
Evolution Strategies as a
Scalable Alternative to Reinforcement Learning

Tim Salimans Jonathan Ho Xi Chen Szymon Sidor Ilya Sutskever
OpenAI

Abstract

We explore the use of Evolution Strategies (ES), a class of black box optimization
algorithms, as an alternative to popular MDP-based RL techniques such as Q-
learning and Policy Gradients. Experiments on MuJoCo and Atari show that ES
is a viable solution strategy that scales extremely well with the number of CPUs
available: By using a novel communication strategy based on common random
numbers, our ES implementation only needs to communicate scalars, making it
possible to scale to over a thousand parallel workers. This allows us to solve 3D
humanoid walking in 10 minutes and obtain competitive results on most Atari
games after one hour of training. In addition, we highlight several advantages of
ES as a black box optimization technique: it is invariant to action frequency and
delayed rewards, tolerant of extremely long horizons, and does not need temporal
discounting or value function approximation.

1 Introduction

Developing agents that can accomplish challenging tasks in complex, uncertain environments is a key
goal of artificial intelligence. Recently, the most popular paradigm for analyzing such problems has
been using a class of reinforcement learning (RL) algorithms based on the Markov Decision Process
(MDP) formalism and the concept of value functions. Successes of this approach include systems
that learn to play Atari from pixels [Mnih et al., 2015], perform helicopter aerobatics Ng et al. [2006],
or play expert-level Go [Silver et al., 2016].

An alternative approach to solving RL problems is using black-box optimization. This approach
is known as direct policy search [Schmidhuber and Zhao, 1998], or neuro-evolution [Risi and
Togelius, 2015], when applied to neural networks. In this paper, we study Evolution Strategies (ES)
[Rechenberg and Eigen, 1973], a particular set of optimization algorithms in this class. We show
that ES can reliably train neural network policies, in a fashion well suited to be scaled up to modern
distributed computer systems, for controlling robots in the MuJoCo physics simulator [Todorov et al.,
2012] and playing Atari games with pixel inputs [Mnih et al., 2015]. Our key findings are as follows:

1. We found that the use of virtual batch normalization [Salimans et al., 2016] and other
reparameterizations of the neural network policy (section 2.2) greatly improve the reliability
of evolution strategies. Without these methods ES proved brittle in our experiments, but with
these reparameterizations we achieved strong results over a wide variety of environments.

2. We found the evolution strategies method to be highly parallelizable: by introducing a novel
communication strategy based on common random numbers, we are able to achieve linear
speedups in run time even when using over a thousand workers. In particular, using 1,440
workers, we have been able to solve the MuJoCo 3D humanoid task in under 10 minutes.

3. The data efficiency of evolution strategies was surprisingly good: we were able to match
the final performance of A3C [Mnih et al., 2016] on most Atari environments while using
between 3x and 10x as much data. The slight decrease in data efficiency is partly offset by a

ar
X

iv
:1

70
3.

03
86

4v
2 

 [
st

at
.M

L
] 

 7
 S

ep
 2

01
7



reduction in required computation of roughly 3x due to not performing backpropagation
and not having a value function. Our 1-hour ES results require about the same amount of
computation as the published 1-day results for A3C, while performing better on 23 games
tested, and worse on 28. On MuJoCo tasks, we were able to match the learned policy
performance of Trust Region Policy Optimization [TRPO; Schulman et al., 2015], using no
more than 10x as much data.

4. We found that ES exhibited better exploration behaviour than policy gradient methods like
TRPO: on the MuJoCo humanoid task, ES has been able to learn a very wide variety of gaits
(such as walking sideways or walking backwards). These unusual gaits are never observed
with TRPO, which suggests a qualitatively different exploration behavior.

5. We found the evolution strategies method to be robust: we achieved the aforementioned
results using fixed hyperparameters for all the Atari environments, and a different set of
fixed hyperparameters for all MuJoCo environments (with the exception of one binary hyper-
parameter, which has not been held constant between the different MuJoCo environments).

Black-box optimization methods have several highly attractive properties: indifference to the distribu-
tion of rewards (sparse or dense), no need for backpropagating gradients, and tolerance of potentially
arbitrarily long time horizons. However, they are perceived as less effective at solving hard RL
problems compared to techniques like Q-learning and policy gradients. The contribution of this work,
which we hope will renew interest in this class of methods and lead to new useful applications, is
a demonstration that evolution strategies can be competitive with competing RL algorithms on the
hardest environments studied by the deep RL community today, and that this approach can scale to
many more parallel workers.

2 Evolution Strategies

Evolution Strategies (ES) is a class of black box optimization algorithms [Rechenberg and Eigen,
1973, Schwefel, 1977] that are heuristic search procedures inspired by natural evolution: At every
iteration (“generation”), a population of parameter vectors (“genotypes”) is perturbed (“mutated”)
and their objective function value (“fitness”) is evaluated. The highest scoring parameter vectors are
then recombined to form the population for the next generation, and this procedure is iterated until the
objective is fully optimized. Algorithms in this class differ in how they represent the population and
how they perform mutation and recombination. The most widely known member of the ES class is
the covariance matrix adaptation evolution strategy [CMA-ES; Hansen and Ostermeier, 2001], which
represents the population by a full-covariance multivariate Gaussian. CMA-ES has been extremely
successful in solving optimization problems in low to medium dimension.

The version of ES we use in this work belongs to the class of natural evolution strategies (NES)
[Wierstra et al., 2008, 2014, Yi et al., 2009, Sun et al., 2009, Glasmachers et al., 2010a,b, Schaul et al.,
2011] and is closely related to the work of Sehnke et al. [2010]. Let F denote the objective function
acting on parameters θ. NES algorithms represent the population with a distribution over parameters
pψ(θ)—itself parameterized by ψ—and proceed to maximize the average objective value Eθ∼pψF (θ)
over the population by searching for ψ with stochastic gradient ascent. Specifically, using the score
function estimator for∇ψEθ∼pψF (θ) in a fashion similar to REINFORCE [Williams, 1992], NES
algorithms take gradient steps on ψ with the following estimator:

∇ψEθ∼pψF (θ) = Eθ∼pψ {F (θ)∇ψ log pψ(θ)}
For the special case where pψ is factored Gaussian (as in this work), the resulting gradient estimator
is also known as simultaneous perturbation stochastic approximation [Spall, 1992], parameter-
exploring policy gradients [Sehnke et al., 2010], or zero-order gradient estimation [Nesterov and
Spokoiny, 2011].

In this work, we focus on RL problems, so F (·) will be the stochastic return provided by an
environment, and θ will be the parameters of a deterministic or stochastic policy πθ describing an
agent acting in that environment, controlled by either discrete or continuous actions. Much of the
innovation in RL algorithms is focused on coping with the lack of access to or existence of derivatives
of the environment or policy. Such non-smoothness can be addressed with ES as follows. We
instantiate the population distribution pψ as an isotropic multivariate Gaussian with mean ψ and fixed
covariance σ2I , allowing us to write Eθ∼pψF (θ) in terms of a mean parameter vector θ directly: we

2



set Eθ∼pψF (θ) = Eε∼N(0,I) F (θ + σε). With this setup, our stochastic objective can be viewed as
a Gaussian-blurred version of the original objective F , free of non-smoothness introduced by the
environment or potentially discrete actions taken by the policy. Further discussion on how ES and
policy gradient methods cope with non-smoothness can be found in section 3.

With our objective defined in terms of θ, we optimize over θ directly using stochastic gradient ascent
with the score function estimator:

∇θ Eε∼N(0,I) F (θ + σε) =
1

σ
Eε∼N(0,I) {F (θ + σε) ε}

which can be approximated with samples. The resulting algorithm (1) repeatedly executes two phases:
1) Stochastically perturbing the parameters of the policy and evaluating the resulting parameters by
running an episode in the environment, and 2) Combining the results of these episodes, calculating a
stochastic gradient estimate, and updating the parameters.

Algorithm 1 Evolution Strategies
1: Input: Learning rate α, noise standard deviation σ, initial policy parameters θ0
2: for t = 0, 1, 2, . . . do
3: Sample ε1, . . . εn ∼ N (0, I)
4: Compute returns Fi = F (θt + σεi) for i = 1, . . . , n
5: Set θt+1 ← θt + α 1

nσ

∑n
i=1 Fiεi

6: end for

2.1 Scaling and parallelizing ES

ES is well suited to be scaled up to many parallel workers: 1) It operates on complete episodes, thereby
requiring only infrequent communication between workers. 2) The only information obtained by each
worker is the scalar return of an episode: if we synchronize random seeds between workers before
optimization, each worker knows what perturbations the other workers used, so each worker only
needs to communicate a single scalar to and from each other worker to agree on a parameter update.
ES thus requires extremely low bandwidth, in sharp contrast to policy gradient methods, which
require workers to communicate entire gradients. 3) It does not require value function approximations.
RL with value function estimation is inherently sequential: To improve upon a given policy, multiple
updates to the value function are typically needed to get enough signal. Each time the policy is
significantly changed, multiple iterations are necessary for the value function estimate to catch up.

A simple parallel version of ES is given in Algorithm 2. The main novelty here is that the algo-
rithm makes use of shared random seeds, which drastically reduces the bandwidth required for
communication between the workers.

Algorithm 2 Parallelized Evolution Strategies
1: Input: Learning rate α, noise standard deviation σ, initial policy parameters θ0
2: Initialize: n workers with known random seeds, and initial parameters θ0
3: for t = 0, 1, 2, . . . do
4: for each worker i = 1, . . . , n do
5: Sample εi ∼ N (0, I)
6: Compute returns Fi = F (θt + σεi)
7: end for
8: Send all scalar returns Fi from each worker to every other worker
9: for each worker i = 1, . . . , n do

10: Reconstruct all perturbations εj for j = 1, . . . , n using known random seeds
11: Set θt+1 ← θt + α 1

nσ

∑n
j=1 Fjεj

12: end for
13: end for

In practice, we implement sampling by having each worker instantiate a large block of Gaussian
noise at the start of training, and then perturbing its parameters by adding a randomly indexed subset
of these noise variables at each iteration. Although this means that the perturbations are not strictly

3



independent across iterations, we did not find this to be a problem in practice. Using this strategy,
we find that the second part of Algorithm 2 (lines 9-12) only takes up a small fraction of total time
spend for all our experiments, even when using up to 1,440 parallel workers. When using many more
workers still, or when using very large neural networks, we can reduce the computation required for
this part of the algorithm by having workers only perturb a subset of the parameters θ rather than
all of them: In this case the perturbation distribution pψ corresponds to a mixture of Gaussians, for
which the update equations remain unchanged. At the very extreme, every worker would perturb
only a single coordinate of the parameter vector, which means that we would be using pure finite
differences.

To reduce variance, we use antithetic sampling Geweke [1988], also known as mirrored sampling
Brockhoff et al. [2010] in the ES literature: that is, we always evaluate pairs of perturbations ε,−ε,
for Gaussian noise vector ε. We also find it useful to perform fitness shaping Wierstra et al. [2014] by
applying a rank transformation to the returns before computing each parameter update. Doing so
removes the influence of outlier individuals in each population and decreases the tendency for ES to
fall into local optima early in training. In addition, we apply weight decay to the parameters of our
policy network: this prevents the parameters from growing very large compared to the perturbations.

Unlike Wierstra et al. [2014] we did not see benefit from adapting σ during training, and we therefore
treat it as a fixed hyperparameter instead. We perform the optimization directly in parameter space;
exploring indirect encodings Stanley et al. [2009], van Steenkiste et al. [2016] is left for future work.

Evolution Strategies, as presented above, works with full-length episodes. In some rare cases this
can lead to low CPU utilization, as some episodes run for many more steps than others. For this
reason, we cap episode length at a constant m steps for all workers, which we dynamically adjust as
training progresses. For example, by setting m to be equal to twice the mean number of steps taken
per episode, we can guarantee that CPU utilization stays above 50% in the worst case.

2.2 The impact of network parameterization

Whereas RL algorithms like Q-learning and policy gradients explore by sampling actions from a
stochastic policy, Evolution Strategies derives learning signal from sampling instantiations of policy
parameters. Exploration in ES is thus driven by parameter perturbation. For ES to improve upon
parameters θ, some members of the population must achieve better return than others: i.e. it is crucial
that Gaussian perturbation vectors ε occasionally lead to new individuals θ + σε with better return.

For the Atari environments, we found that Gaussian parameter perturbations on DeepMind’s con-
volutional architectures [Mnih et al., 2015] did not always lead to adequate exploration: For some
environments, randomly perturbed parameters tended to encode policies that always took one specific
action regardless of the state that was given as input. However, we discovered thatwe could match the
performance of policy gradient methods for most games by using virtual batch normalization [Sali-
mans et al., 2016] in the policy specification. Virtual batch normalization is precisely equivalent to
batch normalization [Ioffe and Szegedy, 2015] where the minibatch used for calculating normalizing
statistics is chosen at the start of training and is fixed. This change in parameterization makes the
policy more sensitive to very small changes in the input image at the early stages of training when the
weights of the policy are random, ensuring that the policy takes a wide-enough variety of actions
to gather occasional rewards. For most applications, a downside of virtual batch normalization is
that it makes training more expensive. For our application, however, the minibatch used to calculate
the normalizing statistics is much smaller than the number of steps taken during a typical episode,
meaning that the overhead is negligible.

For the MuJoCo tasks, we achieved good performance on nearly all the environments with the
standard multilayer perceptrons mapping to continuous actions. However, we observed that for some
environments, we could encourage more exploration by discretizing the actions. This forced the
actions to be non-smooth with respect to input observations and parameter perturbations, and thereby
encouraged a wide variety of behaviors to be played out over the course of rollouts.

3 Smoothing in parameter space versus smoothing in action space

As mentioned in section 2, a large source of difficulty in RL stems from the lack of informative
gradients of policy performance: such gradients may not exist due to non-smoothness of the environ-

4



ment or policy, or may only be available as high-variance estimates because the environment usually
can only be accessed via sampling. Explicitly, suppose we wish to solve general decision problems
that give a return R(a) after we take a sequence of actions a = {a1, . . . , aT }, where the actions are
determined by a either a deterministic or a stochastic policy function at = π(s; θ). The objective we
would like to optimize is thus

F (θ) = R(a(θ)).

Since the actions are allowed to be discrete and the policy is allowed to be deterministic, F (θ)
can be non-smooth in θ. More importantly, because we do not have explicit access to the under-
lying state transition function of our decision problems, the gradients cannot be computed with
a backpropagation-like algorithm. This means we cannot directly use standard gradient-based
optimization methods to find a good solution for θ.

In order to both make the problem smooth and to have a means of to estimate its gradients, we need
to add noise. Policy gradient methods add the noise in action space, which is done by sampling the
actions from an appropriate distribution. For example, if the actions are discrete and π(s; θ) calculates
a score for each action before selecting the best one, then we would sample an action a(ε, θ) (here ε is
the noise source) from a categorical distribution over actions at each time period, applying a softmax
to the scores of each action. Doing so yields the objective FPG(θ) = EεR(a(ε, θ)), with gradients

∇θFPG(θ) = Eε {R(a(ε, θ))∇θ log p(a(ε, θ); θ)} .

Evolution strategies, on the other hand, add the noise in parameter space. That is, they perturb the
parameters as θ̃ = θ + ξ, with ξ from a multivariate Gaussian distribution, and then pick actions
as at = a(ξ, θ) = π(s; θ̃). It can be interpreted as adding a Gaussian blur to the original objective,
which results in a smooth, differentiable cost FES(θ) = Eξ R(a(ξ, θ)), this time with gradients

∇θFES(θ) = Eξ
{
R(a(ξ, θ))∇θ log p(θ̃(ξ, θ); θ)

}
.

The two methods for smoothing the decision problem are thus quite similar, and can be made even
more so by adding noise to both the parameters and the actions.

3.1 When is ES better than policy gradients?

Given these two methods of smoothing the decision problem, which should we use? The answer
depends strongly on the structure of the decision problem and on which type of Monte Carlo
estimator is used to estimate the gradients ∇θFPG(θ) and ∇θFES(θ). Suppose the correlation
between the return and the individual actions is low (as is true for any hard RL problem). Assuming
we approximate these gradients using simple Monte Carlo (REINFORCE) with a good baseline on
the return, we have

Var[∇θFPG(θ)] ≈ Var[R(a)] Var[∇θ log p(a; θ)],
Var[∇θFES(θ)] ≈ Var[R(a)] Var[∇θ log p(θ̃; θ)].

If both methods perform a similar amount of exploration, Var[R(a)] will be similar for both ex-
pressions. The difference will thus be in the second term. Here we have that ∇θ log p(a; θ) =∑T
t=1∇θ log p(at; θ) is a sum of T uncorrelated terms, so that the variance of the policy gradi-

ent estimator will grow nearly linearly with T . The corresponding term for evolution strategies,
∇θ log p(θ̃; θ), is independent of T . Evolution strategies will thus have an advantage compared to
policy gradients for long episodes with very many time steps. In practice, the effective number of
steps T is often reduced in policy gradient methods by discounting rewards. If the effects of actions
are short-lasting, this allows us to dramatically reduce the variance in our gradient estimate, and
this has been critical to the success of applications such as Atari games. However, this discounting
will bias our gradient estimate if actions have long lasting effects. Another strategy for reducing the
effective value of T is to use value function approximation. This has also been effective, but once
again runs the risk of biasing our gradient estimates. Evolution strategies is thus an attractive choice
if the effective number of time steps T is long, actions have long-lasting effects, and if no good value
function estimates are available.

5



3.2 Problem dimensionality

The gradient estimate of ES can be interpreted as a method for randomized finite differences in
high-dimensional space. Indeed, using the fact that Eε∼N(0,I) {F (θ) ε/σ} = 0, we get

∇θη(θ) = Eε∼N(0,I) {F (θ + σε) ε/σ} = Eε∼N(0,I) {(F (θ + σε)− F (θ)) ε/σ}

It is now apparent that ES can be seen as computing a finite difference derivative estimate in
a randomly chosen direction, especially as σ becomes small. The resemblance of ES to finite
differences suggests the method will scale poorly with the dimension of the parameters θ. Theoretical
analysis indeed shows that for general non-smooth optimization problems, the required number of
optimization steps scales linearly with the dimension [Nesterov and Spokoiny, 2011]. However, it
is important to note that this does not mean that larger neural networks will perform worse than
smaller networks when optimized using ES: what matters is the difficulty, or intrinsic dimension, of
the optimization problem. To see that the dimensionality of our model can be completely separate
from the effective dimension of the optimization problem, consider a regression problem where we
approximate a univariate variable y with a linear model ŷ = x · w: if we double the number of
features and parameters in this model by concatenating x with itself (i.e. using features x′ = (x,x)),
the problem does not become more difficult. The ES algorithm will do exactly the same thing when
applied to this higher dimensional problem, as long as we divide the standard deviation of the noise
by two, as well as the learning rate.

In practice, we observe slightly better results when using larger networks with ES. For example, we
tried both the larger network and smaller network used in A3C [Mnih et al., 2016] for learning Atari
2600 games, and on average obtained better results using the larger network. We hypothesize that this
is due to the same effect that makes standard gradient-based optimization of large neural networks
easier than for small ones: large networks have fewer local minima [Kawaguchi, 2016].

3.3 Advantages of not calculating gradients

In addition to being easy to parallelize, and to having an advantage in cases with long action sequences
and delayed rewards, black box optimization algorithms like ES have other advantages over RL
techniques that calculate gradients. The communication overhead of implementing ES in a distributed
setting is lower than for competing RL methods such as policy gradients and Q-learning, as the only
information that needs to be communicated across processes are the scalar return and the random
seed that was used to generate the perturbations ε, rather than a full gradient. Also, ES can deal with
maximally sparse and delayed rewards; only the total return of an episode is used, whereas other
methods use individual rewards and their exact timing.

By not requiring backpropagation, black box optimizers reduce the amount of computation per
episode by about two thirds, and memory by potentially much more. In addition, not explicitly
calculating an analytical gradient protects against problems with exploding gradients that are common
when working with recurrent neural networks. By smoothing the cost function in parameter space, we
reduce the pathological curvature that causes these problems: bounded cost functions that are smooth
enough can’t have exploding gradients. At the extreme, ES allows us to incorporate non-differentiable
elements into our architecture, such as modules that use hard attention [Xu et al., 2015].

Black box optimization methods are uniquely suited to low precision hardware for deep learning.
Low precision arithmetic, such as in binary neural networks, can be performed much cheaper than
at high precision. When optimizing such low precision architectures, biased low precision gradient
estimates can be a problem when using gradient-based methods. Similarly, specialized hardware for
neural network inference, such as TPUs [Jouppi et al., 2017], can be used directly when performing
optimization using ES, while their limited memory usually makes backpropagation impossible.

By perturbing in parameter space instead of action space, black box optimizers are naturally invariant
to the frequency at which our agent acts in the environment. For MDP-based reinforcement learning
algorithms, on the other hand, it is well known that frameskip is a crucial parameter to get right for
the optimization to succeed [Braylan et al., 2005]. While this is usually a solvable problem for games
that only require short-term planning and action, it is a problem for learning longer term strategic
behavior. For these problems, RL needs hierarchy to succeed [Parr and Russell, 1998], which is not
as necessary when using black box optimization.

6



4 Experiments

4.1 MuJoCo

We evaluated ES on a benchmark of continuous robotic control problems in the OpenAI Gym
[Brockman et al., 2016] against a highly tuned implementation of Trust Region Policy Optimiza-
tion [Schulman et al., 2015], a policy gradient algorithm designed to efficiently optimize neural
network policies. We tested on both classic problems, like balancing an inverted pendulum, and more
difficult ones found in recent literature, like learning 2D hopping and walking gaits. The environments
were simulated by MuJoCo [Todorov et al., 2012].

We used both ES and TRPO to train policies with identical architectures: multilayer perceptrons with
two 64-unit hidden layers separated by tanh nonlinearities. We found that ES occasionally benefited
from discrete actions, since continuous actions could be too smooth with respect to parameter
perturbation and could hamper exploration (see section 2.2). For the hopping and swimming tasks,
we discretized the actions for ES into 10 bins for each action component.

We found that ES was able to solve these tasks up to TRPO’s final performance after 5 million
timesteps of environment interaction. To obtain this result, we ran ES over 6 random seeds and
compared the mean learning curves to similarly computed curves for TRPO. The exact sample
complexity tradeoffs over the course of learning are listed in Table 1, and detailed results are listed
in Table 3 of the supplement. Generally, we were able to solve the environments in less than 10x
penalty in sample complexity on the hard environments (Hopper and Walker2d) compared to TRPO.
On simple environments, we achieved up to 3x better sample complexity than TRPO.

Table 1: MuJoCo tasks: Ratio of ES timesteps to TRPO timesteps needed to reach various percentages
of TRPO’s learning progress at 5 million timesteps.

Environment 25% 50% 75% 100%
HalfCheetah 0.15 0.49 0.42 0.58
Hopper 0.53 3.64 6.05 6.94
InvertedDoublePendulum 0.46 0.48 0.49 1.23
InvertedPendulum 0.28 0.52 0.78 0.88
Swimmer 0.56 0.47 0.53 0.30
Walker2d 0.41 5.69 8.02 7.88

4.2 Atari

We ran our parallel implementation of Evolution Strategies, described in Algorithm 2, on 51 Atari
2600 games available in OpenAI Gym [Brockman et al., 2016]. We used the same preprocessing
and feedforward CNN architecture used by Mnih et al. [2016]. All games were trained for 1 billion
frames, which requires about the same amount of neural network computation as the published 1-day
results for A3C [Mnih et al., 2016] which uses 320 million frames. The difference is due to the
fact that ES does not perform backpropagation and does not use a value function. By parallelizing
the evaluation of perturbed parameters across 720 CPUs on Amazon EC2, we can bring down the
time required for the training process to about one hour per game. After training, we compared final
performance against the published A3C results and found that ES performed better in 23 games
tested, while it performed worse in 28. The full results are in Table 2 in the supplementary material.

4.3 Parallelization

ES is particularly amenable to parallelization because of its low communication bandwidth require-
ment (Section 2.1). We implemented a distributed version of Algorithm 2 to investigate how ES
scales with the number of workers. Our distributed implementation did not rely on special networking
setup and was tested on public cloud computing service Amazon EC2.

We picked the 3D Humanoid walking task from OpenAI Gym [Brockman et al., 2016] as the test
problem for our scaling experiment, because it is one of the most challenging continuous control
problems solvable by state-of-the-art RL techniques, which require about a day to learn on modern
hardware [Schulman et al., 2015, Duan et al., 2016a]. Solving 3D Humanoid with ES on one 18-
core machine takes about 11 hours, which is on par with RL. However, when distributed across 80

7



102 103

101

102

18 cores, 657 minutes

1440 cores, 10 minutes

Number of CPU cores

M
ed

ia
n

tim
e

to
so

lv
e

(m
in

ut
es

)

Figure 1: Time to reach a score of 6000 on
3D Humanoid with different number of CPU
cores. Experiments are repeated 7 times and
median time is reported.

Figure 2: Learning curves for Pong using
varying frame-skip parameters. Although per-
formance is stochastic, each setting leads to
about equally fast learning, with each run con-
verging in around 100 weight updates.

machines and 1, 440 CPU cores, ES can solve 3D Humanoid in just 10 minutes, reducing experiment
turnaround time by two orders of magnitude. Figure 1 shows that, for this task, ES is able to achieve
linear speedup in the number of CPU cores.

4.4 Invariance to temporal resolution

It is common practice in RL to have the agent decide on its actions in a lower frequency than is
used in the simulator that runs the environment. This action frequency, or frame-skip, is a crucial
parameter in many RL algorithms [Braylan et al., 2005]. If the frame-skip is set too high, the agent
cannot make its decisions at a fine enough timeframe to perform well in the environment. If, on
the other hand, the frameskip is set too low, the effective time length of the episode increases too
much, which deteriorates optimization performance as analyzed in section 3.1. An advantage of ES
is that its gradient estimate is invariant to the length of the episode, which makes it much more robust
to the action frequency. We demonstrate this by running the Atari game Pong using a frame skip
parameter in {1, 2, 3, 4}. As can be seen in Figure 2, the learning curves for each setting indeed look
very similar.

5 Related work

There have been many attempts at applying methods related to ES to train neural networks Risi and
Togelius [2015]. For Atari, Hausknecht et al. [2014] obtain impressive results. Sehnke et al. [2010]
proposed a method closely related the one investigated in our work. Koutník et al. [2013, 2010] and
Srivastava et al. [2012] have similarly applied an an ES method to RL problems with visual inputs,
but where the policy was compressed in a number of different ways. Natural evolution strategies
has been successfully applied to black box optimization Wierstra et al. [2008, 2014], as well as for
the training of the recurrent weights in recurrent neural networks Schmidhuber et al. [2007]. Stulp
and Sigaud [2012] explored similar approaches to black box optimization. An interesting hybrid of
black-box optimization and policy gradient methods was recently explored by Usunier et al. [2016].
Hyper-Neat Stanley et al. [2009] is an alternative approach to evolving both the weights of the neural
networks and their parameters. Derivative free optimization methods have also been analyzed in the
convex setting Duchi et al. [2015], Nesterov [2012].

The main contribution in our work is in showing that this class of algorithms is extremely scalable
and efficient to use on distributed hardware. We have shown that ES, when carefully implemented, is
competitive with competing RL algorithms in terms of performance on the hardest problems solvable
today, and is surprisingly close in terms of data efficiency, while taking less wallclock time to train.

8



6 Conclusion

We have explored Evolution Strategies, a class of black-box optimization algorithms, as an alternative
to popular MDP-based RL techniques such as Q-learning and policy gradients. Experiments on
Atari and MuJoCo show that it is a viable option with some attractive features: it is invariant to
action frequency and delayed rewards, and it does not need temporal discounting or value function
approximation. Most importantly, ES is highly parallelizable, which allows us to make up for a
decreased data efficiency by scaling to more parallel workers.

In future work, we plan to apply evolution strategies to those problems for which MDP-based
reinforcement learning is less well-suited: problems with long time horizons and complicated reward
structure. We are particularly interested in meta-learning, or learning-to-learn. A proof of concept
for meta-learning in an RL setting was given by Duan et al. [2016b]: Using black-box optimization
we hope to be able to extend these results. We also plan to examine combining ES with fast low
precision neural network implementations to fully make use of the gradient-free nature of ES.

References
Alex Braylan, Mark Hollenbeck, Elliot Meyerson, and Risto Miikkulainen. Frame skip is a powerful

parameter for learning to play atari. Space, 1600:1800, 2005.

Dimo Brockhoff, Anne Auger, Nikolaus Hansen, Dirk V Arnold, and Tim Hohm. Mirrored sampling
and sequential selection for evolution strategies. In International Conference on Parallel Problem
Solving from Nature, pages 11–21. Springer, 2010.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In Proceedings of the 33rd International Conference
on Machine Learning (ICML), 2016a.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016b.

John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for
zero-order convex optimization: The power of two function evaluations. IEEE Transactions on
Information Theory, 61(5):2788–2806, 2015.

John Geweke. Antithetic acceleration of monte carlo integration in bayesian inference. Journal of
Econometrics, 38(1-2):73–89, 1988.

Tobias Glasmachers, Tom Schaul, and Jürgen Schmidhuber. A natural evolution strategy for multi-
objective optimization. In International Conference on Parallel Problem Solving from Nature,
pages 627–636. Springer, 2010a.

Tobias Glasmachers, Tom Schaul, Sun Yi, Daan Wierstra, and Jürgen Schmidhuber. Exponential natu-
ral evolution strategies. In Proceedings of the 12th annual conference on Genetic and evolutionary
computation, pages 393–400. ACM, 2010b.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159–195, 2001.

Matthew Hausknecht, Joel Lehman, Risto Miikkulainen, and Peter Stone. A neuroevolution approach
to general atari game playing. IEEE Transactions on Computational Intelligence and AI in Games,
6(4):355–366, 2014.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. arXiv preprint arXiv:1704.04760, 2017.

9



Kenji Kawaguchi. Deep learning without poor local minima. In Advances In Neural Information
Processing Systems, pages 586–594, 2016.

Jan Koutník, Faustino Gomez, and Jürgen Schmidhuber. Evolving neural networks in compressed
weight space. In Proceedings of the 12th annual conference on Genetic and evolutionary computa-
tion, pages 619–626. ACM, 2010.

Jan Koutník, Giuseppe Cuccu, Jürgen Schmidhuber, and Faustino Gomez. Evolving large-scale neural
networks for vision-based reinforcement learning. In Proceedings of the 15th annual conference
on Genetic and evolutionary computation, pages 1061–1068. ACM, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy P Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, 2016.

Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, pages 1–40, 2011.

Andrew Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger, and
Eric Liang. Autonomous inverted helicopter flight via reinforcement learning. Experimental
Robotics IX, pages 363–372, 2006.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. Advances in
neural information processing systems, pages 1043–1049, 1998.

I. Rechenberg and M. Eigen. Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien
der Biologischen Evolution. Frommann-Holzboog Stuttgart, 1973.

Sebastian Risi and Julian Togelius. Neuroevolution in games: State of the art and open challenges.
IEEE Transactions on Computational Intelligence and AI in Games, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. In Advances in Neural Information Processing Systems,
pages 2226–2234, 2016.

Tom Schaul, Tobias Glasmachers, and Jürgen Schmidhuber. High dimensions and heavy tails
for natural evolution strategies. In Proceedings of the 13th annual conference on Genetic and
evolutionary computation, pages 845–852. ACM, 2011.

Juergen Schmidhuber and Jieyu Zhao. Direct policy search and uncertain policy evaluation. In Aaai
spring symposium on search under uncertain and incomplete information, stanford univ, pages
119–124, 1998.

Jürgen Schmidhuber, Daan Wierstra, Matteo Gagliolo, and Faustino Gomez. Training recurrent
networks by evolino. Neural computation, 19(3):757–779, 2007.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, pages 1889–1897, 2015.

H.-P. Schwefel. Numerische optimierung von computer-modellen mittels der evolutionsstrategie.
1977.

Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and Jürgen Schmid-
huber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–559, 2010.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

10



James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

Rupesh Kumar Srivastava, Jürgen Schmidhuber, and Faustino Gomez. Generalized compressed
network search. In International Conference on Parallel Problem Solving from Nature, pages
337–346. Springer, 2012.

Kenneth O Stanley, David B D’Ambrosio, and Jason Gauci. A hypercube-based encoding for evolving
large-scale neural networks. Artificial life, 15(2):185–212, 2009.

Freek Stulp and Olivier Sigaud. Policy improvement methods: Between black-box optimization and
episodic reinforcement learning. 2012.

Yi Sun, Daan Wierstra, Tom Schaul, and Juergen Schmidhuber. Efficient natural evolution strategies.
In Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages
539–546. ACM, 2009.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
5026–5033. IEEE, 2012.

Nicolas Usunier, Gabriel Synnaeve, Zeming Lin, and Soumith Chintala. Episodic exploration for
deep deterministic policies: An application to starcraft micromanagement tasks. arXiv preprint
arXiv:1609.02993, 2016.

Sjoerd van Steenkiste, Jan Koutník, Kurt Driessens, and Jürgen Schmidhuber. A wavelet-based
encoding for neuroevolution. In Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference, pages 517–524. ACM, 2016.

Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evolution strategies. In
Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelli-
gence). IEEE Congress on, pages 3381–3387. IEEE, 2008.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. Journal of Machine Learning Research, 15(1):949–980, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C Courville, Ruslan Salakhutdinov,
Richard S Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In ICML, volume 14, pages 77–81, 2015.

Sun Yi, Daan Wierstra, Tom Schaul, and Jürgen Schmidhuber. Stochastic search using the natural
gradient. In Proceedings of the 26th Annual International Conference on Machine Learning, pages
1161–1168. ACM, 2009.

11



Game DQN A3C FF, 1 day HyperNEAT ES FF, 1 hour A2C FF

Amidar 133.4 283.9 184.4 112.0 548.2
Assault 3332.3 3746.1 912.6 1673.9 2026.6
Asterix 124.5 6723.0 2340.0 1440.0 3779.7
Asteroids 697.1 3009.4 1694.0 1562.0 1733.4
Atlantis 76108.0 772392.0 61260.0 1267410.0 2872644.8
Bank Heist 176.3 946.0 214.0 225.0 724.1
Battle Zone 17560.0 11340.0 36200.0 16600.0 8406.2
Beam Rider 8672.4 13235.9 1412.8 744.0 4438.9
Berzerk 1433.4 1394.0 686.0 720.6
Bowling 41.2 36.2 135.8 30.0 28.9
Boxing 25.8 33.7 16.4 49.8 95.8
Breakout 303.9 551.6 2.8 9.5 368.5
Centipede 3773.1 3306.5 25275.2 7783.9 2773.3
Chopper Command 3046.0 4669.0 3960.0 3710.0 1700.0
Crazy Climber 50992.0 101624.0 0.0 26430.0 100034.4
Demon Attack 12835.2 84997.5 14620.0 1166.5 23657.7
Double Dunk 21.6 0.1 2.0 0.2 3.2
Enduro 475.6 82.2 93.6 95.0 0.0
Fishing Derby 2.3 13.6 49.8 49.0 33.9
Freeway 25.8 0.1 29.0 31.0 0.0
Frostbite 157.4 180.1 2260.0 370.0 266.6
Gopher 2731.8 8442.8 364.0 582.0 6266.2
Gravitar 216.5 269.5 370.0 805.0 256.2
Ice Hockey 3.8 4.7 10.6 4.1 4.9
Kangaroo 2696.0 106.0 800.0 11200.0 1357.6
Krull 3864.0 8066.6 12601.4 8647.2 6411.5
Montezuma’s Revenge 50.0 53.0 0.0 0.0 0.0
Name This Game 5439.9 5614.0 6742.0 4503.0 5532.8
Phoenix 28181.8 1762.0 4041.0 14104.7
Pit Fall 123.0 0.0 0.0 8.2
Pong 16.2 11.4 17.4 21.0 20.8
Private Eye 298.2 194.4 10747.4 100.0 100.0
Q*Bert 4589.8 13752.3 695.0 147.5 15758.6
River Raid 4065.3 10001.2 2616.0 5009.0 9856.9
Road Runner 9264.0 31769.0 3220.0 16590.0 33846.9
Robotank 58.5 2.3 43.8 11.9 2.2
Seaquest 2793.9 2300.2 716.0 1390.0 1763.7
Skiing 13700.0 7983.6 15442.5 15245.8
Solaris 1884.8 160.0 2090.0 2265.0
Space Invaders 1449.7 2214.7 1251.0 678.5 951.9
Star Gunner 34081.0 64393.0 2720.0 1470.0 40065.6
Tennis 2.3 10.2 0.0 4.5 11.2
Time Pilot 5640.0 5825.0 7340.0 4970.0 4637.5
Tutankham 32.4 26.1 23.6 130.3 194.3
Up and Down 3311.3 54525.4 43734.0 67974.0 75785.9
Venture 54.0 19.0 0.0 760.0 0.0
Video Pinball 20228.1 185852.6 0.0 22834.8 46470.1
Wizard of Wor 246.0 5278.0 3360.0 3480.0 1587.5
Yars Revenge 7270.8 24096.4 16401.7 8963.5
Zaxxon 831.0 2659.0 3000.0 6380.0 5.6

Table 2: Final results obtained using Evolution Strategies on Atari 2600 games (feedforward CNN
policy, deterministic policy evaluation, averaged over 10 re-runs with up to 30 random initial no-ops),
and compared to results for DQN and A3C from Mnih et al. [2016] and HyperNEAT from Hausknecht
et al. [2014]. A2C is our synchronous variant of A3C, and its reported scores are obtained with 320M
training frames with the same evaluation setup as for the ES results. All methods were trained on raw
pixel input.

12



Ta
bl

e
3:

M
uJ

oC
o

ta
sk

s:
R

at
io

of
E

S
tim

es
te

ps
to

T
R

PO
tim

es
te

ps
ne

ed
ed

to
re

ac
h

va
ri

ou
s

pe
rc

en
ta

ge
s

of
T

R
PO

’s
le

ar
ni

ng
pr

og
re

ss
at

5
m

ill
io

n
tim

es
te

ps
.T

he
se

re
su

lts
w

er
e

co
m

pu
te

d
fr

om
E

S
le

ar
ni

ng
cu

rv
es

av
er

ag
ed

ov
er

6
re

ru
ns

.
E

nv
ir

on
m

en
t

%
T

R
PO

fin
al

sc
or

e
T

R
PO

sc
or

e
T

R
PO

tim
es

te
ps

E
S

tim
es

te
ps

E
S

tim
es

te
ps

/T
R

PO
tim

es
te

ps
H

al
fC

he
et

ah
25

%
-1

.3
5

9.
05

e+
05

1.
36

e+
05

0.
15

50
%

79
3.

55
1.

70
e+

06
8.

28
e+

05
0.

49
75

%
15

89
.8

3
3.

34
e+

06
1.

42
e+

06
0.

42
10

0%
23

85
.7

9
5.

00
e+

06
2.

88
e+

06
0.

58
H

op
pe

r
25

%
87

7.
45

7.
29

e+
05

3.
83

e+
05

0.
53

50
%

17
18

.1
6

1.
03

e+
06

3.
73

e+
06

3.
64

75
%

25
61

.1
1

1.
59

e+
06

9.
63

e+
06

6.
05

10
0%

34
03

.4
6

4.
56

e+
06

3.
16

e+
07

6.
94

In
ve

rt
ed

D
ou

bl
eP

en
du

lu
m

25
%

23
58

.9
8

8.
73

e+
05

3.
98

e+
05

0.
46

50
%

46
09

.6
8

9.
65

e+
05

4.
66

e+
05

0.
48

75
%

68
74

.0
3

1.
07

e+
06

5.
30

e+
05

0.
49

10
0%

91
04

.0
7

4.
39

e+
06

5.
39

e+
06

1.
23

In
ve

rt
ed

Pe
nd

ul
um

25
%

27
6.

59
2.

21
e+

05
6.

25
e+

04
0.

28
50

%
51

9.
15

2.
73

e+
05

1.
43

e+
05

0.
52

75
%

75
3.

17
3.

25
e+

05
2.

55
e+

05
0.

78
10

0%
10

00
.0

0
5.

17
e+

05
4.

55
e+

05
0.

88
Sw

im
m

er
25

%
41

.9
7

1.
04

e+
06

5.
88

e+
05

0.
56

50
%

70
.7

3
1.

82
e+

06
8.

52
e+

05
0.

47
75

%
99

.6
8

2.
33

e+
06

1.
23

e+
06

0.
53

10
0%

12
8.

25
4.

59
e+

06
1.

39
e+

06
0.

30
W

al
ke

r2
d

25
%

95
7.

68
1.

55
e+

06
6.

43
e+

05
0.

41
50

%
19

16
.4

8
2.

27
e+

06
1.

29
e+

07
5.

69
75

%
28

72
.8

1
2.

89
e+

06
2.

31
e+

07
8.

02
10

0%
38

30
.0

3
4.

81
e+

06
3.

79
e+

07
7.

88

13


