
The Cross Entropy method for Fast Policy Search

Shie Mannor shie@mit.edu

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139

Reuven Rubinstein ierrr01@ie.technion.ac.il
Yohai Gat yohaig@tx.technion.ac.il

Faculty of Industrial Engineering and Management, Technion, 32000 Israel

Abstract

We present a learning framework for Marko-
vian decision processes that is based on opti-
mization in the policy space. Instead of us-
ing relatively slow gradient-based optimiza-
tion algorithms, we use the fast Cross En-
tropy method. The suggested framework is
described for several reward criteria and its
effectiveness is demonstrated for a grid world
navigation task and for an inventory control
problem.

1. Introduction

The Markov decision processes (MDP) model is stan-
dard in artificial intelligence, machine learning, oper-
ation research and related fields. When the transition
probability or the reward in an MDP are unknown, the
problem is referred to as a learning one. In Reinforce-
ment Learning (RL) an agent learns the behavior of
the system through trial-and-error with an unknown
dynamic environment (see Kaelbling et al., 1996). For
reviews of RL see Sutton and Barto (1998); Bertsekas
and Tsitsiklis (1996); Kaelbling et al. (1996). There
are several approaches for RL, which can be roughly
divided to the following three classes: model-based,
model-free, and policy search. In the model-based
approach, first a model of the environment is con-
structed. The estimated MDP is then solved using
standard tools like dynamic programming (see Kearns
& Singh, 1998). In the model-free approach one learns
a utility function, instead of learning the model. The
optimal policy is to choose at each state an action,
which maximizes the expected utility. The popular
Q-learning (e.g. Watkins, 1989) algorithm is an exam-
ple of this approach. In the policy search approach a
subspace of the policy space is searched, and the per-
formance of policies is evaluated based on their em-
pirical performance (e.g. Barto et al., 1983; Sutton
& Barto, 1998). Examples to gradient-based policy
search methods include the REINFORCE algorithm

of Williams (1992), and certain variants of the actor-
critic framework (e.g. Konda & Tsitsiklis, 2003). A
detailed account of policy gradient can be found in
Baxter et al. (2001). For a direct search in the policy
space approach see Rosenstein and Barto (2001). The
learning algorithms suggested in this paper belong to
the policy search approach.

Many RL algorithms are essentially based on the clas-
sic Stochastic Approximation (SA) algorithm. To ex-
plain SA, assume that we need to find the unique so-
lution v∗ of the nonlinear equation IES(v) = 0, where
S(v) is a random variable (noisy function) with un-
known expectation IES(v). The SA algorithm for esti-
mating v∗ is vt+1 = vt + βtS(vt). The connection be-
tween SA and Q-learning is given by Tsitsiklis (1994).
This work has made an important impact on the en-
tire field of RL. Standard SA is known to converge
slowly, because of the requirement that

∑∞
t=1 β2

t < ∞
(βt → 0). Even if βt remains bounded away from 0,
(and thus convergence is not guaranteed) it is still re-
quired that βt is small in order to ensure convergence
to a reasonable solution. For details see Borkar and
Meyn (2000).

The main goal of this paper is to introduce a fast
learning algorithm based on the Cross Entropy (CE)
method instead of the slow SA algorithms. CE has be-
come a standard tool in Monte Carlo estimation and
both, combinatorial and continuous multi-extremal
optimization, see Rubinstein (1999); de-Boer et al.
(2003) for details. As opposed to most RL methods
our framework leads to fast convergence and can be
easily extended to parameterized policy architecture,
as outlined in Section 4. Some experiments in Sec-
tion 5 with a maze world and inventory control prob-
lems indicate the suggested framework converges in a
small number of iterations, with high probability, to a
small neighborhood of the optimal solution.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

2. Preliminaries

In this section we present some background on MDPs
and the CE method.

2.1. Markov Decision Process (MDP)

We review briefly some of the basic definitions and con-
cepts in MDP. For details see, e.g., Puterman (1994);
Bertsekas (1995). An MDP is defined by a tuple
(M,A,P, r) where: M = {1, . . . , M} is the set of
states, which we assume to be finite; A = {1, . . . , A} is
the set of possible actions of the decision maker, which
we assume to be the same for every state to ease nota-
tions; P is the transition probability matrix with the
elements P(m′|m, a) presenting the transition proba-
bility from state m to state m′, when action a is taken;
and r(m, a) is the reward for performing action a in
state m, which we assumed to be bounded by rmax.

At each time instance t, the decision maker observes
the current state, mt, and determines the action to
be taken, at. As a result, reward r(mt, at), denoted
by rt, is received and a new state is chosen according
to the transition probability P(m′|mt, at). A mapping
from the state-action-reward histories to the probabil-
ity distribution of the decision maker’s actions is called
a strategy. A strategy is called stationary if it depends
only on the current state. The goal of the decision
maker is to maximize a certain reward function. The
following are standard reward criteria:

1. Finite horizon reward. We will consider the spe-
cial case of shortest path MDPs where it is as-
sumed that the process starts from a specific ini-
tial state m0, and that there is a absorbing state
mter with zero reward. The objective is to maxi-
mize V T (m0) = supπ IEπ

∑T−1
t=0 rt, where IEπ de-

notes the expectation with respect to some prob-
ability measure induced by the strategy π and the
supremum is taken over all strategies.

2. Infinite horizon discounted reward. The objective
is to find a strategy π, which maximizes V α(m) =
supπ IEπ

∑∞
t=0 αtrt, for all m, where 0 < α < 1 is

the discount factor.
3. Average reward. The objective is to maximize

V (m) = supπ lim infT→∞ 1
T IEπ

∑T−1
t=0 rt.

It is well known (Puterman, 1994) that there exists a
deterministic stationary optimal strategy for the above
three cases. Note that if the model (r and P) is
known, then there are several efficient methods for
finding the optimal strategy (Puterman, 1994). How-
ever, since the model is assumed to be unknown, a
learning scheme is required. As mentioned, we shall
employ in this situation the CE method instead of SA
and shall demonstrate its high performance.

2.2. The Cross Entropy method

In this section we review the CE method, which is a
state-of-the-art method for solving combinatorial and
multi-extremal continuous optimization problems. We
refer the reader to de-Boer et al. (2003) and references
therein for context, extensions, and applications. The
main idea behind the CE method is to transform the
original optimization problem to an associated stochas-
tic problem (ASP) and then to tackle the ASP effi-
ciently by an adaptive algorithm. By doing so one
constructs a random sequence of solutions which con-
verges probabilistically to the optimal or near-optimal
one. As soon as the ASP is defined, the CE method
employs the following two phases:

1. Generation of a sample of random data (trajecto-
ries, vectors, etc.) according to a specified random
mechanism.

2. Updating the parameters of the random mecha-
nism, typically parameters of pdfs, on the basis of
the data, in order to produce a “better” sample
in the next iteration.

To proceed, suppose we wish to maximize some per-
formance function S(x) over all x in some set X . Let
us denote the unique maximum by γ∗, thus

γ∗ = max
x∈X

S(x) . (1)

As mentioned, we randomize our deterministic prob-
lem by defining a family of auxiliary pdfs {f(·;v),v ∈
V} on X and we associate with Eq. (1) the following
estimation problem

`(γ) = IPu(S(X) ≥ γ) = IEuI{S(X)≥γ},

where u is some known parameter (X ∈ X has a pdf
f(·; u)) and γ an unknown scalar. We consider the
event “score is high” to be the rare event of interest.
To estimate this event, the CE method generates a
sequence of tuples {(γ̂t, v̂t)}, which converges quickly
(with high probability) to a small neighborhood of the
optimal tuple (γ∗,v∗).

We denote by ρ the fraction, that the best (maximal
values, sometimes termed elite) samples, that are used
to find the threshold γ, constitute in the entire sample.
Following standard terminology in simulation theory,
the process that is based on sampled data is called
the stochastic counterpart as it is based on stochastic
samples of data. The number of samples in each stage
of the stochastic counterpart is denoted by N , which
is assumed to be a fixed predefined number. The fol-
lowing is a standard CE procedure for a maximization
problem borrowed from de-Boer et al. (2003). We ini-
tialize by setting v̂0 uniform, and choose a not very

small ρ, say 10−2 ≤ ρ, and then we proceed iteratively
as follows:

1. Adaptive updating of γt. For a fixed vt−1, let
γt be a (1−ρ)100%-percentile of S(X) under vt−1.
That is, γt satisfies IPvt−1(S(X) ≥ γt) ≥ ρ and
IPvt−1(S(X) ≤ γt) ≥ 1− ρ where X ∼ f(·;vt−1).
A simple estimator γ̂t of γt can be obtained
by taking a random sample X(1), . . . ,X(N) from
the pdf f(·;vt−1), calculating the performances
S(X(i)) for all i, ordering them from smallest to
biggest as S(1) ≤ . . . ≤ S(N) and finally evalu-
ating the (1 − ρ)100% sample percentile as γ̂t =
S(d(1−ρ)Ne).

2. Adaptive updating of vt. For a fixed γt and
vt−1, derive vt from the solution of the program

max
v

D(v) = max
v

IEvt−1I{S(X)≥γt} log f(X;v) .

(2)
The stochastic counterpart of (2) is as follows: for
fixed γ̂t and v̂t−1, derive v̂t from the following
program:

max
v

D̂(v) = max
v

1
N

N∑

i=1

I{S(X(i))≥γ̂t} log f(X(i);v) .

(3)

We note that if f belongs to the Natural Exponential
Family (NEF; e.g., Gaussian, discrete Bernoulli), then
Eq. (3) has a closed form solution (see de-Boer et al.,
2003). The CE optimization algorithm is summarized
in Algorithm 2.1.

Remark: Instead of the updating the parameter
vector v directly via the solution of Eq. (3) we use the
following smoothed version

v̂t = αṽt + (1− α)v̂t−1, (4)
where ṽt is the parameter vector obtained from the so-
lution of (3), and α is called the smoothing parameter,
with 0.7 < α < 1. Clearly, for α = 1 we have our orig-
inal updating rule. The reason for using the smoothed
(4) instead of the original updating rule is twofold: (a)
to smooth out the values of v̂t, (b) to reduce the prob-
ability that some component v̂t,i of v̂t will be zeros or
unities at an early stage, and a the algorithm will get
stuck in a local maxima. Note that for 0 < α < 1 we
always have that v̂t,i > 0, while for α = 1 one might
have (even at the first iterations) that either v̂t,i = 0
or v̂t,i = 1 for some indices i. As result, the algorithm
may converge to a wrong solution.

Remark: The performance CE method is insensitive
to the exact choice of parameters. As long as ρ is not
too small, α < 1, and N is large enough, the results

Algorithm 2.1 The CE Method for
Stochastic Optimization

1. Choose some v̂0. Set t = 1 (level counter).
2. Generate a sample X(1), . . . ,X(N) from the

density f(·;vt−1) and compute the sample
(1− ρ)100%-percentile γ̂t of the sample scores.

3. Use the same sample X(1), . . . ,X(N) and solve
the stochastic program (3). Denote the solu-
tion by ṽt.

4. Apply (4) to smooth out the vector ṽt.
5. If for some t ≥ d, say d = 5, γ̂t = γ̂t−1 =
· · · = γ̂t−d then stop (let T denote the final
iteration); otherwise set t = t + 1 and reiterate
from step 2.

of the algorithm are robust. In our numerical studies
below we did not tweak the parameters. We chose a
typical 0.01 ≤ ρ ≤ 0.03, and the smoothing parame-
ter α = 0.7. The sample size N was chosen so that
η = ρN which corresponds to the number of sample
performances S(j), j = 1, . . . , N , that lie in the upper
100ρ% was a few tens. It is the best samples that al-
low Algorithm 2.1 to avoid local extrema and to settle
down in the global maximum with high probability.

Improvements of Algorithm 2.1 include the Fully
Adaptive CE (FACE) variant, where the parameters N
and ρ are updated online, and some alternatives to the
threshold (indicator) sample functions, H, (like Boltz-
mann functions). See de-Boer et al. (2003) for more
details. For a convergence proof of the CE method see
Homem de Mello and Rubinstein (2002).

3. Policy Learning using the CE
method

This section deals with the application of the CE
method to learning in MDPs. To proceed, we define
an auxiliary M × A probability matrix P = (Pma)
with elements Pma, m = 1, . . . , M ; a = 1, . . . , A de-
noting the probability of taking action a at state m,
(
∑A

a=1 Pma = 1,∀m). Once the matrix P is defined,
the above two phases (with f(·, v) replaced by Pma)
can be written as:

1. Generation of random trajectories (samples) using
the auxiliary probability matrix P = (Pma) and
simultaneous calculation of the sample function
S.

2. Updating of the parameters of the probability ma-
trix (Pma) on the basis of the data collected at the
first phase. This is done via the CE Algorithm 2.1.

The matrix P is typically initialized to a uniform ma-
trix (P ma = 1/A.) The generation of random trajec-
tories for an MDP according to the probability ma-
trix P is quite straightforward. We shall show that in
calculating the associated sample reward function S,
one can take into the Markovian nature of the prob-
lem and to speed up the Monte-Carlo process. The
following three subsections discuss in more details tra-
jectory generation, the sample performance calculation
and the stopping criteria for the finite horizon shortest
path problem, infinite horizon discounted, and average
rewards.

3.1. Trajectory generation for the shortest
path problem

As mentioned, in shortest path problems there is a
terminal state which corresponds to zero reward. With
this in mind we may either stop the trajectory when
it reaches the terminal state or alternatively we can
stop the trajectory if it becomes too long (and discard
that trajectory, or penalize states in the trajectory,
depending on the application). We will assume that
every policy is proper (Bertsekas & Tsitsiklis, 1996)
and that the terminal state is always reached.

Algorithm 3.1 Trajectory generation for the
Shortest Path problem
Input: P — action probability.
For (i = 1 to N):

1. Start from some given initial state m0, set t = 0.
2. Repeat until mt = mter

(a) Generate an action at according to P mta and
apply it.

(b) Observe a reward rt and a new state mt+1.
(c) Set t = t + 1.

3. Given a trajectory

X(i) = {m(i)
0 , a

(i)
0 , r

(i)
0 , m

(i)
1 , a

(i)
1 , r

(i)
1 ,

. . . , a
(i)
t−1, r

(i)
t−1, m

(i)
t },

calculate the cumulative reward on the trajectory
as

S(X(i)) =
t−1∑

k=0

r
(i)
k .

Output: Score S.

Given the N trajectories X(1), . . . ,X(N) and their
scores, S(X(1)), . . . , S(X(N)), one can update the pa-
rameters matrix (Pma) using the CE method, namely
as per (3). Since for each m the entry Pma presents a
discrete pdf, and thus NEF, the update formula (see
de-Boer et al., 2003) is:

Pma =

N∑

k=1

I{S(X(k))≤γ} I{X(k)∈Xma}

N∑

k=1

I{S(X(k))≤γ}I{X(k)∈Xm}

, (5)

where the event {X(k) ∈ Xm} means that the trajec-
tory X(k) contains a visit to state m and the event
{X(k) ∈ Xma} means the trajectory X(k) contains a
visit to state m in which action a was taken.

We note that the score that is assigned to two states
in the same trajectory is correlated, which creates a
bias. This bias is inherent to our method, but by us-
ing several uncorrelated trajectories, the effect of this
biased is reduced.

We now explain how to take advantage of the Marko-
vian nature of the problem. Let us think of a maze
where a certain trajectory starts badly, that is the path
is not efficient in the beginning, but after some time
it starts moving quickly towards the goal. Accord-
ing to (5), all the updates are performed in a similar
manner in every state in the trajectory. However, the
actions taken in the states that were sampled near the
target were successful, so one would like to encour-
age these actions. The Markov property suggests an
efficient way to improve the above algorithm by con-
sidering for each state the part of the reward from the
visit to that state onwards. We therefore use the same
trajectory and simultaneously calculate the score for
every state in the trajectory separately. The idea here
is that each choice of action in a given state affects the
reward from that point on, disregarding the past.

The sampling algorithm of Algorithm 3.1 does not
change in steps 1 and 2. The difference is in step 3.
Given a trajectory

X(i) = {m(i)
0 , a

(i)
0 , r

(i)
0 ,m

(i)
1 , a

(i)
1 , r

(i)
1 , . . . , a

(i)
t−1, r

(i)
t−1, m

(i)
t }

we calculate the reward from every state until termi-
nation. For every state in the trajectory the score is
Smj (X

(i)) =
∑t−1

k=j r
(i)
k . The update formula for Pma is

similar to (5), however each state is updated separately
according to the reward Smj (X

(i)) obtained from state
mj onwards.

Pma =

N∑

k=1

I{Sm(X(k))≤γm} I{Xm
(k)∈Xma}

N∑

k=1

I{Sm(X(k))≤γm}I{X(k)∈Xm}

. (6)

A crucial point here is to understand that in contrast
to (5) the CE optimization is carried for every state

separately and a different threshold parameter γm is
used for every state m. This facilitates faster conver-
gence for “easy” states where the optimal strategy is
easy to find. The above trajectory sampling method
can be viewed as a variance reduction method. Nu-
merical results indicate that the CE algorithm with
updating (6) is much faster then that with updating
(5).

3.2. Trajectory generation for the discounted
reward MDP

Sampling for the discounted reward criterion is a bit
more difficult since there is no obvious reason to as-
sume the existence of a terminal state. However, be-
cause of the discount factor we can stop sampling when
some precision level ε is guaranteed. Indeed, recall
that rmax denotes a known upper bound on the im-
mediate reward, then for a given discount factor α the
time horizon which guarantees the accuracy up to ε

equals to Tε = log(ε(1−α)
rmax

)/ log(α). Trajectory genera-
tion for discounted reward is similar to Algorithm 3.1,
with the exception that now each trajectory is Tmax

long (Tmax is an application dependent parameter), as
there may not be a natural termination time. Given a
trajectory

X(i) = {m(i)
0 , a

(i)
0 , r

(i)
0 ,m

(i)
1 , a

(i)
1 , r

(i)
1 , . . . , a

(i)
Tmax−1,

r
(i)
Tmax−1,m

(i)
Tmax

}

the reward for states m0, . . . ,mTmax−Tε in the trajec-
tory as

Smj (X
(i)) =

Tmax−1∑

k=j

αk−jr
(i)
j . (7)

Instead of (7) one may calculate the reward based
only on the effective horizon Tε, that is Smj (X

(i)) =∑j+Tε

k=j αk−jrj , and obtain an additional speed up.
The update equation remains exactly as in (6).

3.3. Average reward MDP

The average reward criterion requires a more elabo-
rated scheme for trajectory generations. The main
problem is that there is no finite horizon to consider as
in the previous cases. One may employ the following
two alternatives. The first is to adopt the finite horizon
reward Algorithm 3.1 and then calculate the average
reward as the cumulative reward divided by the total
time. The drawback of this approach is that the re-
ward of actions that were performed in the distant past
or future affect the score of the whole trajectory. Un-
der the assumption that for every strategy there exists
at least one recurrent state a second alternative may

be suggested based on the concept of regeneration. Ac-
cording to this concept, when reaching the recurrent
state the process “starts over” again. Let mrec ∈ M
be a recurrent state. According to the regenerative
method the average reward can be calculated as the
ratio between the expected reward per cycle and the
expected cycle time. Note that a cycle is defined as
the time between two consecutive visits of the process
to the same recurrent state. We describe this idea in
Algorithm 3.2.

Algorithm 3.2 Trajectory generation for the av-
erage reward MDP
Input: P — Action probability; mrec — A recurrent
state; Tmax — Trajectory length.
For (i = 1 to N):

1. Start from some given initial state m0, set t = 0.
2. Repeat until t = Tmax

Same sampling as steps 2(a)-(c) in Algorithm 3.1.
3. Let τ0 = 0, and let τ` = min{t > τ`−1, s.t. mt =

mrec}, (if the minimum is not attained we set τ` =
∞). Let last = max{` s.t. τ` < ∞} denote the
total number of generated regenerative cycles (last
return to the mrec).
Calculate the reward per cycle for each state in
the trajectory, starting at τ1 until τlast. That is,
for τ1 < j < τlast:

Smj (X
(i)) =

∑min{τ`:τ`>j}−1
k=max{τ`:τ`≤j} r

(i)
k

min{τ` : τ` > j} −max{τ` : τ` ≤ j} .

Output: Score vector per state {Smj}N
i=1.

The score of each action is taken as the average reward
of the cycle. Note that for every action in a given cycle
has the same score. Observe that we can calculate the
score only for states from the first regeneration time
(τ1) until the last regeneration time (τlast) since the
cycle reward cannot be estimated without reference
to the regeneration time. The update of P remains
identical to (6).

4. Parameterized Policies

Until now we assumed that the state space is finite and
that sampling was performed according to the matrix
P which was assumed to be M×A matrix. We now ex-
tend our framework to a large state space. We assume
that the policy is parameterized by a small number
of parameters (as in Konda & Tsitsiklis, 2003). The
CE method replaces the traditional gradient-based
method and is used for optimizing over the parameter-
ized policy. Let us denote the parameter space by Θ.

Assume that every θ ∈ Θ induces a strategy µ(a|m, θ).
The strategy µ(a|m, θ) is defined by the probability of
choosing action a when in state m according to the
parameter θ. Instead of looking for the best strat-
egy, we look for the best parameter θ ∈ Θ. All three
reward criteria that were discussed above are still rele-
vant, with appropriate modifications, as the sampling
algorithm is virtually the same.

The CE optimization is performed by assuming that
the parameters θ ∈ Θ are drawn from a distribution
f(θ; v) and optimization is performed by solving (3).
As before, if f(θ; v) belongs to a NEF, then an analyti-
cal solution of Eq. (3) is available. We emphasize that
by using the CE method there is no need to assume
anything on the parameterization of µ(·|m, θ). Specif-
ically, µ(·|m, θ) may be non-differentiable with respect
to θ (as opposed to most policy search algorithms).

5. Experiments

In this subsection we describe experiments with pro-
vide two “traditional” domains. The first domain is a
maze world with stochastic transitions and the second
is an inventory control problem.

5.1. The Maze Problem

Algorithm 3.1 for stochastic shortest path MDPs was
tested for a maze problem, which presents a two-
dimensional grid world. The agent moves in the grid
in four possible directions. The goal of the agent is
to move from the upper-left corner (the starting state)
to the lower-right corner (the goal). The maze con-
tains obstacles (“walls”) into which movement is not
allowed. The reward for every allowed movement until
reaching the goal is −1. In addition we introduce:

1. A small (failure) probability not to succeed mov-
ing in an allowed direction.

2. A small probability of succeeding moving in the
forbidden direction (“moving into a wall”).1

3. A high cost for trying to move in a forbidden di-
rection.

We run the algorithm for several mazes and the opti-
mal policy was always found.

In Figure 1 we present the results for 20 × 20 maze.
We set the following parameters: N = 1000, ρ = 3%,
α = 0.7 and T = 1500 (maximal path length). The
initial policy was a uniformly random one. The cost
of moves were random variables uniformly distributed
between 0.5 and 1.5 and between 25 and 75 (expected

1This is required, for some extent, for making sure that
the goal is reached in the first iteration.

cost are equal to 1 and 50) for the allowed and forbid-
den moves, respectively. The success probabilities in
the allowed and forbidden states were taken 0.95 and
0.05, respectively. In Figure 1 we plot the possible
(P ma > 0.01) trajectories of the algorithm in the end
of each iteration. The convergence is quite fast and
very accurate. In all our experiments CE found the
target exactly, within 5-10 iterations and CPU time
was less than one minute (on a 500MHz Pentium pro-
cessor). Note the successive refinement of the policy
in Figure 1, as the P ma of suboptimal entries was re-
duced quickly to 0.

5.2. The Inventory Control Problem

The inventory control (IC) is a well studied problem in
the operation research community. The decision maker
in this problem can be viewed as a shop owner, who
buys and sells certain commodities (say, k commodi-
ties). At each stage (day) t he faces the dilemma of
how much stock to order from each type of commodity,
provided that the customers’ demand of the ith com-
modity dt(i) is a random variable with an unknown
distribution. The decision maker’s expenses consist of
the purchase price, a price paid for holding surplus
stock, and penalty for back-logged demand. In MDP
terms, the state space is the amount of available stock
of each commodity (M = IRk for continuous stock or
M = {. . . ,−2,−1, 0, 1, . . .}k for discrete stock), with
negative stock representing unsatisfied demand. De-
note by mt(i) the inventory of commodity i at the be-
ginning of period t, by at(i) the ordered stock at that
period and by dt(i) the demand of it, then mt+1(i),
which is the inventory of commodity i at the begin-
ning of period t + 1, is given by:

mt+1(i) = mt(i) + at(i)− dt(i) i = 1, . . . , k.
There are many possible cost functions of interest. We
shall assume the following linear cost function:

r(mt, at) =
k∑

i=1

(
h(i)max{0,mt(i)}+

b(i)max{0,−mt(i)}+ c(i)at(i)
)
,

where for the ith commodity h(i) is the holding cost,
b(i) is the back-logged demand cost, and c(i) is the
price of one unit stock. We let Dmax denote the max-
imal number of items that can be held in stock. Ob-
viously, the state and action spaces are huge even for
relatively small k. For a single commodity problem
and the average reward criterion, if the demand dt is
IID, then there exists (Bertsekas, 1995) an optimal
stationary threshold policy a∗(m) such that a∗(m) =
max{Mmax−m, 0} for some Mmax, which depends on
the problem parameters. Note that in contrast to SA
(see, e.g. Konda & Tsitsiklis, 2003) one does not have

Iteration 1:

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Iteration 2:

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Iteration 3:

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Iteration 4:

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Figure 1. Results for the 20× 20 maze. The arrows repre-
sent a probability of going in a direction which is higher
than 0.01.

Figure 2. Results for instance 1 of the IC problem

Instance #1

600

650

700

750

800

850

0 10 20 30 40 50 60 70 80 90 100

Threshold

A
ve

ra
ge CE convergence

zone Optimum

to make any smoothness assumptions for applying CE
policy search. In the case of multiple commodities, an
educated guess would be to use a threshold policy for
every commodity separately (but this may lead to a
suboptimal solution.)

We have tested the CE policy search algorithm for
parameterized policies on several IC problems while
minimizing the average cost. As regeneration points
we took the zero state (zero stock value). We look
for a threshold policy, and all we need to do is to find
the optimal threshold (or thresholds if there are multi-
ple commodities.) Each observation cost was averaged
over `=10 regenerative cycles to reduce variance. Ob-
viously, since the threshold is non-negative and since
it can not exceed Dmax, we can sample it from a Beta
distribution, multiply it by the maximal demand and
round it to the closest integer number. At the first it-
eration the threshold was generated from a Beta(1,1)
distribution, i.e. from a uniform distribution. At each
iteration we updated the parameters in the Beta dis-
tribution according to Algorithm 2.1. The update of
the parameters is somewhat more complex in this case
as the distribution is not NEF. However, the update
equation can be efficiently solved numerically.

We started with running an IC problem with a sin-
gle commodity. We let c = 10, h = 5, b = 7, and
Dmax = 100. The demand distribution for was a fixed
demand function chosen randomly (in the initial phase
we sampled the demand for every d from a uniform dis-
tribution, and normalized.) We run the CE method
with N = 100 and ρ = 1%. The number of iterations
was 5-11, and the execution time 1-4 seconds. Fig-
ure 2 shows the calculated average cost curves for and
the range of thresholds that the algorithm converged
to. The CE policy search algorithm was also tested
for a multi-commodity IC problem. In this problem
there are seven commodities with different costs pa-
rameters and demand distributions2, as specified in

2By U [0, a] we mean uniform over {0, 1, . . . , a}; Poisson
and exponential distributions were truncated at 11 and
normalized so that the sum is 1; the reverse exponential

Table 1. The total storage space was Dmax = 30.
The multi-commodity IC problem is in general a diffi-
cult problem, but a reasonable (sub-optimal) heuristic
is to use a threshold policy for each commodity. We
run the policy search 10 times using threshold policies.
The relative error (comparing to the optimal thresh-
old policy, obtained using a time consuming heuristic
branch and bound search) was 0.1% (±0.05%) with
20 iterations (±5) and average execution time of 650
seconds. The advantage of the CE method is that by
understanding the problem (and the structure of the
solution, in this case), a robust and efficient method
for learning a nearly optimal strategy can be easily
derived.

Table 1. IC multi-commodity problem parameters
i c(i) h(i) b(i) Distribution

1 10 3 7 U [0, 11]
2 14 7 4 U [0, 24]
3 11 1 7 U [0, 9]
4 17 8 6 U [0, 19]
5 12 4 2 Poisson (µ = 4)
6 8 6 8 Exponential (λ = 0.3)
7 10 9 5 Reverse exp. (λ = 0.3)

6. Conclusion

We presented a framework for policy search when the
environment is unknown. A significant advantage of
the CE method which was exploited in the IC problem
is that knowledge of the structure of “good” policies
can be easily exploited to facilitate an efficient search.
Another advantage of the CE method is the speed of
convergence and the small number of parameters that
need to be tweaked for guaranteeing convergence.

There are plenty of off-the-shelf optimization algo-
rithms that may be considered for policy search. The
advantage of using the CE method is that there is no
need to estimate gradients as required by many algo-
rithms (e.g. steepest or conjugate gradient). Algo-
rithms that are based on proximity relation (such as
simulated annealing or guided local search) are also
sensitive to the sampling error. Since gradients are
not used when using the CE method, the CE method
is expected to be more robust than other methods.

Future research includes: theoretical study of conver-
gence; extension of the CE framework to a hierarchical
framework; incorporating exploration mechanisms, as
currently exploration is based on the initial random
policy; and experimentation the CE method for multi-
agent problems.

Acknowledgements. We are grateful for three
anonymous reviewers for significantly improving the

distribution was created from the exponential distribution
by reversing it.

presentation of this work. S.M. was partially sup-
ported by the ARO under grant DAAD10-00-1-0466.

References

Barto, A., Sutton, R., & Anderson, C. (1983). Neuron-
like adaptive elements that can solve difficult learning
control problems. IEEE Transactions on Systems, Man,
and Cybernetics, 13, 834–846.

Baxter, J., Bartlett, P. L., & Weaver, L. (2001). Experi-
ments with infinite-horizon, policy-gradient estimation.
Journal of Artificial Intelligence Research, 15, 351–381.

Bertsekas, D. (1995). Dynamic programming and optimal
control, vol. I. Athena Scientific.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic pro-
gramming. Athena Scientific.

Borkar, V., & Meyn, S. (2000). The O.D.E. method for
convergence of stochastic approximation and reinforce-
ment learning. SIAM J. Control Optim., 38, 447–469.

de-Boer, P., Kroese, D., Mannor, S., & Rubinstein, R.
(2003). A tutorial on the cross-entropy method. Sub-
mitted to the Annals of Operation Research.

Homem de Mello, T., & Rubinstein, R. (2002). Rare event
estimation for static models via cross-entropy and im-
portance sampling. Manuscript, Technion, Haifa, Israel.

Kaelbling, L., Littman, M., & Moore., A. (1996). Rein-
forcement learning - a survey. Journal of Artificial In-
telligence Research, 4, 237–285.

Kearns, M., & Singh, S. (1998). Near-optimal reinforce-
ment learning in polynomial time. Proc. of the 15th
Int. Conf. on Machine Learning (pp. 260–268). Morgan
Kaufmann.

Konda, V. R., & Tsitsiklis, J. N. (2003). Actor-critic al-
gorithms. To appear in SIAM Journal on Control and
Optimization.

Puterman, M. (1994). Markov decision processes. Wiley-
Interscience.

Rosenstein, M. T., & Barto, A. G. (2001). Robot weightlift-
ing by direct policy search. Proceedings of the Seven-
teenth International Joint Conference on Artificial In-
telligence (pp. 839–846). Morgan Kaufmann.

Rubinstein, R. Y. (1999). The simulated entropy method
for combinatorial and continuous optimization. Method-
ology and Computing in Applied Probability, 2, 127–190.

Sutton, R., & Barto, A. (1998). Reinforcement learning.
MIT Press.

Tsitsiklis, J. (1994). Asynchronous stochastic approxima-
tion and Q-learning. Machine Learning, 16, 185–202.

Watkins, C. (1989). Learning from delayed rewards. Doc-
toral dissertation, Cambridge University.

Williams, R. J. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8, 229–256.

