
Machine Learning, 8, 229-256 (1992)
© 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning
RONALD J. WILLIAMS rjw@corwin.ccs.northeastern.edu
College of Computer Science, 161 CN, Northeastern University, 360 Huntington Ave., Boston, MA 02115

Abstract. This article presents a general class of associative reinforcement learning algorithms for connectionist
networks containing stochastic units. These algorithms, called REINFORCE algorithms, are shown to make weight
adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement
tasks and certain limited forms of delayed-reinforcement tasks, and they do this without explicitly computing
gradient estimates or even storing information from which such estimates could be computed. Specific examples
of such algorithms are presented, some of which bear a close relationship to certain existing algorithms while
others are novel but potentially interesting in their own right. Also given are results that show how such algorithms
can be naturally integrated with backpropagation. We close with a brief discussion of a number of additional
issues surrounding the use of such algorithms, including what is known about their limiting behaviors as well
as further considerations that might be used to help develop similar but potentially more powerful reinforcement
learning algorithms.

Keywords. Reinforcement learning, connectionist networks, gradient descent, mathematical analysis

1. Introduct ion

The general framework of reinforcement learning encompasses a broad variety of problems
ranging from various forms of function optimization at one extreme to learning control
at the other. While research in these individual areas tends to emphasize different sets of
issues in isolation, it is likely that effective reinforcement learning techniques for autonomous
agents operating in realistic environments will have to address all of these issues jointly.

Thus while it remains a useful research strategy to focus on limited forms of reinforcement
learning problems simply to keep the problems tractable, it is important to keep in mind
that eventual solutions to the most challenging problems will probably require integration
of a broad range of applicable techniques.

In this article we present analytical results concerning certain algorithms for tasks that
are associative, meaning that the learner is required to perform an input-output mapping,
and, with one limited exception, that involve immediate reinforcement, meaning that the
reinforcement (i.e., payoff) provided to the learner is determined by the most recent input-
output pair only. While delayed reinforcement tasks are obviously important and are receiving
much-deserved attention lately, a widely used approach to developing algorithms for such
tasks is to combine an immediate-reinforcement learner with an adaptive predictor or critic
based on the use of temporal difference methods (Sutton, 1988). The actor-critic algorithms
investigated by Barto, Sutton and Anderson (1983) and by Sutton (1984) are clearly of this
form, as is the Q-learning algorithm of Watkins (1989; Barto, Sutton, & Watkins, 1990).

230 R.J. WILLIAMS

A further assumption we make here is that the learner's search behavior, always a necessary
component of any form of reinforcement learning algorithm, is provided by means of ran-
domness in the input-output behavior of the learner. While this is a common way to achieve
the desired exploratory behavior, it is worth noting that other strategies are sometimes
available in certain cases, including systematic search or consistent selection of the ap-
parent best alternative. This latter strategy works in situations where the goodness of alter-
native actions is determined by estimates which are always overly optimistic and which
become more realistic with continued experience, as occurs for example in A* search
(Nilsson, 1980).

In addition, all results will be framed here in terms of connectionist networks, and the
main focus is on algorithms that follow or estimate a relevant gradient. While such algorithms
are known to have a number of limitations, there are a number of reasons why their study
can be useful. First, as experience with backpropagation (leCun, 1985; Parker, 1985;
Rumelhart, Hinton & Williams, 1986; Werbos, 1974) has shown, the gradient seems to
provide a powerful and general heuristic basis for generating algorithms which are often
simple to implement and surprisingly effective in many cases. Second, when more
sophisticated algorithms are required, gradient computation can often serve as the core
of such algorithms. Also, to the extent that certain existing algorithms resemble the
algorithms arising from such a gradient analysis, our understanding of them may be
enhanced.

Another distinguishing property of the algorithms presented here is that while they can
be described roughtly as statistically climbing an appropriate gradient, they manage to do
this without explicitly computing an estimate of this gradient or even storing information
from which such an estimate could be directly computed. This is the reason they have
been called simple in the title. Perhaps a more informative adjective would be non-model-
based. This point is discussed further in a later section of this paper.

Although we adopt a connectionist perspective here, it should be noted that certain aspects
of the analysis performed carry over directly to other ways of implementing adaptive input-
ouput mappings. The results to be presented apply in general to any learner whose input-
output mappings consists of a parameterized input-controlled distribution function from
which outputs are randomly generated, and the corresponding algorithms modify the
learner's distribution function on the basis of performance feedback. Because of the gra-
dient approach used here, the only restriction on the potential applicability of these results
is that certain obvious differentiability conditions must be met.

A number of the results presented here have appeared in various form in several earlier
technical reports and conference papers (Williams, 1986; 1987a; 1987b; 1988a; 1988b).

2. Reinforcement-learning connectionist networks

Unless otherwise specified, we assume throughout that the learning agent is a feedforward
network consisting of several individual units, each of which is itself a learning agent. We
begin by making the additional assumption that all units operate stochastically, but later
it will be useful to consider the case when there are deterministic units in the net as well.
The network operates by receiving external input from the environment, propagating the

GRADIENT ALGORITHMS 231

corresponding activity through the net, and sending the activity produced at its output units
to the environment for evaluation. The evaluation consists of the scalar reinforcement signal
r, which we assume is broadcast to all units in the net. At this point each unit performs
an appropriate modification of its weights, based on the particular learning algorithm in
use, and the cycle begins again.

The notation we use throughout is as follows: Let Yi denote the output of the ith unit
in the network, and let x i denote the pattern of input to that unit. This pattern of input
X i is a vector whose individual elements (typically denoted xj) are either the outputs of
certain units in the network (those sending their output directly to the ith unit) or certain
inputs from the environment (if that unit happens to be connected so that it receives input
directly from the environment). Then output Yi is drawn from a distribution depending
on x i and the weights w 0 on input lines to this unit. For each i, let w i denote the weight
vector consisting of all the weights w/j. The let W denote the weight matrix consisting of
all weights wij in the network. In a more general setting, w i can be viewed as the collec-
tion of all parameters on which the behavior of the ith unit (or agent) depends, while W
is the collection of parameters on which the behavior of the entire (or collection of agents)
depends.

In addition, for each i let gi (~, wi, xi) = e r {Yi = ~ [wi, xi}, so that gi is the probability
mass function determining the value of Yi as a function of the parameters of the unit and
its input. (For ease of exposition, we consistently use terminology and notation appropriate
for the case when the set of possible output values Yi is discrete, but the results to be de-
rived also apply to continuous-valued units when gi is taken to be the corresponding prob-
ability density function.) Since the vector w i contains all network parameters on which
the input-output behavior of the ith unit depends, we could just as well have defined gi
by gi(~, wi, xi) = Pr{yi = ~IW, X/}.

Note that many of the quantities we have named here, such as r, Yi, and x i, actually de-
pend on time, but it is generally convenient in the sequel to suppress explicit reference
to this time dependence, with the understanding that when several such quantities appear
in a single equation they represent the values for the same time step t. We assume that
each new time step begins just before external input is presented to the network. In the
context of immediate-reinforcement tasks we also call each time step's cycle of network-
environment interaction a trial.

To illustrate these definitions and also introduce a useful subclass, we define a stochastic
semilinear unit to be one whose output Yi is drawn from some given probability distribu-
tion whose mass function has a single parameter Pi, which is in turn computed as

Pi = f (s i) , (1)

where f is a differentiable squashing function and

Si : wiTxi = Z Wij Xj, (2)

J

232 R.J. WILLIAMS

the inner product of W i and x i. This can be viewed as a semilinear unit, as widely used
in connectionist networks, followed by a singly parameterized random number generator.

A noteworthy special case of a stochastic semilinear unit is a Bernoulli semilinear unit,
for which the output Yi is a Bernoulli random variable with parameter Pi, which means
that the only possible output values are 0 and 1, with Pr {Yi = 0 [w i, x i} = 1 - Pi and
Pr {Yi = 11 w i, x i} = Pi. Thus, for a Bernoulli semilinear unit,

gi(~, wi, xi) : f ~ i - Pi
i f~ = 0

i f~ = 1,

where Pi is computed via equations (1) and (2). This type of unit is common in networks
using stochastic units; it appears, for example, in the Boltzmann machine (Hinton & Sej-
nowski, 1986) and in the reinforcement learning networks explored by Barto and colleagues
(Barto & Anderson, 1985; Barto & Jordan, 1987; Barto, Sutton, & Brouwer, 1981). While
the name Bernoulli semilinear unit may thus appear to be simply a fancy new name for
something quite familiar, use of this term is intended to emphasize its membership in a
potentially much more general class.

A particular form of squashing function commonly used is the logistic function, given by

1
j ~ (s i) - • (3)

1 + e - s i

A stochastic semilinear unit using both the Bernoulli random number generator and the
logistic squashing function will be called a Bernoulli-logistic unit.

Now we observe that the class of Bernoulli semilinear units includes certain types of
units whose computation is alternatively described in terms of a linear threshold computa-
tion together with either additive input noise or a noisy threshold. This observation is useful
because this latter formulation is the one used by Barto and colleagues (Barto, 1985; Barto
& Anandan, 1985; Barto & Anderson, 1985; Barto, Sutton, & Anderson, 1983; Barto,
Sutton, & Brouwer, 1981; Sutton, 1984) in their investigations. Specifically, they assume
a unit computes it output Yi by

~ 1 if ~] wijxj + ~l > 0
Yi = J

0 otherwise,

where ~/is drawn randomly from a given distribution 'I'. To see that such a unit may be
viewed as a Bernoulli semilinear unit, let

si = Z.~ wi~ x~
J

and observe that

GRADIENT ALGOR/THMS 233

P r { y i = 1 [w i, x i} = P r { y i = 1 [s i }

= P r { s i + ~1 > 0 [s i }

= 1 - P r { s i + r 1 <_ O l s i }

= 1 - P r {~l < - s i I s i }

= 1 - " Y (- si) .

Thus, as long as ~I, is differentiable, such a unit is a Bernoulli semilinear unit with squashing
function ~ given by f i (s i) = 1 - ~ (- s i) .

3. The expected reinforcement performance criterion

In order to consider gradient learning algorithms, it is necessary to have a performance
measure to optimize. A very natural one for any immediate-reinforcement learning pro-
blem, associative or not, is the expected value of the reinforcement signal, conditioned
on a particular choice of parameters of the learning system. Thus, for a reinforcement-
learning network, our performance measure is E {r I W}, where E denotes the expectation
operator, r the reinforcement signal, and W the network's weight matrix. We need to use
expected values here because of the potential randomness in any of the following: (1) the
environment's choice of input to the network; (2) the network's choice of output correspon-
ding to any particular input; and (3) the environment's choice of reinforcement value for
any particular input/output pair. Note that it only makes sense to discuss E {r I W} in-
dependently of time if we assume that the first and third sources of randomness are deter-
m/ned by stationary distributions, with the environment's choice of input pattern to the
net also determined independently across time. In the absence of such assumptions, the
expected value of r for any given time step may be a function of time as well as of the
history of the system. Thus we tacitly assume throughout that these stationarity and in-
dependence conditions hold.

Note that, with these assumptions, E { r I W} is a well-defined, deterministic function
of W Cout one which is unknown to the learning system). Thus, in this formulation, the
objective of the reinforcement learning system is to search the space of all possible weight
matrices W for a point where E { r I W} is maximum.

4. REINFORCE algorithms

Consider a network facing an associative immediate-reinforcement learning task. Recall
that weights are adjusted in this network following receipt of the reinforcement value r
at each trial. Suppose that the learning algorithm for this network is such that at the end
of each trial each parameter wij in the network is incremented by an amount

2 3 4 R.J. WILLIAMS

Awij = ~ij(r - bij)eij,

where c~/j is a learning rate factor, bij is a reinforcement baseline, and eij = 0In gi/3wij
is called the characteristic eligibility of w/j. Suppose further that the reinforcement baseline
bij is conditionally independent of Yi, given W and x i, and the rate factor c~ij is nonnegative
and depends at most on w i and t. (Typically, c~ij will be taken to be a constant.) Any lear-
ning algorithm having this particular form will be called a REINFORCE algorithm. The
name is an acronym for "REward Increment = Nonnegative Factor x Offset Reinforce-
ment x Characteristic Eligibility," which describes the form of the algorithm.

What makes this class of algorithms interesting is the following mathematical result:

Theorem 1. For any REINFORCE algorithm, the inner product of E {AW] W} and
~ w E { r I W} is nonnegative. Furthermore, if ~/j > 0 for all i and j, then this inner prod-
uct is zero only when V w E { r I W} = 0. Also, i fai j = oz is independent o f / and j, then
E{AW [W} = e~ V w E { r I W}.

This results relates V w E { r I W}, the gradient in weight space of the performance
measure E {r] W}, to E {AW] W}, the average update vector in weight space, for any
REINFORCE algorithm. 1 Specifically, it says that for any such algorithm the average up-
date vector in weight space lies in a direction for which this performance measure is in-
creasing. The last sentence of the theorem is equivalent to the claim that for each weight
wij the quantity (r - bq) 31n gi/Owi~ represents an unbiased estimate of 3E {r I W}/Owij.
A proof of this theorem is given in Appendix A.

There are a number of interesting special cases of such algorithms, some of which coin-
cide with algorithms already proposed and explored in the literature and some of which
are novel. We begin by showing that some existing algorithms are REINFORCE algorithms,
from which it follows immediately that Theorem 1 applies to them. Later we will consider
some novel algorithms belonging to this class.

Consider first a Bernoulli unit having no (nonreinforcement) input and suppose that the
parameter to be adapted is Pi = P r { Y i =-- 1}. This is equivalent to a two-action stochastic
learning automaton (Narendra & Thathatchar, 1989) whose actions are labeled 0 and 1.
The probability mass function gi is then given by

gi(Yi'Pi) = ~ - p i i
if Yi = 0

if Yi = 1,
(4)

from which it follows that the characteristic eligibility for the parameter Pi is given by

f 1 if Yi --- 0
01n gi (Yi, Pi) ----- 1 -- Pi

3pi 1 if Yi -= 1
Pi

= Yi - Pi (5)

Pi(1 - Pi)

assuming Pi is not equal to 0 or 1.

10

GRADIENT ALGORITHMS 235

A particular REINFORCE algorithm for such a unit can be obtained by choosing b i =

0 for the reinforcement baseline and by using as the rate factor c~ i = oiPi(1 - Pi), where
0 < Pi < 1. This gives rise to an algorithm having the form

Api = Di r(yi -- Pi),

using the result (5) above. The special case of this algorithm when the reinforcement signal
is limited to 0 and 1 coincides with the 2-action version of the linear reward-inaction
(LR_I) stochastic learning automaton (Narendra & Thathatchar, 1989). A "network" con-
sisting of more than one such unit constitutes a team of such learning automata, each using
its own individual learning rate. The behavior of teams of LR_~ automata has been investi-
gated by Narendra and Wheeler (1983; Wheeler & Narendra, 1986).

Now consider a Bernoulli serrdlinear unit. In this case, gi (Yi, w i , x i) is given by the right-
hand side of (4) above, where Pi is expressed in terms of w i and x i using equations (1)
and (2). To compute the characteristic eligibility for a particular parameter wij, we use
the chain rule. Differentiating the equations (1) and (2) yields dpi/dsi = f ' (s i) and Osi/Owi j
= xj. Noting that 01n gi/Opi (Yi, wi, xi) is given by the right-hand side of (5) above, we
multiply these three quantities to find that the characteristic eligibility for the weight wij
is given by

Oln gi (Yi, wi , xi) - Yi - Pi j~ ' (s i) xj,
Owij pi(1 - - P i)

(6)

as long as Pi is not equal to 0 or 1. In the special case when f is the logistic function,
given by equation (3), Pi is never equal to 0 or 1 and f ' (s i) = pi(l - Pi), so the
characteristic eligibility of w O. is simply

Oln gi (Yi, wi, xi) = (Yi - Pi) xj.
Ow~

(7)

Now consider an arbitrary network of such Bernoulli-logistic units. Setting ~/j -= o~ and
bij = 0 for all i and j gives rise to a REINFORCE algorithm having the form

AWo = ar (y i - P i) Xj, (8)

using the result (7) above. It is interesting to compare this with the associative reward-
penalty (An_e) algorithm (Barto, 1985; Barto & Anandan, 1985; Barto & Anderson, 1985;
Barto & Jordan, 1987), which, for r E [0, 1], uses the learning rule

~wij = c~[r(yi - P i) +) ~ (l - r)(1 - Yi - Pi)] xj.

where ~ is a positive learning rate parameter and 0 < X _< 1. I f k = 0, this is called
the associative reward-inaction (AR_I) algorithm, and we see that the learning rule reduces
to equation (8) in this case. Thus AR-b when applied to a network of Bernoulli-logistic
units, is a REINFORCE algorithm.

11

236 R.J. WILLIAMS

In all the examples considered so far, the reinforcement baseline is 0. However, the use
of r e in fo rcemen t c o m p a r i s o n (Sutton, 1984) is also consistent with the REINFORCE for-
mulation. For this strategy one maintains an adaptive estimate ? of upcoming reinforce-
ment based on past experience. As a particular example, for a network of Bernoulli-logistic
units one may use the learning rule

Awij = a (r - ?)(Yi - Pi) xj , (9)

which is then a REINFORCE algorithm as long as the computation of ~: is never based
on the current value of Yi (or the current value of r). One common approach to computing
~ is to use the exponential averaging scheme

~(t) = 3"r(t - 1) + (1 - "r)~(t - 1), (10)

where 0 < 3' -< 1. More sophisticated strategies are also consistent with the REINFORCE
framework, including making ? a function of the current input pattern x i to the unit.

While the analytical results given here offer no basis for comparing various choices of
reinforcement baseline in REINFORCE algorithms, it is generally believed that the use
of reinforcement comparison leads to algorithms having superior performance in general.
We discuss questions of REINFORCE algorithm performance at greater length below.

5. Episodic REINFORCE algorithms

Now we consider how the REINFORCE class of algorithms can be extended to certain
learning problems having a temporal credit-assignment component, as may occur when
the network contains loops or the environment delivers reinforcement values with unknown,
possibly variable, delays. In particular, assume a net N is trained on an episode-by-episode
basis, where each episode consists of k time steps, during which the units may recompute
their outputs and the environment may alter its non-reinforcement input to the system at
each time step. A single reinforcement value r is delivered to the net at the end of each
episode.

The derivation of this algorithm is based on the use of the "unfolding-in-time" mapping,
which yields for any arbitrary network N operating through a fixed period of time another
network N* having no cycles but exhibiting corresponding behavior. The unfolded network
N* is obtained by duplicating N once for each time step. Formally, this amounts to associating
with each time-dependent variable v in N a corresponding time-indexed set of variables
{v ~} in N* whose values do not depend on time, and which have the property that v (t)
= v t for all appropriate t. In particular, each weight wij in N gives rise to several weights
~ j in N*, all of whose values happen to be equal to each other and to the value of wij in
N since it is assumed that wij is constant over the episode.

The form of algorithm to be considered for this problem is as follows: At the conclusion
of each episode, each parameter wij is incremented by

12

GRADIENT ALGORITHMS 237

k

Awij = °~ij(r - bij) ~a eij(t)
t = l

(~)

where all notation is the same as that defined earlier, with eij(t) representing the
characteristic eligibility for w 0 evaluated at the particular time t. By definition, eli(t) =
e~, where this latter makes sense within the acyclic network N*. For example, in a com-
pletely interconnected recurrent network of Bernoulli-logistic units that is updated synch-
ronously, eij (t) = (Yi (t) - Pi (t))x~(t - 1). All quantities are assumed to satisfy the same
conditions required for the REINFORCE algorithm, where, in particular, for each i and
j, the reinforcement baseline bij is independent of any of the output values yi(t) and the
rate factor o~, 7 depends at most on w i and episode number. Call any algorithm of this form
(and intended for such a learning problem) an episodic REINFORCE algorithm.

For example, if the network consists of Bernoulli-logistic units an episodic REINFORCE
algorithm would prescribe weight changes according to the rule

k

Awij = c~ij(r - bij) Z [Yi(t) - p i (t)] xj(t - 1).
t = l

The following result is proved in Appendix A:

Theorem 2. For any episodic REINFORCE algorithm, the inner product of E {AWI W}
and 27wE{r [W} is nonnegative. Furthermore, i fa i j > 0 for all i and j, then this inner
product is zero only when VwE {r I W} = 0. Also, if aij = ot is independent of i and
j , then E{AW I W} = a V ' E { r I W}.

What is noteworthy about this algorithm is that it has a plausible on-line implementation
using a single accumulator for each parameter w/j in the network. The purpose of this ac-
cumulator is to form the eligibility sum, each term of which depends only on the operation
of the network as it runs in real time and not on the reinforcement signal eventually received.

A more general formulation of such an episodic learning task is also possible, where
reinforcement is delivered to the network at each time step during the episode, not just
at the end. In this case the appropriate performance measure is E {~=1 r(t)] W}. One
way to create a statistical gradient-following algorithm for this case is to simply replace
r in (11) by E~= 1 r(t) , but it is interesting to note that when r is causal, so that it depends
only on network inputs and outputs from earlier times, there is a potentially better way
to perform the necessary credit assignment. Roughly, the idea is to treat this learning prob-
lem over the k-time-step interval as k different but overlapping episodic learning problems,
all starting at the beginning of the episode. We omit further discussion of the details of
this approach.

6. REINFORCE with multiparameter distributions

An interesting application of the REINFORCE framework is to the development of learn-
ing algorithms for units that determine their scalar output stochastically from multiparameter

13

238 R.J. WILLIAMS

distributions rather than the single-parameter distributions used by stochastic semilinear
units, for example. One way such a unit may compute in this fashion is for it to first per-
form a deterministic computation, based on its weights and input, to obtain the values of
all parameters controlling the random number generation process, and then draw its out-
put randomly from the appropriate distribution. As a particular example, the normal distribu-
tion has two parameters, the mean/z and the standard deviation a. A unit determining its
output according to such a distribution would first compute values of/z and a determinisfically
and then draw its output from the normal distribution with mean equal to this value of
and standard deviation equal to this value of a.

One potentially useful feature of such a Gaussian unit is that the mean and variance of
its output are individually controllable as long as separate weights (or perhaps inputs) are
used to determine these two parameters. What makes this interesting is that control over
a is tantamount to control over the unit's exploratory behavior. In general, random units
using multiparameter distributions have the potential to control their degree of exploratory
behavior independently of where they choose to explore, unlike those using single-parameter
distributions.

Here we note that REINFORCE algorithms for any such unit are easily derived, using
the particular case of a Gaussian unit as an example. Rather than commit to a particular
means of determining the mean and standard deviation of such a unit's output from its
input and its weights, we will simply treat this unit as if the mean and standard deviation
themselves served as the adaptable parameters of the unit. Any more general functional
dependence of these parameters on the actual adaptable parameters and input to the unit
simply requires application of the chain rule. One particular approach to computation of
these parameters, using separate weighted sums across a common set of input lines (and
using a somewhat different learning rule), has been explored by Gullapalli (1990). To simplify
notation, we focus on one single unit and omit the usual unit index subscript throughout.

For such a unit the set of possible outputs is the set of real numbers and the density
function g determining the output y on any single trial is given by

g(y, #, o) - 1 e (y-~W2Q
(27r)'%

The characteristic eligibility of/x is then

Oln g _ y - ~

0~ o ~
(12)

and the characteristic eligibility of a is

01n g _ (y - ~) 2 _ 02

Oa a 3

A REINFORCE algorithm for this unit thus has the form

14

G R A D I E N T A L G O R I T H M S 2 3 9

A # = a . (r - b .) y - # (13)

and

Aa c¢~(r b,) (y - /z)2 - a2 = - , (1 4)

02

where c%, b~, c%, and bo are chosen appropriately. A reasonable algorithm is obtained
by setting

O~/z : O~ a ~ O/(72~

where c¢ is a suitably small positive constant, 2 and letting b~ = bo be determined accor-
ding to a reinforcement comparison scheme.

It is interesting to note the resemblance between equation (12), giving the characteristic
eligibility for the parameter ~ of the normal distribution, and equation (5), giving the
characteristic eligibility for the parameter p of the Bernoulli distribution. Since p is the
mean and p (1 - p) the variance of the corresponding Bernoulli random variable, both
equations have the same form. In fact, the characteristic eligibility of the mean parameter
has this form for an even wider variety of distributions, as stated in the following result:

P r o p o s i t i o n 1. Suppose that the probability mass or density function g has the form

g(y, l~, 02 Ok) = exp[Q(/z, 02 , Ok)y + D(Iz, 02 Ok) + S(y)]

for some functions Q, D, and S, where/x, 0 2 , 0 k are parameters such that/~ is the
mean of the distribution. Then

01n g _ y - #

&z 02

where 02 is the variance of the distribution.
Mass or density functions having this form represent special cases of exponential families

of distributions (Rohatgi, 1976). It is easily checked that a number of familiar distribu-
tions, such as the Poisson, exponential, Bernoulli, and normal distributions, are all of this
form. A proof of this proposition is given in Appendix B.

7. C o m p a t i b i l i t y w i t h b a c k p r o p a g a t i o n

It is useful to note that REINFORCE, like most other reinforcement learning algorithms
for networks of stochastic units, works essentially by measuring the correlation between
variations in local behavior and the resulting variations in global performance, as given
by the reinforcement signal. When such algorithms are used, all information about the

15

240 R.J. WILLIAMS

effect of connectivity between units is ignored; each unit in the network tries to determine
the effect of changes of its output on changes in reinforcement independently of its effect
on even those units to which it is directly connected. In contrast, the backpropagation
algorithm works by making use of the fact that entire chains of effects are predictable from
knowledge of the effects of individual units on each other. While the backpropagation
algorithm is appropriate only for supervised learning in networks of deterministic units,
it makes sense to also use the term backpropagation for the single component of this
algorithm that determines relevant partial derivatives by means of the backward pass. (In
this sense it is simply a computational implementation of the chain nile.) With this mean-
ing of the term we can then consider how backpropagation might be integrated into the
statistical gradient-following reinforcement learning algorithms investigated here, thereby
giving rise to algorithms that can take advantage of relevant knowledge of network connec-
tivity where appropriate. Here we examine two ways that backpropagation can be used.

7.1. Networks using deterministic hidden units

Consider a feedforward network having stochastic output units and deterministic hidden
units. Use of such a network as a reinforcement learning system makes sense because hav-
ing randomness limited to the output units still allows the necessary exploration to take place.

Let x denote the vector of network input and let y denote the network output vector.
We can the define g(~, W, x) = Pr{y = ~ I W, x} to be the overall probability mass
function describing the input-output behavior of the entire network. Except for the fact
that the output of the network is generally vector-valued rather than scalar-valued, the for-
malism and arguments used to derive REINFORCE algorithms apply virtually unchanged
when this global rather than local perspective is taken. In particular, a simple extension
of the arguments used to prove Theorem 1 to the case of vector-valued output shows that,
for any weight w e in the network, (r - bij) 01n g/~wij represents an unbiased estimate
of OE{r I W}/Owij.

Let 0 denote the index set for output units. Because all the randomness is in the output
units, and because the randomness is independent across these units, we have

er{y = ~ [W , x } : I I P r { y ~ : ~ [W , x }
k~O

: I I Pr{yk = ~k I wk, xk},
k~O

where, for each k, x k is the pattern appearing at the input to the kth unit as a result of
presentation of the pattern x to the network. Note that each x k depends deterministically
o n x.

Therefore,

16

GRADIENT ALGORITHMS 241

In g((, W, x) = In 1"I g,~(~:, w'~, xk) = ~ In g~:(~, w ~, x'~),
kEO kEO

so that

Oln g (~, W, x) = ~] aln gk (~k, Wk, xk) •

OWij k~O OWij

Clearly, this sum may be computed via backpropagation. For example, when the output
units are Bernoulli semilinear units, we can use the parameters p~ as intermediate variables
and write the characteristic eligibility of any weight wij as

Oln g _ ~ Oln gi Op~
,

OWij ~0 Opt: Owij

and this is efficiently computed by "injecting"

Olng~_ yt - p ~

0pk pk(1 - p~)

just after the kth unit's squashing function, for each k, and then performing the standard
backward pass. Note that if w~ is a weight attached to an output unit, this backpropaga-
tion computation simply gives rise to the result (6) derived earlier. For that result we essen-
tially backpropagated the characteristic eligibility of the Bernoulli parameter Pi through
the sub-units consisting of the "squasher" and the "summer."

While we have restricted attention here to networks having stochastic output units only,
it is not hard to see that such a result can be further generalized to any network containing
an arbitrary mixture of stochastic and deterministic units. The overall algorithm in this
case consists of the use of the correlation-style REINFORCE computation at each stochastic
unit, whether an output unit or not, with backpropagation used to compute (or, more pre-
cisely, estimate) all other relevant partial derivatives.

Furthermore, it is not difficult to prove an even more general compatibility between com-
putation of unbiased estimates, not necessarily based on REINFORCE, and backpropaga-
tion through deterministic functions. The result is, essentially, that when one set of variables
depends deterministically on a second set of variables, backpropagating unbiased estimates
of partial derivatives with respect to the first set of variables gives rise to unbiased estimates
of partial derivatives with respect to the second set of variables. It is intuitively reasonable
that this should be true, but we omit the rigorous mathematical details here since we make
no use of the result.

17

242 R.J. WILLIAMS

7.2. Backpropagating through random number generators

While the form of algorithm just described makes use of backpropagation within deter-
ministic portions of the network, it still requires a correlation-style computation whenever
it is necessary to obtain partial derivative information on the input side of a random number
generator. Suppose instead that it were possible to somehow "backpropagate through a
random number generator?' To see what this might mean, consider a stochastic semilinear
unit and suppose that there is a function J having some deterministic dependence on the
output Yi. An example of this situation is when the unit is an output unit and J = E {r
I W}, with reinforcement depending on whether the network output is correct or not. What
we would like, roughly, is to be able to compute OJ/Opi from knowledge of OJ/3y i. Because
of the randomness, however, we could not expect there to be a deterministic relationship
between these quantities. A more reasonable property to ask for is that 3E{J [pi}/oqpi
be determined by E {3J/Oy i I Pi }.

Unfortunately, even this property fails to hold in general. For example, in a Bernoulli
unit, it is straightforward to check that whenever J is a nonlinear function of Yi there need
be no particular relationship between these two quantities. However, if the output of the
random number generator can be written as a differentiable function of its parameters,
the approach just described for backpropagating through deterministic computation can
be applied.

As an illustration, consider a normal random number generator, as used in a Gaussian
unit. Its output y is randomly generated according to the parameters/~ and cr. We may write

y = / ~ +~rz,

where z is a standard normal deviate. From this we see that

Oy - 1

Ol~

and

Oy y - /z
- - Z - -

Oa a

Thus, for example, one may combine the use of backpropagation through Gaussian hidden
units with REINFORCE in the output units. In this case the characteristic eligibility for
the ~ in such a unit is set equal to that computed for the output value y while the characteristic
eligibility for the o parameter is obtained by multiplying that for y by (y - ~z)/o. It is worth
noting that these particular results in no way depend on the fact that/~ is the mean and
o the standard deviation; the identical result applies whenever/~ represents a translation
parameter and o a scaling parameter for the distribution. More generally, the same tech-
nique can obviously be used whenever the output can be expressed as a function of the
parameters together with some auxiliary random variables, as long as the dependence on
the parameters is differentiable.

18

GRADIENT ALGORITHMS 243

Note that the argument given here is based on the results obtained above for the use
of backpropagation when computing the characteristic eligibility in a REINFORCE
algorithm, so the conclusion is necessarily limited to this particular use of backpropaga-
tion here. Nevertheless, because it is also true that backpropagation preserves the un-
biasedness of gradient estimates in general, this form of argument can be applied to yield
statistical gradient-following algorithms that make use of backpropagation in a variety of
other situations where a network of continuous-valued stochastic units is used. One such
application is to supervised training of such networks.

8. Algorithm performance and other issues

8.L Convergence properties

A major limitation of the analysis performed here is that it does not immediately lead to
prediction of the asymptotic properties of REINFORCE algorithms. If such an algorithm
does converge, one might expect it to converge to a local maximum, but there need be
no such convergence. While there is a clear need for an analytical characterization of the
asymptotic behavior of REINFORCE algorithms, such results are not yet available, leav-
ing simulation studies as our primary source of understanding of the behavior of these
algorithms. Here we give an overview of some relevant simulation results, some of which
have been reported in the literature and some of which are currently only preliminary.

Sutton (1984) studied the performance of a number of algorithms using single-Bernoulli-
unit "networks" facing both nonassociative and associative immediate-reinforcement tasks.
Among the algorithms investigated were LR-I and one based on equations (9) and (10),
which is just REINFORCE using reinforcement comparison. In these studies, REINFORCE
with reinforcement comparison was found to outperform all other algorithms investigated.

Williams and Peng (1991) have also investigated a number of variants of REINFORCE
in nonassociative function-optimization tasks, using networks of Bernoulli units. These
studies have demonstrated that such algorithms tend to converge to local optima, as one
might expect of any gradient-following algorithm. Some of the variants examined incor-
porated modifications designed to help defeat this often undesirable behavior. One par-
ticularly interesting variant incorporated an entropy term in the reinforcement signal and
helped enable certain network architectures to perform especially well on tasks where a
certain amount of hierarchical organization during the search was desirable.

Other preliminary studies have been carried out using networks of Bernoulli units and
using single Gaussian units. The Gaussian unit studies are described below. The network
studies involved multilayer or recurrent networks facing supervised learning tasks but receiv-
ing only reinforcement feedback. In the case of the recurrent networks, the objective was
to learn a trajectory and episodic REINFORCE was used. One of the more noteworthy
results of these studies was that it often required careful selection of the reinforcement func-
tion to obtain solutions using REINFORCE. This is not surprising since it turns out that
some of the more obvious reinforcement functions one might select for such problems tend
to h.ave severe false maxima. In contrast, AR-p generally succeeds at finding solutions even

19

244 R.J. WILLIAMS

when these simpler reinforcement functions are used. Like AR-p, REINFORCE is gen-
erally very slow even when it succeeds. Episodic REINFORCE has been found to be
especially slow, but this, too, is not surprising since it performs temporal credit-assignment
by essentially spreading credit or blame uniformly over all past times.

One REINFORCE algorithm whose asymptotic behavior is reasonably well understood
analytically is 2-action LR-~, and simulation experience obtained to date with a number
of other REINFORCE algorithms suggests that their range of possible limiting behaviors
may, in fact, be similar. The LR-~ algorithm is known to converge to a single deterministic
choice of action with probability 1. What is noteworthy about this convergence is that,
in spite of the fact that the expected motion is always in the direction of the best action,
as follows from Theorem 1, there is always a nonzero probability of its converging to an
inferior choice of action. A simpler example that exhibits the same kind of behavior is
a biased random walk on the integers with absorbing barriers. Even though the motion
is biased in a particular direction, there is always a nonzero probability of being absorbed
at the other barrier.

In general, a reasonable conjecture consistent with what is known analytically about simple
REINFORCE algorithms like LR-~ and what has been found in simulations of more
sophisticated REINFORCE algorithms is the following: Depending on the choice of rein-
forcement baseline used, any such algorithm is more or less likely to converge to a local
maximum of the expected reinforcement function, with some nonzero (but typically com-
fortably small) probability of convergence to other points that lead to zero variance in net-
work behavior. For further discussion of the role of the reinforcement baseline, see below.

&2. Gaussian unit search behavior

For the Gaussian unit studies mentioned above, the problems considered were nonassociative,
involving optimization of a function of a single real variable y, and the adaptable parameters
were taken to be/~ and a. From equations (13) and (14) it is clear that the reinforcement
comparison version of REINFORCE for this unit behaves as follows: If a value y is sam-
pled which leads to a higher function value than has been obtained in the recent past, then
moves toward y; similarly, t~ moves away from points giving lower function values. What
is more interesting is how tr is adapted. If the sampled point y gives rise to a higher func-
tion value than has been obtained in the recent past, then a will decrease if l Y - /~ I <
tr but increase if l y - ~ I > a. The change made to a corresponds to that required to
make the reoccurence of y more likely. There is corresponding behavior in the opposite
direction if the sampled point leads to a lower value. In terms of a search, this amounts
to narrowing the search around/x if a better point is found suitably close to the mean or
a worse point is found suitably far from the mean, while broadening the search around
/~ if a worse point is found suitably close to the mean or a better point is found suitably
far from the mean. Since the sampled points y are roughly twice as likely to lie within
one standard deviation of the mean, it follows that whenever/z sits at the top of a local
hill (of sufficient breadth with respect to o), then tr narrows down to allow convergence
to the local maximum. However it is also true that if the local maximum is very flat on
top, a will decrease to the point where sampling worse values becomes extremely unlikely

20

GRADIENT ALGORITHMS 245

and then stop changing. Simulation studies using both deterministic and noisy reinforce-
ment confirm this behavior. They also demonstrate that if r is always nonnegative and rein-
forcement comparison is not used (i.e., b = 0), REINFORCE may cause a to converge
to 0 before/z has moved to the top of any hill. This can be viewed as a generalization of
the potential convergence to suboptimal performance described earlier for Ln_ ~.

It is interesting to compare REINFORCE for such a unit with an alternative algorithm
for the adaptation of # and a that has been proposed by Gullapalli (1990). In this approach,
/~ is adapted in essentially the same manner as in REINFORCE but a is adapted in a quite
different manner. With reinforcement values r assumed to lie between 0 and 1, a is taken
to be proportional to 1 - r. This strategy makes sense if one takes the point of view that
a is a parameter controlling the scale of the search being performed and the optimum value
for the function is unknown. In those situations when it is known that unsatisfactory per-
formance is being achieved it is reasonable to broaden this scale in order to take a coarse-
grained view of the search space and identify a broad region in which the optimum has
a reasonable chance of being found.

Also relevant here is the work of Schmidhuber and Huber (1990), who have reported
successful results using networks having Gaussian output units in control tasks involving
backpropagating through a model (Jordan & Rumelhart, 1990). In this work, backpropaga-
tion through random number generators was used to allow learning of a model and learn-
ing of performance to proceed simultaneously rather than in separate phases.

8°3. Choice of reinforcement baseline

One important limitation of the analysis given here is that it offers no basis for choosing
among various choices of reinforcement baseline in REINFORCE algorithms. While
Theorem 1 applies equally well to any such choice, extensive empirical investigation of
such algorithms leads to the inescapable conclusion that use of an adaptive reinforcement
baseline incorporating something like the reinforcement comparison strategy can greatly
emhance convergence speed, and, in some cases, can lead to a big difference in qualitative
behavior as well. One example is given by the Gaussian unit studies described above. A
simpler example is provided by a single Bernoulli semilinear unit with only a bias weight
and input with its output y affecting the reinforcement r determinisfically. If r is always
positive, it is easy to see that one obtains a kind of biased random walk behavior when
b = 0, leading to nonzero probability of convergence to the inferior output value. In con-
trast, the reinforcement comparison version will lead to values of b lying between the two
possible values of r, which leads to motion always toward the better output value.

However, this latter behavior will occur for any choice of b lying between the two possi-
ble values for r, so additional considerations must be applied to distinguish among a wide
variety of possible adaptive reinforcement baseline schemes. One possibility, considered
briefly by Williams (1986) and recently investigated more fully by Dayan (1990), is to pick
a reinforcement baseline that minimizes the variance of the individual weight changes over
time. This turns out to yield not the mean reinforcement as in the usual reinforcement
comparison approach, but another quantity that is more difficult to estimate effectively.
Dayan's simulation results seem to suggest that use of such a reinforcement baseline offers

21

246 R.J. WILLIAMS

a slight improvement in convergence speed over the use of mean reinforcement, but a more
convincing advantage remains to be demonstrated.

&4. A l t e r n a t e f o r m s f o r el igibil i ty

REINFORCE, with or without reinforcement comparison, prescribes weight changes pro-
portional to the product of a reinforcement factor that depends only on the current and
past reinforcement values and another factor we have called the characteristic eligibility.
A straightforward way to obtain a number of variants of REINFORCE is to vary the form
of either of these factors. Indeed, the simulation study performed by Sutton (1984) involved
a variety of algorithms obtained by systematically varying both of these factors. One par-
ticularly interesting variant having this form but not included in that earlier study has since
been examined by several investigators (Rich Sutton, personal communication, 1986; Phil
Madsen, personal communication, 1987; Williams & Peng, 1991) and found promising.
These studies have been conducted only for nonassociative tasks, so this is the form of
the algorithm we describe here. (Furthermore, because a principled basis for deriving
algorithms of this particular form has not yet been developed, it is somewhat unclear ex-
actly how it should be extended to the associative case.)

We consider specifically the case of a Bernoulli-logistic unit having only a bias weight
w. Since the bias input is 1, a standard reinforcement-comparison version of REINFORCE
prescribes weight increments of the form

Aw = c~(r - ?)(y - p) ,

where ~ is computed according to the exponential averaging scheme

?(t) = q/r(t - 1) + (1 - -y)tz(t - 1),

where 0 < 3' < 1. An alternative algorithm is given by the rule

Aw = c~(r - i) (y - 35),

where 35 is updated by

35(0 = 3'y(t - 1) + (1 - 3,)35(t - 1),

using the same 3' as is used for updating E This particular algorithm has been found generally
to converge faster and more reliably than the corresponding REINFORCE algorithm.

It is clear that the two algorithms bear some strong similarities. The variant is obtained
by simply replacing p by 35, and each of these can be viewed as reasonable a pr ior i estimates
of the output y. Furthermore, the corresponding strategy can be used to generate variants
of REINFORCE in a number of other cases. For example, if the randomness in the unit
uses any distribution to which Proposition 1 applies, then the REINFORCE algorithm for
adjusting its mean parameter/~ will involve the factor y - ~z and we can simply replace

22

GRADIENT ALGORITHMS 247

this by y - ~. Such an algorithm for adapting the mean of a Gaussian unit has been tested
and found to behave very well.

While some arguments can be given (Rich Sutton, personal communication, 1988) that
suggest potential advantages of the use ofy - 37 in such algorithms, a more complete analysis
has not yet been performed. Interestingly, one possible analytical justification for the use
of such algorithms may be found in considerations like those discussed next.

8.5. Use of other local gradient estimates

There are several senses in which it makes sense to call REINFORCE algorithms simple,
as implied by the title of this paper. First, as is clear from examples given here, the algorithms
themselves often have a very simple form. Also, they are simple to derive for essentially
any form of random unit computation. But perhaps most significant of all is the fact that,
in the sense given by Theorems 1 and 2, they climb an appropriate gradient without ex-
pficitly computing any estimate of this gradient or even storing information from which
such an estimate could be directly computed. Clearly, there are alternative ways to estimate
such gradients and it would be useful to understand how various such techniques can be
integrated effectively.

To help distinguish among a variety of alternative approaches, we first define some ter-
minology. Barto, Sutton, and Watkins (1990), have introduced the term model-based to
describe what essentially correspond to indirect algorithms in the adaptive control field
(Goodwin & Sin, 1984). These algorithms explicitly estimate relevant parameters underlying
the system to be controlled and then use this learned model of the system to compute the
control actions. The corresponding notion for an immediate-reinforcement learning system
would be one that attempts to learn an explicit model of the reinforcement as a function
of learning system input and output, and use this model to guide its parameter adjustments.
If these parameter adjustments are to be made along the gradient of expected reinforce-
ment, as in REINFORCE, then this model must actually yield estimates of this gradient.
Such an algorithm, using backpropagation through a model, has been proposed and studied
by Munro (1987).

This form of model-based approach uses a global model of the reinforcement function
and its derivatives, but a more local model-based approach is also possible. This would
involve attempting to estimate, at each unit, the expected value of reinforcement as a func-
tion of input and output of that unit, or, if a gradient algorithm like REINFORCE is desired,
the derivatives of this expected reinforcement. An algorithna studied by Thathatchar and
Sastry (1985) for stochastic learning automata keeps ~ack of the average reinforcement
received for each action and is thus of this general form. Q-learning (Watkins, 1989) can
also be viewed as involving the learning of local (meaning, in this case, per-state) models
for the cumulative reinforcement.

REINFORCE fails to be model-based even in this local sense, but it may be worthwhile
to consider algorithms that do attempt to generate more explicit gradient estimates if their
use can lead to algorithms having clearly identifiable strengths. One interesting possibility
that applies at least in the nonassociative case is to perform, at each unit, a linear regres-
sion of the reinforcement signal on the output of the unit. It is suspected that algorithms

23

2 4 8 R.J. WILLIAMS

using the y - 3S form of eligibility described above may be related to such an approach
but this has not been fully analyzed yet.

9. Conclusion

The analyses presented here, together with a variety of simulation experiments performed
by this author and others, suggest that REINFORCE algorithms are useful in their own
right and, perhaps more importantly, may serve as a sound basis for developing other more
effective reinforcement learning algorithms. One major advantage of the REINFORCE
approach is that it represents a prescription for devising statistical gradient-following
algorithms for reinforcement-learning networks of units that compute their random output
in essentially any arbitrary fashion. Also, because it is a gradient-based approach, it in-
tegrates well with other gradient computation techniques such as backpropagation. The
main disadvantages are the lack of a general convergence theory applicable to this class
of algorithms and, as with all gradient algorithms, an apparent susceptibility to convergence
to false optima.

Acknowledgments

I have benefitted immeasurably from numerous discussions with Rich Sutton and Andy
Barto on various aspects of the material presented herein. Preparation of this paper was
supported by the National Science Foundation under grant IRI-8921275.

Notes

1. In more detail, ~W E {r I W} and E {AW[W} are both vectors having the same dimensionality as W, with
the (i, j) coordinate of ~TwE {r [W} being OE{r I W}/dwij and the corresponding coordinate o fE{AW [W}
being E {Awij I W}.

2. Strictly speaking, there is no choice of a for this algorithm guaranteeing that a will not become negative,
unless the normal distribution has its tails truncated (which is necessarily the case in practice). Another ap-
proach is to take ~, = In a as the adaptable parameter rather than a, which leads to an algorithm guaranteed
to keep ~ positive.

Appendix A

This appendix contains proofs of Theorems 1 and 2 on REINFORCE and episodic REIN-
FORCE algorithms, respectively. In addition to the notation introduced in the text, we sym-
bolize some sets of interest by letting Y~ denote the set of possible output values Yi of the
ith unit, with Xi denoting the set of possible values of the input vector x i to this unit.
Although it is not a critical assumption, we take Y/and Xi to be discrete sets throughout.
Also, we let I denote the index set for elements of W, so that (i, j) E I if and only if wij
is a parameter in the system.

24

GRADIENT ALGORITHMS 249

It should be remarked here that, in the interest of brevity, all the assertions proved in
this appendix make use of a convention in which each unbound variable is implicitly assumed
to be universally quantified over an appropriate set of values. For example, whenever i
and j appear, they are to be considered arbitrary (subject only to (i, j) E I).

A.1. Results for REINFORCE Algorithms

Fact 1.

OE{r I W, x i} = Z E{r I W , x i,yi = ~} c3gi (~, wi, xi) •
0 wij ~ ~ r~ 0 wij

Proof. Conditioning on the possible values of the output Yi, we may write

E{r I W, x i} = Z E{r I w, X i, Yi = ~} Pr{yi = ~ I W, X i}
~er~

= ~ E{r I W, x e, Yi = ~} gi(~, wi, xi) •
~e ~,.

Note that specification of the value of Yi causes w 0 to have no influence on the ultimate
value of r, which means that E {r I W, x i, Yi = ~ } does not depend on wij. The result
then follows by differentiating both sides of this last equation with respect to wij. •

Fact 2 .

Z Ogi (~' Wi' xi) = 0.
~(:Yi OWij

Proof.

~ge(~,w e,x e) = ~ P r { x = ~ l w e,x i} =1,
~Yi ~

and the result follows by differentiating with respect ~ ~ .

~ a 1. For ~ y ~ I N F O R C E a l g o r i ~ ,

OE{r] W, x i}
E { ~ w ~ W , x ~} = ~

Ow o.

Proof First note that ~e characteristic eligibility c ~ be wri~en

•

25

250 R.J. WILLIAMS

e i j -
Oln gi _ 1 Og i
OWij gi OWij

Although this fails to be defined when gi = 0, it will still be the case that Awij is well-
defined for any REINFORCE algorithm as long as Y/ is discrete. This is because
gi(~, wi, xi) = 0 means that the value ~ has zero probability of occurrence as a value of
the output Yi.

Then

E{Awij I W , x i} = Z E{Awijl W, x i, Yi = ~} Pr{yi = ~ I W, x i}
~Y~

--- ~ i ~ °lij(r --~ wt' ") (~' w~' xi) l W' x~' yi ~) gi(~' w~' xi) ~e~~'E~_gi(~, x ,bij) OwijOgi • . = "

= aij Z E { r I W, x i, Yi = ~} Ogi (t~, w i, x i)
~ ~ Yi OW ij

- o~ij ~ E {b~jl W, X i, Yi : ~} Ogi (~, wi , x i) ,
~Yi OWiJ

making use of the fact that c~j does not depend on the particular value of the output Yi.
By Fact 1, the first term of this last expression is aij(OE{r I W, xi}/Owij). Consider the
remaining term. Since E {bij [W, x i, Yi = ~} = E {bij] W, xi}, by assumption, we have

Z E{bij I W, x', Yi : ~} Ogi (~, w , x ~) = E{bij I w , x i} Ogi (~j, w', x i)
~EYi OWij ~EYi OWij

= 0

by Fact 2, and the Lemma is proved. •

Fact 3.

OE{r [W } _ ~ OE{r I W, x i = x } Pr{x i = x I W } .

OWij x~X i OWij

Proof. Conditioning on the possible input patterns x ', we may write

26

GRADIENT ALGORITHMS 251

E{r l W} = E { r I w , X i = X} Pr{x i = x l W}.
xeXi

Note that the weight w.i j lies downstream of all computation performed to determine x i.
This means that Pr {x z = x] W} does not depend on w6, so the result follows by dif-
ferentiating both sides of this last equation by wij. I

l .emma 2. For any REINFORCE algorithm,

E{zXwej I W} = ~j
OE{r I W}

Owij

Proof

E { A w i j I W} = ~ E{Awijl W, X i = X} P r {x i = x I W }

x~X i

= ~a ccij OE {r I W, X i = X} Pr {x i = x I W}
xf:X i OWij

= ~ ~ ~ e { r I w , x i = ,,} ~ r { x ~ = x I W}

x~Xi OWl:

~E{r I W}
= O~ij ,

Ow 0

where the first equality is ob~ined by conditioning on ~e possible input patterns m the
u~t, the second equ~i~ follows from L e n a 1, the ~ird equali~ follows from ~e assump-
tion that ~i~ does not depend on the input to the unit, and the last equality follows from
Fact 3. •

Establishing ~is last result, which is just like L e n a 1 except that ~e conditioning on
input to unit i has been removed from both sides of the equation, is a key step. It relates
two quantities that, unlike ~ose of L e n a 1, would be quite messy to compute explicitly
in general because Pr {x i = x I W} can be quite complicated. From ~is lemma our main
result follows easily.

Theorem 1. For any REINFORCE a lgor i t~ , E{~W ~ W} T V w E { r ~ W} ~ 0. Fur-
~ermore, i f~ 0 > 0 for ~1 i and j, ~en equality holds if and o~y if ~ w E { r ~ W} = 0.

Proof

E{~xw I w} T VwE{r I W} : ~ E{~wi; I W} 0e{r I W}
(i,j)~I OWij

27

2 5 2 R.J. WILLIAMS

I ~ E { r I W } ~ 2
= Z Otij '

(i,j)~l OWij

by Lemma 2, and the result is immediate. []

A.2. Results for episodic REINFORCE algorithms

Analysis of the episodic REINFORCE algorithm is based on the unfolding-in-time mapp-
ing, which associates with the original net N its unfolded-in-time acyclic net N*. The key
observation is that having N face its learning problem is equivalent to having N* face a
corresponding associative learning problem. Let W* denote the weight matrix for N*, with
its individual components being denoted w~. The weight rd//j in N* corresponds to the
weight w/j in N at the tth time step, so that ~ j = w 0 for all i, j , and t. Because of the
correspondence between these nets, it should be noted that specifying W is equivalent to
specifying W*. Also, the correspondence between the learning problems is such that we
can consider the reinforcement r to be the same for both problems.

Fact 4.

cgE{r [W} = ~ . OE{r [W*}

cgwij ~= ~ cg~j
: a

Proof. Using the chain rule, we have

OE{r I w }

Ow~j

_ ~ OE{r I w} ~w~j= ~ OE{r I w} _ ~ OE{r [W*},
t= l OM~ij OWij t= l Ol~iij t= l O~ij

since vd//j = wij for all t. []

I.emma 3. For any episodic REINFORCE algorithm,

E{z~wij l w } = o~ij
OE{r I W}

c3w iy

Proof Let Aw~/j = aij(r - bij)e~, so that Awij = ~tk=l Aw~i j. Note that this represents a
REINFORCE algorithm in N*, so it follows from Lemma 2 that

E{Awl,.j I W*} : o~ o
OE{r]W*}

But then

28

GRADIENT ALGORITHMS 253

{k } e{aw;jl w} = e ~ % l w *
t=l

k
= ~ e{~w~j I w*}

t=l

k OE{r I W*}
= Z O l i j

t=~ O~j

OE{r I W}
= Olij ,

~w~j

where the last equality follows from Fact 4. •

Theorem 2. For any episodic REINFORCE algorithm, E{AW I W } T VwE{r I W} > 0.
Furthermore, ifaij > 0 for all i and j, then equality holds if and only if VwE{r I W} = 0.

Proof

E{AW I W} T VwE{r I W} = Z E{Aw~/ I W} OE{r l W}
(i, j)E1 OWij

I OE{r I W} ~ 2
Z Olij ,

(i, j)EI OWij

by Lemma 3, and the result is immediate. •

Note that the proof of Theorem 2 is identical to that for Theorem 1. This is because
Theorem 1 uses Lemma 2 and Theorem 2 uses Lemma 3, and both lemmas have the same
conclusion.

Appendix B

This appendix is devoted to the proof of the following result:

Proposition 1. Suppose that the probability mass or density function g has the form

g(Y, /~, 02, . . . , 0k) = exp[Q(/~, 02, . . . , Ok)y + D(/~, 02 , 0k) + S(y)]

29

254 R.J. WILLIAMS

for some functions Q, D, and S, where #, 02, . . . , 0k are parameters such that/~ is the
mean of the distribution. Then

01n g _ y - /z

0t~ 02

where 0 2 is the variance of the distribution.

Proof Here we consider the case of a probabili ty mass function only, but a corresponding
argument can be given for a density function.

Let Y denote the support of g. In general,

Oln g Og O
Z g - - = Z - Z g = 0 (15)
y~y Old, y~Y Ol~ Ol~ yeY

since ~y~y g = 1. Combining this with the fact that /z = Eyer yg, we also find that

Oln g Oln g Oln g
Z (Y - / z) g - = Z y g - - - I z E g - -
y~ y 0 ~1, y~: y Old, y~ y 0 ~1,

Og
= Z Y - -

yet Ol z
(16)

_ 0 Z y g

o[~ y~y

= 1

Now introduce the shorthand notation a = OQ/Olz and/3 = OD/Olz. From the hypothesis

of the proposit ion we have

01n g _ OQ cgD
y + - - = c~y + /3,

0# 0tz 0~

so that

30

GRADIENT ALGORITHMS 255

Also,

Z g - - i

y~Y

O l n g _ ~ (o~y + /3) g = o~ Z Y g + /3 Z g = c~tz + /3.
Ol~ yEY yEY y~Y

~ (Y - #)g - - _
y~Y

Oln g - Z (Y - /O(c~y + /3)g
OlZ y~y

= Z (Y - /z)[ot(y - #) + c~/z + /3]g
y~Y

= c~ ~] (y - tz)Zg + (c~y + /3) ~] (y - #) g
y~Y y~Y

since ~y~y (y -- #) g = O.

Combin ing (15) with (17) and (16) wi th (18), we see that

c ~ + /3 = 0

and

cw ~ = 1,

f rom which it follows that c~ = l/or 2 and /3 = - /~/o ~. Therefore,

0 1 n g (y , l~, 02 Oh) _ 1 tz Y - t~
O/x 0 2 y - ~ = ae

(17)

(18)

•

References

Barto, A.G. (1985). Learning by statistical cooperation of self-interested neuron-like computing elements. Human
Neurobiology, 4, 229-256.

Barto, A.G. & Anandan, P. (1985). Pattern recognizing stochastic learning automata. IEEE Transactions on Systems,
Man, and Cybernetics, 15, 360-374.

Barto, A.G. & Anderson, C.W. (1985). Structural learning in connectionist systems. Proceedings of the Seventh
Annual Conference of the Cognitive Science Society, (pp. 43-53). Irvine, CA.

Barto, A.G., Sutton, R.S., & Anderson, C.W. (1983). Neuronlike elements that can solve difficult learning con-
trol problems. IEEE Transactions on Systems, Man, and Cybernetics, 13, 835-846.

Barto, A.G., Sutton, R.S., & Brouwer, P.S. (1981). Associative search network: A reinforcement learning associative
memory. Biological Cybernetics, 40, 201-211.

Barto, A.G., & Jordan, M.I. (1987). Gradient following without back-propagation in layered networks. Proceedings
of the First Annual International Conference on Neural Networks, Vol. II (pp. 629-636). San Diego, CA.

Barto, A.G., Sutton, R.S., & Watkins, C.J.C.H. (1990). Learning and sequential decision making. In: M. Gabriel
& J.W. Moore (Eds.), Learning and computational neuroscience: Foundations of adaptive networks. Cambridge,
MA: MIT Press.

31

2 5 6 R.J. WILLIAMS

Dayan, P. (1990). Reinforcement comparison. In D.S. Touretzky, J.L. Elman, T.J. Sejnowski, & G.E. Hinton
(Eds.), Proceedings of the 1990 Connectionist Models Summer School (pp. 45-51). San Mateo, CA: Morgan
Kanfmann.

Goodwin, G.C. & Sin, K.S. (1984). Adaptive filtering prediction and control. Englewood Cliffs, NJ: Prentice-Hall.
Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for learning real-valued functions. Neural

Networks, 3, 671-692.
Hinton, G.E. & Sejnowski, T.J. (1986). Learning and relearning in Boltzmann machines. In: D.E. Rumelhart

& J.L. McClelland, (Eds.), Parallel distributedprocessing: Explorations in the microstructure of cognition.
VoL 1: Foundations. Cambridge, MA: MIT Press.

Jordan, M.I. & Rumelhart, D.E. (1990). Forward models: supervised learning with a distal teacher. (Occasional
Paper - 40). Cambridge, MA: Massachusetts Institute of Technology, Center for Cognitive Science.

leCun, Y. (1985). Une procedure d'apprentissage pour resau a sequil assymetrique [A learning procedure for
asymmetric threshold networks]. Proceedings of Cognitiva, 85, 599-604.

Munro, P. (1987). A dual back-propagation scheme for scalar reward learning. Proceedings of the Ninth Annual
Conference of the Cognitive Science Society (pp. 165-176). Seattle, WA.

Narendra, K.S. & Thathatchar, M.A.L. (1989). Learning Automata: An introduction. Englewood Cliffs, NJ: Prentice
Hall.

Narendra, K.S. & Wheeler, R.M., Jr. (1983). An N-player sequential stochastic game with identical payoffs.
IEEE Transactions on Systems, Man, and Cybernetics, 13, 1154-1158.

Nilsson, N.J. (1980). Principles of artificial intelligence. Palo Alto, CA: Tioga.
Parker, D.B. (1985). Learning-logic. (Technical Report TR-47). Cambridge, MA: Massachusetts Institute of Tech-

nology, Center for Computational Research in Economics and Management Science.
Rohatgi, V.K. (1976) An introduction to probability theory and mathematical statistics. New York: Wiley.
Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by error propaga-

tion. In: D.E. Rumelhart & J.L. McClelland, (Eds.), Parallel distributed processing: Explorations in the micro-
structure of cognition. VoL 1: Foundations. Cambridge: MIT Press.

Schmidhuber, J.H. & Huber, R. (1990). Learning to generate focus trajectories for attentive vision. (Technical
Report FKI-128-90). Technische Universi~t Miinchen, Institut fiir Informatik.

Sutton, R.S. (1984). Temporal credit assignment in reinforcement learning. Ph.D. Dissertation, Dept. of Com-
puter and Information Science, University of Massachusetts, Amherst, MA.

Sutton, R.S. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9-44.
Thathatchar, M.A.L. & Sastry, P.S. (1985). A new approach to the design of reinforcement schemes for learning

automata. IEEE Transactions on Systems, Man, and Cybernetics, 15, 168-175.
Wheeler, R.M., Jr. & Narendra K.S. (1986). Decentralized learning in finite Markov chains. IEEE Transactions

on Automatic Control, 31, 519-526.
Watkins, C.J.C.H. (1989). Learning from delayed rewards. Ph.D. Dissertation, Cambridge University, Cambridge,

England.
Werbos, P.J. (1974). Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D.

Dissertation, Harvard University, Cambridge, MA.
Williams, R.J. (1986). Reinforcement learning in connectionist networks: A mathematical analysis. (Technical

Report 8605). San Diego: University of California, Institute for Cognitive Science.
Williams, R.J. (198"/a). Reinforcement-learning connectionist systems. (Technical Report NU-CCS-87-3). Boston,

MA: Northeastern University, College of Computer Science.
Williams, R.J. (1987b). A class of gradient-estimating algorithms for reinforcement learning in neural networks.

Proceedings of the First Annual International Conference on Neural Networks, Vol. II (pp. 601-608). San Diego,
CA.

Williams, R.J. (1988a). On the use of backpropagation in associative reinforcement learning. Proceedings of the
Second Annual International Conference on Neural Networks, Vol. I (pp. 263-270). San Diego, CA.

Williams, R.J. (1988b). Toward a theory of reinforcement-learning connectionist systems. (Technical Report NU-
CCS-88-3). Boston, MA: Northeastern University, College of Computer Science.

Williams, R.J. & Peng, J. (1991). Function optimization using connectionist reinforcement learning algorithms.
Connection Science, 3, 241-268.

32

