the policy’s covari-
ance, can be seen as a derivation of an exploration strategy
for DPG. In this way, GPG addresses an important open ques-
tion. As we show later, this leads to improved performance
in practice.

The computational cost of GPG is small: while it must
store a Hessian matrix, its size is only d× d, where A = Rd,
which is typically small, e.g., d = 6 for HalfCheetah-v1. This
Hessian is the same size as the policy’s covariance matrix,
which any policy gradient must store anyway, and should not
be confused with the Hessian with respect to the parameters
of the neural network, as used with Newton’s or natural gradi-
ent methods (Peters and Schaal, 2008a; Furmston, Lever, and
Barber, 2016), which can easily have thousands of entries.
Hence, GPG obtains EPG’s variance reduction essentially for
free.

Analysis

In this section, we analyse EPG, showing that it unifies SPG
and DPG, that ÎQπ (s) can often be computed analytically, and
that EPG has lower variance than SPG.

General Policy Gradient Theorem

We begin by stating our most general result, showing that
EPG can be seen as a generalisation of both SPG and DPG. To
do this, we first state a new general policy gradient theorem.
We use the shorthand ∇ without a subscript to denote the
gradient with respect to policy parameters θ.

Theorem 1 (General Policy Gradient Theorem). If π(·, s) is
a normalised Lebesgue measure for all s, then

∇J =

∫
s

dρ(s)

[
∇V (s)−

∫
a

dπ(a, s)∇Q(a, s)

]
︸ ︷︷ ︸

IG(s)

.

Proof. We begin by expanding the following expression.∫
s
dρ(s)

∫
a
dπ(a, s)∇Q(a, s)

=
∫
s
dρ(s)

∫
a
dπ(a,s)∇(R(a,s)+γ

∫
s′ dp(s

′|s,a)V (s′))

=
∫
s
dρ(s)

∫
a
dπ(a,s)(∇R(a,s)︸ ︷︷ ︸

0

+γ
∫
s′ dp(s

′|s,a)∇V (s′))

= γ
∫
s
dρ(s)

∫
s′
dpπ(s′ | s)∇V (s′)

=
∫
s
dρ(s)∇V (s)−

∫
s
dp0(s)∇V (s)︸ ︷︷ ︸

∇J

=
∫
s
dρ(s)∇V (s)−∇J.

The first equality follows by expanding the definition of Q
and the final one follows from Lemma B (in the supplement).
Then the theorem follows by rearranging terms.

The crucial benefit of Theorem 1 is that it works for all
policies, both stochastic and deterministic, unifying previ-
ously separate derivations for the two settings. To show this,
in the following two corollaries, we use Theorem 1 to recover
the stochastic policy gradient theorem (Sutton et al., 2000)
and the deterministic policy gradient theorem (Silver et al.,
2014), in each case by introducing additional assumptions
to obtain a formula for IG(s) expressible in terms of known
quantities.

Corollary 1 (Stochastic Policy Gradient Theorem). If π(· |
s) is differentiable, then

∇J =
∫
s
dρ(s)IG(s)

=
∫
s
dρ(s)

∫
a
dπ(a | s)∇ log π(a | s)Q(a, s).

Proof. We obtain the following by expanding ∇V .

∇V = ∇
∫
a
dπ(a, s)Q(a, s) =∫

a
da(∇π(a, s))Q(a, s) +

∫
a
dπ(a, s)(∇Q(a, s))

We obtain IG(s) =
∫
a
dπ(a | s)∇ log π(a | s)Q(a, s) =

IQπ (s) by plugging this into the definition of IG(s). We ob-
tain ∇J by invoking Theorem 1 and plugging in the above
expression for IG(s).

We now recover the DPG update introduced in (3).

Corollary 2 (Deterministic Policy Gradient Theorem). If
π(· | s) is a Dirac-delta measure (i.e., a deterministic policy)
and Q(·, s) is differentiable, then

∇J =
∫
s
dρ(s)IG(s) =

∫
s
dρ(s) = ∇π(s)∇aQ(a, s).

Proof. We begin by obtaining an expression for IG(s).

IG(s) = ∇V (s)−
∫
a
dπ(a, s)∇Q(a, s)

= ∇V (s)− γ
∫
s′
dpπ(s′ | s)∇V (s′)

= ∇π(s)∇aQ(a, s).

Here, the second equality follows by expanding the definition
of Q and the third follows from an established deterministic
policy gradient result (Silver et al., 2014, Supplement, Eq. 1).
We can then obtain∇J by invoking Theorem 1 and plugging
in the above expression for IG(s).

These corollaries show that the choice between determinis-
tic and stochastic policy gradients is fundamentally a choice
of quadrature method. Hence, the empirical success of DPG
relative to SPG (Silver et al., 2014; Lillicrap et al., 2015) can
be understood in a new light. In particular, it can be attributed,
not to a fundamental limitation of stochastic policies (indeed,
stochastic policies are sometimes preferred), but instead to
superior quadrature. DPG integrates over Dirac-delta mea-
sures, which is known to be easy, while SPG typically relies
on simple Monte Carlo integration. Thanks to EPG, a deter-
ministic approach is no longer required to obtain a method
with low variance.

Since Theorem 1 can be written as IG(s) = ∇V (s) −
γ
∫
s′
pπ(s′ | s)∇V (s′), which involves the derivatives of

value functions, GPG resembles stochastic value gradients
(Heess et al., 2015). However, EPG is different since the
derivatives are with respect to policy parameters. Also, in our
case, it is not clear how to learn∇V .

Analytical Quadrature - Gaussian Policy

We now derive a lemma supporting GPG.

Lemma 1 (Gaussian Policy Gradients). If the policy is Gaus-
sian, i.e. π(·|s) ∼ N (µ,Σ) with µ and Σ1/2 parametrised
by θ, and the critic is of the form Q(s, a) = a>A(s)a +

a>B(s)+const, then IQπ (s) =
[
IQπ(s),µ

∣∣∣IQπ(s),Σ1/2

]>
, where

the mean and covariance components are given by IQπ(s),µ =

(∇µ)B(s) and IQ
π(s),Σ1/2 = (∇Σ1/2)Σ1/2A(s).

See Lemma 1 in the supplement for proof of this result.
While Lemma 1 requires the critic to be quadric in the actions,
this assumption is not very restrictive since the coefficients
B(s) and A(s) can be arbitrary continuous functions of the
state, e.g., a neural network.

Arbitrary Critics

If Q does not meet the conditions of Lemma 1, we can ap-
proximate Q with a quadric function in the neighbourhood
of the policy mean. This approximation is motivated by two
arguments. First, in MDPs that model physical systems with
reasonable reward functions, Q is fairly smooth. Second, pol-
icy gradients are a local, incremental method anyway – since
the policy mean changes slowly, the values of Q for actions
far from the policy mean are usually not relevant for the
current update.

Corollary 3 (Approximate Gaussian Policy Gradients with
an Arbitrary Critic). If the policy is Gaussian, i.e. π(·|s) ∼
N (µ,Σ1/2) with µ parametrised by θ and any critic Q(s, a)
doubly differentiable with respect to actions for each state,
then IQπ(s),µ ≈ (∇µ)∇aQ(s, a = µ) and IQ

π(s),Σ1/2 ≈
(∇Σ1/2)Σ1/2H(s, µ), where H(s, µ) is the Hessian of Q
with respect to a, evaluated at µ for a fixed s.

Proof. We begin by approximating the critic (for a given s)

using the first two terms of the Taylor expansion of Q in µ.

Q(s, a) ≈ Q(s, µ) + (a− µ)>∇aQ(s, µ)

+ 1
2 (a− µ)>H(s, µ)(a− µ)

= 1
2a

>H(s,µ)a+a>(∇aQ(s,µ)−H(s,µ)µ)+const.

Because of the series truncation, the function on the righthand
side is quadric and we can then use Lemma 1:

IQ
π(s),µ

=∇µ(2 1
2H(s,µ)µ+∇aQ(s,µ)−H(s,µ)µ)

=∇µ∇aQ(s,µ)

IQ
π(s),Σ1/2

=∇
Σ1/2 (2 1

2H(s,µ)Σ1/2)=∇
Σ1/2H(s,µ)Σ1/2.

To actually obtain the Hessian, we could use automatic
differentiation to compute it analytically. Alternatively, we
can observe that, if the critic really is quadric, we can just read
off the coefficients of the quadric term directly. Therefore,
we can approximate the Hessian by generating a number
of random action-values around µ, computing the Q values,
and (locally) fitting a quadric. This process is typically more
computationally expensive than automatic differentiation but
has the advantage of working with ReLU networks (where
the true Hessian is zero but we still have a kind of global
curvature after smoothing) and leveraging more information
from the critic (since the evaluation is at more than one point).

Linear GPG
We now state a consequence of Lemma 1 for the case when
the critic Q is linear in the actions, i.e., the quadric term is
always zero.

Corollary 4 (Linear Gaussian Policy Gradients). If the policy
is Gaussian, i.e., π(·|s) ∼ N (µ,Σ1/2) with µ parametrised
by θ and the critic is of the form Q(s, a) = a>B(s) + const,
then IQπ (s) = B(s)∇µ. Moreover, it is unnecessary to pa-
rameterise Σ since the policy gradient w.r.t. to Σ is zero (i.e.,
a linear Q-function does not give any information about the
exploration covariance).

We make Corollary 4 explicit for two reasons. First, it is
useful for showing an equivalence between DPG and EPG
(see below). Second, it may actually be useful for a non-trivial
class of physical systems: if the time-sampling frequency is
high enough (which implies acting in small steps), the critic
is effectively only used to say if a small step one way is
preferable to small step the other way – a linear property.

Equivalences between EPG and DPG
The update for the policy mean obtained in Corollary 3 is the
same as the DPG update, linking the two methods:

IQπ (s)∇aQ(s, a)∇µ.

We now formalise the equivalences between EPG and DPG.
First, on-policy GPG with a linear critic (or an arbitrary critic
approximated by the first term in the Taylor expansion) is
equivalent to DPG with a Gaussian exploration policy where
the covariance stays the same. This follows from Corollary

4. Second, on-policy GPG with a quadric critic (or an arbi-
trary critic approximated by the first two terms in the Taylor
expansion) is equivalent to DPG with a Gaussian exploration
policy where the covariance is computed using the update
(where αn is a sequence of step-sizes):

Σ1/2 ← Σ1/2 + αnΣ1/2H. (11)

This follows from Corollary 3. Third, and most generally,
for any critic at all (not necessarily quadric), DPG is a kind
of EPG for a particular choice of quadrature (using a Dirac
measure). This follows from Theorem 1.

Surprisingly, this means that DPG, normally considered
to be off-policy, can also be seen as on-policy when explor-
ing with Gaussian noise. Furthermore, the compatible critic
for DPG (Silver et al., 2014) is indeed linear in the actions.
Hence, this relationship holds whenever DPG uses a com-
patible critic.3 Furthermore, Lemma 1 lends new legitimacy
to the common practice of replacing the critic required by
the DPG theory, which approximates ∇aQ, with one that
approximates Q itself, as done in SPG and EPG.

Exploration using the Hessian
The second equivalence given above suggests that we can
include the covariance in the actor network and learn it along
with the mean. However, another option is to compute it from
scratch at each iteration by analytically computing the result
of applying (11) infinitely many times.
Lemma 2 (Robins-Monro Exploration Limit). The iterative
procedure defined by the equation Σ1/2 ← Σ1/2 +αnΣ1/2H
using the diminishing Robbins-Monroe learning rate αn =
1/n converges to Σ1/2 ∝ eH .

Proof. Consider the sequence (Σ1/2)1 = σ0I , (Σ1/2)n =
(Σ1/2)n−1 + 1

n (Σ1/2)n−1H . We diagonalise the Hessian as
H = UΛU> for some orthogonal matrix U and obtain the
following expression for the n-th element of the sequence.

Σ
1/2
n+1 = (I +

1

n
H)nσ0 = U(I +

1

n
Λ)nU>σ0.

Since we have limn→∞(1− 1
nλ)n = eλ for each eigenvalue

of the Hessian, we obtain the identity:

lim
n→∞

U(I +
1

n
Λ)nU>σ0 = σ0e

H .

The practical implication of Lemma 2 is that, in a policy
gradient method, it is justified to use Gaussian exploration
with covariance proportional to ecH for some reward scaling
constant c. Thus by exploring with (scaled) covariance ecH ,
we obtain a principled alternative to the Ornstein-Uhlenbeck
heuristic (equation (5)). Our results below show that it also
performs much better in practice. The derivation relies cru-
cially on the use of decreasing Robins-Monro step sizes,
rather than finite step sizes, which we analyse in detail in
Section 2 of the supplement.

3The notion of compatibility of a critic is different for stochastic
and deterministic policy gradients.

Variance Analysis
We now prove that for any policy, the EPG estimator of (10)
has lower variance than the SPG estimator of (2).
Lemma 3. If for all s ∈ S, the random variable∇ log π(a |
s)Q̂(s, a) where a ∼ π(a|s) has nonzero variance, then

Vτ [
∑∞
t=0 γ

t∇ log π(at|st)(Q̂(st,at)+b(st))]>Vτ
[∑∞

t=0 γ
tIQ̂π (st)

]
.

The proof is deferred to the supplement (see Lemma 3
there). Lemma 3’s assumption is reasonable since the only
way a random variable ∇ log π(a | s)Q̂(s, a) could have
zero variance is if it were the same for all actions in the
policy’s support (except for sets of measure zero), in which
case optimising the policy would be unnecessary. Since we
know that both the estimators of (2) and (10) are unbiased,
the estimator with lower variance has lower MSE.

Extension to Entropy Regularisation
on-policy SPG sometimes includes an entropy term in the
gradient in order to aid exploration by making the policy
more stochastic. The gradient of the differential entropy4

H(s) of the policy at sate s is defined as follows.

−∇H(s)=∇
∫
a
dπ(a|s) log π(a|s)

=
∫
a
da∇π(a|s) log π(a|s)+

∫
a
dπ(a|s)∇ log π(a|s)

=
∫
a
da∇π(a|s) log π(a|s)+

∫
a
dπ(a|s) 1

π(a|s)∇π(a|s)

=
∫
a
da∇π(a|s) log π(a|s)+∇

∫
a
dπ(a|s)︸ ︷︷ ︸

1

=
∫
a
da∇π(a|s) log π(a|s)=

∫
a
dπ(a|s)∇ log π(a|s) log π(a|s).

Typically, we weight the entropy update with the policy gra-
dient update:

IEG (s) = IG(s) + α∇H(s)

=
∫
a
dπ(a|s)∇ log π(a|s)(Q(s, a)− α log π(a|s)).

This equation makes clear that performing entropy regulari-
sation is equivalent to using a different critic with Q-values
shifted by α log π(a|s); this holds for both SPG and EPG.

Experiments
While EPG has many potential uses, we focus on empiri-
cally evaluating one particular application: exploration driven
by the Hessian exponential (as introduced in Algorithm 2
and Lemma 2), replacing the standard Ornstein-Uhlenbeck
(OU) exploration in continuous action domains. To this end,
we applied EPG to four domains modelled with the Mu-
JoCo physics simulator (Todorov, Erez, and Tassa, 2012):
HalfCheetah-v1, InvertedPendulum-v1, Reacher2d-v1 and
Walker2d-v1 and compared its performance to DPG and SPG.

In practice, EPG differed from deep DPG (Lillicrap et al.,
2015; Silver et al., 2014) only in the exploration strategy,
though their theoretical underpinnings are different. The hy-
perparameters for DPG and those of EPG that are not related

4For discrete action spaces, the same derivation with integrals
replaced by sums holds for the entropy.

Domain σ̂DPG σ̂EPG
HalfCheetah-v1 1336.39

[1107.85, 1614.51]
1056.15
[875.54, 1275.94]

InvertedPendulum-v1 291.26
[241.45, 351.88]

0.00
n/a

Reacher2d-v1 Std: 1.22
[0.63, 2.31]

0.13
[0.07, 0.26]

Walker2d-1 543.54
[450.58, 656.65]

762.35
[631.98, 921.00]

Table 1: Estimated standard deviation (mean and 90% inter-
val) across runs after learning.

to exploration were taken from an existing benchmark (Is-
lam et al., 2017; Brockman et al., 2016). The exploration
hyperparameters for EPG were σ0 = 0.2 and c = 1.0 where
the exploration covariance is σ0e

cH . These values were ob-
tained using a grid search from the set {0.2, 0.5, 1} for σ0

and {0.5, 1.0, 2.0} for c over the HalfCheetah-v1 domain.
Since c is just a constant scaling the rewards, it is reason-
able to set it to 1.0 whenever reward scaling is already used.
Hence, our exploration strategy has just one hyperparameter
σ0 as opposed specifying a pair of parameters (standard de-
viation and mean reversion constant) for OU. We used the
same learning parameters for the other domains. For SPG5,
we used OU exploration and a constant diagonal covariance
of 0.2 in the actor update (this approximately corresponds to
the average variance of the OU process over time). The other
parameters for SPG are the same as for the rest of the algo-
rithm. For the learning curves, rather than follow the typical
practice of plotting just the average of five runs, we obtained
90% confidence intervals around the learning curves. The
learning curves show results of independent evaluation runs
which used actions generated by the policy mean without any
exploration noise.

The results (Figure 2) show that EPG’s exploration strat-
egy yields much better performance than DPG with OU.
Furthermore, SPG does poorly, solving only the easiest do-
main (InvertedPendulum-v1) reasonably quickly, achieving
slow progress on HalfCheetah-v1, and failing entirely on the
other domains. This is not surprising DPG was introduced
precisely to solve the problem of high variance SPG estimates
on this type of problem. In InvertedPendulum-v1, SPG ini-
tially learns quickly, outperforming the other methods. This
is because noisy gradient updates provide a crude, indirect
form of exploration that happens to suit this problem. Clearly,
this is inadequate for more complex domains: even for this
simple domain it leads to subpar performance late in learning.

In addition, EPG typically learns more consistently than
DPG with OU. In two tasks, the empirical standard deviation
across runs of EPG (σ̂EPG) was substantially lower than that
of DPG (σ̂DPG) at the end of learning, as shown in Table 1.
For the other two domains, the confidence intervals around
the empirical standard deviations for DPG and EPG were too
wide to draw conclusions.

Surprisingly, for InvertedPendulum-v1, DPG’s learning

5We tried learning the covariance for SPG but the covariance
estimate was unstable; no regularisation hyperparameters we tested
matched SPG’s performance with OU even on the simplest domain.

40 120 200 280

0
5
0

0
0 EPG (40 runs)

DPG (40 runs)
SPG (40 runs)

20 40 60 80

0
1

0
0

0 EPG (5 runs)
DPG (40 runs)
SPG (40 runs)

50 150 250 350 450

-1
5

-5

EPG (5 runs)
DPG (5 runs)
SPG (10 runs)

250 500 750 1000 1250

0
2

0
0
0 EPG (40 runs)

DPG (40 runs)
SPG (10 runs)

Figure 2: Learning curves (mean and 90% interval) for
HalfCheetah-v1 (top left), InvertedPendulum-v1 (top right),
Reacher2d-v1 (bottom left, clipped at -14) and Walker2d-v1
(bottom right). The number of independent training runs is in
parentheses. Horizontal axis is scaled in thousands of steps.

10 30 50 70 90

0
1
0
0
0

10 30 50 70 90

0
1
0
0
0

10 30 50 70 90

0
1
0
0
0

Figure 3: Three runs for EPG (left), DPG (middle) and SPG
(right) for the InvertedPendulum-v1 domain, demonstrating
that EPG shows much less unlearning.

curve declines late in learning. The reason can be seen in the
individual runs shown in Figure 3: both DPG and SPG suffer
from severe unlearning. This unlearning cannot be explained
by exploration noise since the evaluation runs just use the
mean action, without exploring. Instead, OU exploration in
DPG may be too coarse, causing the optimiser to exit good
optima, while SPG unlearns due to noise in the gradients. The
noise also helps speed initial learning, as described above, but
this does not transfer to other domains. EPG avoids this prob-
lem by automatically reducing the noise when it finds a good
optimum, i.e., a Hessian with large negative eigenvalues.

Conclusions
This paper proposed a new policy gradient method called
expected policy gradients (EPG), that integrates across the
action selected by the stochastic policy. We used EPG to
prove a new general policy gradient theorem subsuming
the stochastic and deterministic policy gradient theorems.
We also showed that, under certain realistic conditions, the
quadrature required by EPG can be performed analytically,
allowing DPG with principled exploration. We presented
empirical results confirming that this application of EPG
outperforms DPG and SPG on four domains.

References
Amari, S.-I. 1998. Natural gradient works efficiently in

learning. Neural computation 10(2):251–276.

Asadi, K.; Allen, C.; Roderick, M.; Mohamed, A.-r.;
Konidaris, G.; and Littman, M. 2017. Mean Actor Critic.
ArXiv e-prints.

Baird, L., et al. 1995. Residual algorithms: Reinforcement
learning with function approximation. In Proceedings of
the twelfth international conference on machine learning,
30–37.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. Openai
gym. arXiv preprint arXiv:1606.01540.

Furmston, T., and Barber, D. 2012. A unifying perspective
of parametric policy search methods for markov decision
processes. In Advances in neural information processing
systems, 2717–2725.

Furmston, T.; Lever, G.; and Barber, D. 2016. Approxi-
mate newton methods for policy search in markov deci-
sion processes. Journal of Machine Learning Research
17(227):1–51.

Gu, S.; Lillicrap, T.; Ghahramani, Z.; Turner, R. E.; and
Levine, S. 2016a. Q-prop: Sample-efficient policy gradient
with an off-policy critic. arXiv preprint arXiv:1611.02247.

Gu, S.; Lillicrap, T.; Sutskever, I.; and Levine, S. 2016b.
Continuous deep q-learning with model-based acceleration.
In International Conference on Machine Learning, 2829–
2838.

Heess, N.; Wayne, G.; Silver, D.; Lillicrap, T.; Erez, T.; and
Tassa, Y. 2015. Learning continuous control policies by
stochastic value gradients. In Advances in Neural Informa-
tion Processing Systems, 2944–2952.

Islam, R.; Henderson, P.; Gomrokchi, M.; and Precup, D.
2017. Reproducibility of benchmarked deep reinforce-
ment learning tasks for continuous control. arXiv preprint
arXiv:1708.04133.

Kakade, S. M. 2002. A natural policy gradient. In Advances
in neural information processing systems, 1531–1538.

Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Lagoudakis, M. G., and Parr, R. 2003. Least-squares
policy iteration. Journal of machine learning research
4(Dec):1107–1149.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Peters, J., and Schaal, S. 2006. Policy gradient methods
for robotics. In Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on, 2219–2225. IEEE.

Peters, J., and Schaal, S. 2008a. Natural actor-critic. Neuro-
computing 71(7):1180–1190.

Peters, J., and Schaal, S. 2008b. Reinforcement learning
of motor skills with policy gradients. Neural networks
21(4):682–697.

Rummery, G. A., and Niranjan, M. 1994. On-line Q-learning
using connectionist systems. University of Cambridge,
Department of Engineering.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; and Moritz,
P. 2015. Trust region policy optimization. In Proceedings
of the 32nd International Conference on Machine Learning
(ICML-15), 1889–1897.

Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.;
and Riedmiller, M. 2014. Deterministic policy gradient
algorithms. In ICML.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge.

Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learn-
ing with function approximation. In Advances in neural
information processing systems, 1057–1063.

Sutton, R. S. 1996. Generalization in reinforcement learning:
Successful examples using sparse coarse coding. Advances
in neural information processing systems 1038–1044.

Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference
on, 5026–5033. IEEE.

Uhlenbeck, G. E., and Ornstein, L. S. 1930. On the theory
of the brownian motion. Physical review 36(5):823.

van Seijen, H.; van Hasselt, H.; Whiteson, S.; and Wiering,
M. 2009. A theoretical and empirical analysis of ex-
pected sarsa. In ADPRL 2009: Proceedings of the IEEE
Symposium on Adaptive Dynamic Programming and Rein-
forcement Learning, 177–184.

Supplement
In the supplement, we provide formal proofs for certain statements invoked by our paper. We then provide a brief discussion of
the use of the Robins-Monro learning rate in the computation of the covariance.

Proofs
First, we prove two lemmas concerning the discounted-ergodic measure ρ(s) which have been implicitly realised for some time
but as far as we could find, never proved explicitly.
Definition A (Time-dependent occupancy).

p(s | t = 0) = p0(s)

p(s | t = i+ 1) =

∫
s

p(s′ | s)p(s | t = i) for i ≥ 0

Definition B (Truncated trajectory). Define the trajectory truncated after N steps as τN = (s0, a0, r0, s1, a1, r1, . . . , sN).
Observation A (Expectation wrt. truncated trajectory). Since τN = (s0, s1, s2, . . . , sN) is associated with the density∏N−1
i=0 p(si+1 | si)p0(s0), we have that

EτN
[∑N

i=0 γ
if(si)

]
=

=
∫
s0,s1,...,sN

(∏N−1
i=0 p(si+1 | si)

)
p0(s0)

(∑N
i=0 γ

if(si)
)
ds0ds1 . . . dsN =

=
∑N
i=0

∫
s0,s1,...,sN

(∏N−1
i=0 p(si+1 | si)

)
γif(si)ds0ds1 . . . dsN =

=
∑N
i=0

∫
s
p(s | t = i)γif(s)ds

for any function f .
Definition C (Expectation with respect to infinte trajectory). For any bounded function f , we have

Eτ

[∞∑
i=0

γif(si)

]
, lim
N→∞

EτN

[
N∑
i=0

γif(si)

]
.

Here, the sum on the left-hand side is part of the symbol being defined.
Observation B (Property of expectation with respect to infinte trajectory).

Eτ
[∑∞

i=0 γ
if(si)

]
= limN→∞ EτN

[∑N
i=0 γ

if(si)
]

=

= limN→∞
∑N
i=0

∫
s
p(s | t = i)γif(s)ds =

=

∞∑
i=0

∫
s

p(s | t = i)γif(s)

for any bounded function f .
Definition D (Discounted-ergodic occupancy measure ρ).

ρ(s) =

∞∑
i=0

γip(s | t = i)

The measure ρ is not normalised in general. Intuitively, it can be thought of as ‘marginalising out’ the time in the system
dynamics.
Lemma A (Discounted-ergodic property). For any bounded function f :∫

s

ρ(s)f(s) = Eτ

[∞∑
i=0

γif(si)

]
.

Proof.

Eτ

[∞∑
i=0

γif(si)

]
=

∞∑
i=0

γi
∫
s

p(s | t = i)f(s)ds =

∫
s

[∞∑
i=0

γip(s | t = i)

]
︸ ︷︷ ︸

ρ(s)

f(s)ds

Here, the first equality follows from Observation B.

This property is useful since the expression on the left can be easily manipulated while the expression on the right can be
estimated from samples using Monte Carlo.

Lemma B (Generalised eigenfunction property). For any bounded function f :

γ

∫
s

dρ(s)

∫
s′
dp(s′ | s)f(s′) =

(∫
s

dρ(s)f(s)

)
−
(∫

s

dp0(s)f(s)

)
Proof.

γ
∫
s
dρ(s)

∫
s′
dp(s′ | s)f(s′) = γ

∑∞
i=0 γ

i
∫
s,s′

p(s | t = i)p(s′ | s)f(s′)dsds′ =

=
∑∞
i=0 γ

i+1
∫
s′
dp(s′ | t = i+ 1)f(s′)

=
∑∞
i=1 γ

i
∫
s′
dp(s′ | t = i)f(s′)

=
(∑∞

i=0 γ
i
∫
s′
dp(s′ | t = i)f(s′)

)
−
(∫
s
dp0(s)f(s)

)
=
(∫
s
dρ(s)f(s)

)
−
(∫
s
dp0(s)f(s)

)
Here, the first equality follows form definition D, the second one from definition A. The last equality follows again from definition
D.

Definition E (Markov Reward Process). A Markov Reward Process is a tuple (p, p0, R, γ), where p(s′|s) is a transition kernel,
p0 is the distribution over initial states, R(·|s) is a reward distribution conditioned on the state and γ is the discount constant.

An MRP can be thought of as an MDP with a fixed policy and dynamics given by marginalising out the actions pπ(s′ | s) =∫
a
π(a | s)p(s′ | a, s). Since this paper considers the case of one policy, we abuse notation slightly by using the same symbol τ

to denote trajectories including actions, i.e. (s0, a0, r0, s1, a1, r1, . . .) and without them (s0, r0, s1, r1, . . .).

Lemma C (Second Moment Bellman Equation). Consider a Markov Reward Process (p, p0, X, γ) where p(s′ | s) is a Markov
process and X(· | s) is some probability density function6’. Denote the value function of the MRP as V . Denote the second
moment function S as

S(s) = Eτ

(∞∑
t=0

γtxt

)2
∣∣∣∣∣∣ s0 = s

 xt ∼ X(· | st).

Then S is the value function of the MRP: (p, p0, u, γ
2), where u(s) is a deterministic random variable given by

u(s) = VX(x|s) [x] +
(
EX(x|s) [x]

)2
+ 2γEX(x|s) [x]Ep(s′|s) [V (s′)] .

Proof.

S(s) = Eτ
[
(x0 +

∑∞
t=1 γ

txt)
2
∣∣∣ s0 = s

]
= Eτ

[
x2

0 + 2x0 (
∑∞
t=1 γ

txt) + (
∑∞
t=1 γ

txt)
2
∣∣∣ s0 = s

]
= Eτ

[
x2

0

∣∣ s0 = s
]

+ Eτ [2x0 (
∑∞
t=1 γ

txt) | s0 = s]︸ ︷︷ ︸
u(s)

+Eτ
[
(
∑∞
t=1 γ

txt)
2
∣∣∣ s0 = s

]
︸ ︷︷ ︸

γ2Ep(s′|s)[S(s′)]

This is exactly the Bellman equation of the MRP (p, p0, u, γ
2). The theorem follows since the Bellman equation uniquely

determines the value function.

Observation C (Dominated Value Functions). Consider two Markov Reward Processes (p, p0, X1, γ) and (p, p0, X2, γ), where
p(s′ | s) is a Markov process (common to both MRPs) and X1(s), X2(s) are some deterministic random variables meeting the
condition X1(s) ≤ X2(s) for every s. Then the value functions V1 and V2 of the respective MRPs satisfy V1(s) ≤ V2(s) for
every s. Moreover, if we have that X1(s) < X2(s) for all states, then the inequality between value functions is strict.

Proof. Follows trivially by expanding the value function as a series and comparing series elementwise.

We now move our attention to prove the Gaussian Policy Gradients lemma.

6Note that while X occupies a place in the definition of the MRP usually called ‘reward distribution’, we are using the symbol X , not R
since we shall apply the lemma to Xes which are constructions distinct from the reward of the MDP we are solving.

Lemma 1 (Gaussian Policy Gradients). If the policy is Gaussian, i.e. π(·|s) ∼ N (µ,Σ) with µ and Σ1/2 parametrised by θ,

and the critic is of the form Q(s, a) = a>A(s)a+ a>B(s) + const, then IQπ (s) =
[
IQπ(s),µ

∣∣∣IQπ(s),Σ1/2

]>
, where the mean and

covariance components are given by IQπ(s),µ = (∇µ)B(s) and IQ
π(s),Σ1/2 = (∇Σ1/2)Σ1/2A(s).

Proof. We will first prove the lemma for the case where the action space is one-dimensional, where µ, a ∈ R and Σ1/2 = σ is
the standard deviation. First, note that the constant term in the critic does not influence the value of IQπ (s) since it depends only
on the state and not on the action and can be treated as a baseline. Observe that

IQπ(s),µ = (∇µ)Eπ [∇µ log π(a|s)Q(a, s)]

= (∇µ)
(
Eπ
[
∇µ log π(a|s)a>B(s)

]
+ Eπ

[
∇µ log π(a|s)a>A(s)a

])
.

We will consider the linear term and the quadric term separately. For the linear term we have:

Eπ [∇µ log π(a|s)aB(s)] =

= Eπ
[
a− µ
σ2

B(s)a

]
=

1

σ2
Eπ
[
B(s)a2 −B(s)aµ

]
=

=
1

σ2

(
B(s)Eπ

[
a2
]
−B(s)µEπ [a]

)
=

1

σ2

(
B(s)

(
σ2 + µ2

)
−B(s)µµ

)
= B(s).

For the quadric term we have:

Eπ
[
∇µ log π(a|s)a2A(s)

]
=

=
1

σ2
Eπ
[
a2A(s)(a− µ)

]
=

=
A(s)

σ2
Eπ
[
a3 − a2µ

]
=

=
A(s)

σ2

(
µ3 + 3µσ2 − (µ2 + σ2)µ

)
=

= 2A(s)µ

By summing the two terms we obtain:
IQπ(s),µ = ∇µ(2A(s)µ+B(s))

We now calculate the integrals for the standard deviation. Again, we begin with the linear term,

Eπ [∇σ log π(a|s)aB(s)] =

= Eπ
[
B(s)a (a−µ)2

σ3 −B(s)a 1
σ

]
=

= B(s)
σ Eπ

[
1
σ2

(
a3 − 2a2µ+ µ2a

)
− a
]

=

= B(s)
σ

(
1
σ2

(
µ3 + 3µσ2 − 2(µ2 + σ2)µ+ µ3

)
− µ

)
=

= B(s)
σ (µ− µ) = 0.

For the quadric term we have:

Eπ
[
∇σ log π(a|s)A(s)a2

]
=

= Eπ
[
A(s)a2 (a−µ)2

σ3 −A(s)a2 1
σ

]
=

= A(s)
σ Eπ

[
1
σ2 (a4 − 2a3µ+ µ2a2)− a2

]
=

= A(s)
σ

[
1
σ2 (µ4 + 6µ2σ2 + 3σ4 − 2µ(µ3 + 3µσ2)+

µ2(µ2 + σ2))− (µ2 + σ2)
]

= 2A(s)σ.

By summing the two terms we obtain:
IQπ(s),σ = ∇σ(2A(s)σ)

Now, the multivariate case (i.e. with multiple action dimensions) is obtained by the following technique. First, we use the
single-valued case to prove the lemma for the case of a multivariate Gaussian with diagonal covariance. Then we apply a variable
substitution a′ = Σ1/2a in the integral to reduce the case of an arbitrary Gaussian to a diagonal Gaussian. The tedious details are
deferred to the journal version.

Lemma 3. If for all s ∈ S, the random variable∇ log π(a | s)Q̂(s, a) where a ∼ π(a|s) has nonzero variance, then

Vτ
[∑∞

t=0 γ
t∇ log π(at | st)(Q̂(st, at) + b(st))

]
> Vτ

[∞∑
t=0

γtIQ̂π (st)

]
.

Proof. Both random variables have the same mean so we need only show that:

Eτ
[(∑∞

t=0 γ
t∇ log π(at | st)(Q̂(st, at) + b(st))

)2
]
> Eτ

[∑∞
t=0

(
γtIQ̂π (st)

)2
]
.

We start by applying Lemma C to the lefthand side and setting X = X1(st) = γt∇ log π(at | st)(Q̂(st, at) + b(st))

where at ∼ π(at|st). This shows that Eτ
[(∑∞

t=0 γ
t∇ log π(at | st)(Q̂(st, at) + b(st))

)2
]

is the total return of the MRP

(p, p0, u1, γ
2), where

u1 = VX1(x|s) [x] +
(
EX1(x|s) [x]

)2
+ 2γEX1(x|s) [x]Ep(s′|s) [V (s′)] .

Likewise, applying Lemma C again to the righthand side, instantiating X as a deterministic random variable X2(st) = IQ̂π (st),

we have that Eτ
[∑∞

t=0

(
γtIQ̂π (st)

)2
]

is the total return of the MRP (p, p0, u2, γ
2), where

u2 =
(
EX2(x|s) [x]

)2
+ 2γEX2(x|s) [x]Ep(s′|s) [V (s′)] .

Note that EX1(x|s) [x] = EX2(x|s) [x] and therefore u1 ≥ u2. Furthermore, by assumption of the lemma, the inequality is strict.
The lemma then follows by applying Observation C.

For convenience, Lemma 3 also assumes infinite length trajectories. However, this is not a practical limitation since all policy
gradient methods implicitly assume trajectories are long enough to be modelled as infinite. Furthermore, a finite trajectory variant
also holds, though the proof is messier.

Remarks on the Robins-Monro limit
When we obtain eH as the limiting covariance matrix in Lemma 2 of the main paper, there is a slight modeling difficulty: is it
justified to use the Robins-Monro learning rate of 1

n as opposed to a small constant? The problem with using a finite constant
is that we are approximately computing the maximum of a quadric function that may not exist (since a quadric with positive
curvature is not bounded from above and a method with a constant step size will diverge). The benefit of using the Robins-Monro
procedure is that it always converges, although possibly to a different point than the optimum (this is not a contradiction since its
applicability conditions of Robins-Monro optimisation are not met).

However, this theoretical problem is shared by all policy gradient methods since they all use some form of stochastic
optimisation; EPG simply makes this explicit since we need to analyse the limiting behaviour of the optimisation. Indeed, in this
case finding the true optimum is not even useful since it is either zero or diverges to infinity (for any MDP, an optimal policy
with covariance zero is guaranteed to exist).

	Introduction
	Background
	Expected Policy Gradients
	Main Algorithm
	Relationship to Other Methods
	Gaussian Policies

	Analysis
	General Policy Gradient Theorem
	Analytical Quadrature - Gaussian Policy
	Arbitrary Critics
	Linear GPG
	Equivalences between EPG and DPG
	Exploration using the Hessian
	Variance Analysis
	Extension to Entropy Regularisation

	Experiments
	Conclusions
	Supplement
	Proofs
	Remarks on the Robins-Monro limit

