Dialect Processing in NLP: African-American English (AAE) [Blodgett et al., 2016, Blodgett et al., 2018]

Leo Born

HS: Bias Prof. Dr. Katja Markert Institute for Computational Linguistics Ruprecht-Karls-Universität Heidelberg

14.01.2020

- African-American English (AAE)
 - Dialect vs Dialekt
 - Linguistic Characteristics
 - Bias
- 2 TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

- African-American English (AAE)
 - Dialect vs. Dialekt.
 - Linguistic Characteristics
 - Bias
- - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- 2 TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
 - Discussion

Dialect vs. Dialekt

African-American English

- In German usage, *Dialekt* has (clear) geographic boundaries and connotations
- However, dialect is more general than Dialekt
- Usage corresponds to German term Varietät of which Dialekt is one possible form [Bußmann, 2008]
- What we will deal with represents a sociolect

African-American English

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

Variety of English with phonological, syntactic, semantic, and lexical patterns associated with a subset of African-American communities [Green, 2002]

- Common phonological patterns across AAE variants:
 - Voiced th as d: dey, dat, dis, dere
 - Derhotacization: brotha (brother), ova (over)
 - Other variations: wea (where), sholl (sure), iont (I don't)

- Common syntactic patterns:
 - Aspect-based:
 - Habitual be: They be running
 - Future gone: He gone be disappointed
 - Completive done: They done left
 - Null copulas: Where you at?
 - Null auxiliaries: If u wit me den u pose to RESPECT ME

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

- Most NLP tools have been trained with Standard American English (SAE) data:
 - Language identification tools have a hard time detecting AAE as English
 - Parsing accuracy is lower for AAE
 - \rightarrow Downstream applications such as sentiment or opinion analysis can either under- or misrepresent AAE speakers

Figure: Examples of AA-aligned tweets.

0000000000

African-American English

• langid.py¹ results for previous tweets:

```
>>> aint bout nuffin datz how im coming
('de', -74.3771800994873)
>>> yea u def blessed!!! lolol
('nl', -23.63649320602417)
>>> i aint got nuffin for u hoes i need str8 money
('da', -49.66361713409424)
```

0000000000

- While this is a form of disparate impact, it differs from what we have seen so far:
 - Explicitly linguistic bias
 - Impact is both predicated upon and results in underand/or misrepresentation of minorities

Contents

African-American English

- - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique

TwitterAAE [Blodgett et al., 2016]

- Subset of Twitter messages highly associated with AAE
- Dataset consisting of 830,000 tweets
- Used to validate linguistic phenomena associated with AAE and to investigate disparities in NLP tool performance
- Furthermore, serves as data for subsequent work [Blodgett et al., 2018]

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

• Two-step process:

African-American English

- 1. Find messages on Twitter cross-referenced against US Census demographics data
- 2. Topic modeling with demographics as topics
- Prerequisites:
 - Tweets with geodata
 - Tweets were casual and conversational:
 - Users with more than 1,000 followers were excluded
 - Retweets were ignored
 - Messages containing more than three hashtags or containing "http", "follow", and "mention" were excluded

- Tweets from 2013:
 - 59.2 million tweets
 - 2.8 million users
- Each tweet is associated with a US Census blockgroup²
- For each blockgroup, race and ethnicity information is used from 2013 Census:
 - % of non-Hispanic white population
 - % of non-Hispanic black population
 - % of Hispanic population
 - % of Asian population
 - \rightarrow Each user u gets length-four vector $\pi_u^{(census)}$ by averaging all demographic values of all of u's messages

African-American English

- Each demographic category is associated a topic via unigram LM over vocabulary³
- LDA model over users and messages
 - Allows for multidialectal users
- Posterior probability of a user u using some topic k is fraction of tokens with topic k in all messages by u

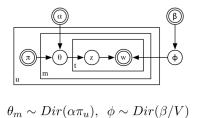


Figure: LDA model for demographic inference.

 $z_t \sim \theta_m, \ w_z \sim \phi_{z_t}$

- Correlation of model's posterior demographics' proportions and Census-derived proportions was > 0.8 for all demographics but Asian
- Many Spanish terms ended up in Asian topic
 - → Uncertainties regarding validity of Asian and Hispanic topics
 - \rightarrow [Blodgett et al., 2016] only consider AA and white demographics

- AA-aligned corpus:
 - \bullet All tweets from users whose posterior probability for AA was > 80%
- White-aligned corpus:
 - \bullet All tweets from users whose posterior probability for white was > 80%
- \bullet Constraint: each user's combined posterior probability of Hispanic and Asian was <5%

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

African-American English

- Lexical variations (check against SCOWL dictionary, ca. 630,000 words):
 - For words at least twice as likely to be AA-aligned than white-aligned $(r_{AA}(w) > 2)$, 79.1% were not in dictionary
 - For words at least twice as likely to be white-aligned than AA-aligned $(r_{white}(w) \ge 2)$, 58.2% were not in dictionary
- [Addendum] High values for both might be due to spelling variants common to Twitter⁴

⁴See e.g.

- Phonological variations:
 - 31 variants of SAE words from previous literature were selected
 - For all words, $r_{AA}(w)$ was calculated
 - For 30 out of 31 $r_{AA}(w) \ge 1^5$ and for 13 $r_{AA}(w) \ge 100$

AAE	Ratio	SAE
sholl	1802.49	sure
iont	930.98	I don't
wea	870.45	where
talmbout	809.79	talking about
sumn	520.96	something

Figure: Top five SAE word variations and their AA-alignment ratios.

⁵Exception was *brotha*.

- Syntactic variations:
 - Sequence of unigrams and POS tags used to extract occurences of three syntactic patterns: habitual be, future gone, completive done
 - All tweets were split into deciles based on posterior AA probability
 - From each decile, 200,000 tweets were sampled to calculate frequency of syntactic patterns

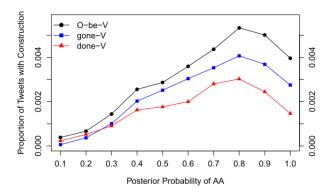


Figure: Frequencies of common AAE syntactic constructions given AA probability.

Feature	AA Count	WH Count	Example
Dropped copula	44	0	MY bestfrienddd mad at me tho
Habitual be, describing	10	0	fees be looking upside my head likee ion kno
repeated actions			wat be goingg on .
			I kno that clown, u don't be around tho
Dropped possessive marker	5	0	ATMENTION on Tvtawkn bout dat man gf
			Twink rude lol can't be calling ppl ugly that's
			somebody child lol
Dropped 3rd person singular	5	0	When a female owe you sex you don't even
			wanna have a conversation with her
Future gone	4	0	she gone dance without da bands lol
it is instead of there is	2	1	It was too much goin on in dat mofo.
Completive done	1	0	damnnn I done let alot of time pass by

Figure: Frequencies of common AAE patterns in a sample of 250 AA-und 250 white-aligned tweets.

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

Results on Language Identification

- AAE should be classified as English
- Test of langid.py and Twitter's identifier whose results are provided in tweet metadata
- From classified "non-English" tweets, 50 per tool-data pair were manually checked
 - Only 3 were really not English

	AAE	White-Aligned
langid.py	13.2%	7.6%
Twitter-1	8.4%	5.9%
Twitter-2	24.4%	17.6%

Figure: Tweets classfied as non-English.

 As messages' posterior AA probability increases, proportion of "non-English" classification rises

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

- Questionable to associate origin of tweet with neighborhood a person supposedly lives in
- No examples of really not-English tweets
- Unclear what the median number of tweets per user is
- Retrieval of orthographic variations only vaguely mentioned
- No examples of OOV words

•000000000000000

- - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
 - Discussion

Universal Dependencies [Nivre et al., 2016]

- Designed as a language-independent syntactic annotation framework:
 - Combined several existing frameworks
 - \rightarrow Dialects can be treated as own languages, therefore previous language-specific frameworks unsuitable

000000000000000

Universal Dependencies [Nivre et al., 2016]

• 40 relations (excerpt):

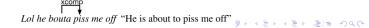
African-American English

Core depende	nts of clausal pre	dicates	
Nominal dep	Predicate dep		
nsubj	csubj		
nsubjpass	csubjpass		
dobj	ccomp	xcomp	
iobj			
Non-core depe	endents of clausa	l predicates	
Nominal dep	Predicate dep	Modifier word	
nmod	advcl	advmod	
		neg	
Special clausa	l dependents		
Nominal dep	Auxiliary	Other	
vocative	aux	mark	
discourse	auxpass	punct	
expl	cop		
Noun depende	ents		
Nominal dep	Predicate dep	Modifier word	
nummod	acl	amod	
appos		det	
nmod		neg	
Case-marking	, prepositions, po	ossessive	
case			
Coordination			
conj	cc	punct	

Contents

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

• Data:


- 500 tweets sampled from TwitterAAE
- 250 AA-aligned and 250 white-aligned tweets
- Manual annotation of tweets by two annotators

Annotating AAE with UD

- Null copulas and null auxiliaries:
 - Simply omit cop and aux edges

- Habitual be, future gone, completive done:
 - Handled as verbal auxiliaries $\rightarrow aux$ edge to main verb gets added

- Verbal contractions (e.g. about to \rightarrow bouta):
 - UD handles similar SAE constructions (want to) as main verbs, so do the same here

0000000000000000

Contents

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

- Dependency parsing:
 - UDPipe [Straka et al., 2016]
 - Deep Biaffine [Dozat et al., 2017]
- POS tagging:
 - UDPipe's internal POS tagger (*Morpho-Tagger*)
 - ARK POS Tagger [Owoputi et al., 2013]
- Word embeddings:
 - 200-dimensional word2vec [Mikolov et al., 2013] embeddings trained on TwitterAAE

- Cross-domain and in-domain scenarios
- In-domain scenario:
 - UDPipe with ARK POS tagger, Twitter embeddings
 - 2-fold cross-validation, random 250/250 train/test splits
 - Twitter-only vs. Twitter+UDT

Results: In-Domain Training

	Model	LAS
Γ	(10) UDPipe, Twitter embeddings	62.2
	(11) + UDT	70.3

- Fairly acceptable results given the small dataset
- Even though UDT is non-Twitter data, inclusion increases performance

Data settings

- Cross-domain scenario (train on UDT, test on TwitterAAE):
 - Re-train UDPipe parser both with in-house POS tagger as well as ARK tagger results
 - 2. Add synthetic data
 - Insertion of e.g. @-mentions, emoticons, hashtags
 - Insertion of AAE constructions that are infrequent in UDT (e.g. collapsing about to -> bouta; replacing will with gone; deleting copulae)
 - 3. Compare pre-trained with custom word embeddings

Results: Cross-Domain Settings

Model	LAS				
(1) UDPipe, Morpho-Tagger, UDT	50.5				
(2) + Twitter embeddings	53.9				
(3) + synthetic, Twitter embeddings	58.9				
(4) UDPipe, ARK Tagger, UDT	53.3				
(5) + Twitter embeddings	58.6				
(6) + synthetic, Twitter embeddings	64.3				
Deep Biaffine, UDT					
(7) + CoNLL MAE embeddings	62.3				
(8) + Twitter embeddings	63.7				
(9) + synthetic, Twitter embeddings	65.0				

- ARK tagger outperforms Morpho-Tagger
- Larger improvements when using Twitter embeddings and synthetic data
 - However, synthetic data improvement might be due to increased training size

Results: AAE/SAE disparities

Model	AA LAS	WH LAS	Gap
(1) UDPipe, Morpho-Tagger	43.0	57.0	14.0
(2) + Twitter embeddings	45.5	61.2	15.7
(3) + synthetic, Twitter embeddings	50.7	66.2	15.5
(4) UDPipe, ARK Tagger	50.2	56.1	5.9
(5) + Twitter embeddings	54.1	62.5	8.4
(6) + synthetic, Twitter embeddings	59.9	68.1	8.2
Deep Biaffine, ARK Tagger			
(7) + CoNLL MAE embeddings	56.1	67.7	11.6
(8) + Twitter embeddings	58.7	66.7	8.0
(9) + synthetic, Twitter embeddings	59.9	70.8	10.9

- Performance gap between AA- and white-aligned tweets
- ARK tagger raises AA performance and reduces gap
- Adding synthetic data and Twitter embeddings boosts performance but increases gap

Contents

- African-American English (AAE)
 - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- 2 TwitterAAE [Blodgett et al., 2016]
 - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- 3 UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

0000000000000000

- Highly important topic and motivation
- Showed that current NLP tools fail on dialects.
- However, no clear implications as to potential consequences

- - Dialect vs. Dialekt
 - Linguistic Characteristics
 - Bias
- - Dataset Construction
 - Data Analysis
 - Results on Language Identification
 - Critique
- UD Parsing of AAE [Blodgett et al., 2018]
 - Universal Dependencies (UD)
 - Annotating AAE with UD
 - Experiments
 - Critique
- Discussion

Discussion

- What future perspectives do you see in this work?
- What do you think about the dataset construction?

Bibliography I

Blodgett, S. L., Green, L., and O'Connor, B. (2016).

Demographic Dialectal Variation in Social Media: A Case Study of African-American English.

In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1119–1130.

Blodgett, S. L., Wei, J. T. Z., and O'Connor, B. (2018).

Twitter universal dependency parsing for African-American and mainstream American English.

In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers), pages 1415–1425.

Bußmann, H. (2008).

Lexikon der Sprachwissenschaft.

Kröner, Stuttgart, 4. edition.

Bibliography II

Dozat, T., Qi, P., and Manning, C. D. (2017).

Stanford's Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task.

In Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 20–30.

Green, L. J. (2002).

African American English.

Cambridge University Press.

Mikolov, T., Corrado, G., Chen, K., and Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space.

In Proceedings of the International Conference on Learning Representations (ICLR 2013), pages 1–12.

Bibliography III

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajič, J., Manning, C. D., McDonald, R., Petrov, S., Pyysalo, S., Silveira, N., Tsarfaty, R., and Zeman, D. (2016).

Universal Dependencies v1: A Multilingual Treebank Collection. Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016, pages 1659–1666.

Owoputi, O., O'Connor, B., Dyer, C., Gimpel, K., Schneider, N., and Smith, N. A. (2013).

Improved Part-of-Speech Tagging for Online Conversational Text. In *Proceedings of NAACL-HLT 2013*, pages 380–390.

Straka, M., Hajič, J., and Straková, J. (2016). UDPipe: Trainable Pipeline for Processing CoNLL-U Files Performing Tokenization, Morphological Analysis, POS Tagging and parsing. In *Proceedings of the 10th International Conference on Language Resources and Evaluation, LREC 2016*, pages 4290–4297.