
Task-driven Greedy Learning of Feature Hashing Functions

Artem Sokolov Stefan Riezler
Department of Computational Linguistics

Heidelberg University
69120 Heidelberg, Germany

{sokolov,riezler}@cl.uni-heidelberg.de

Abstract

Randomly hashing multiple features into one aggregated feature is routinely used in large-
scale machine learning tasks to both increase speed and decrease memory requirements, with
little or no sacrifice in performance. In this paper we investigate whether using a learned
(instead of a random) hashing function improves performance. We show experimentally that
with increasing difference between the dimensionalities of the input space and the hashed
space, learning hashes is increasingly useful compared to random hashing.

1 Introduction

Standard approaches to learning from non-vectorial sparse data start by embedding data in a high-dimensional
vector space RD using domain-specific keys as dimension indexes: bag-of-tokens in Natural Language Process-
ing (NLP), pairs of all possible query-document token associations in Information Retrieval (IR), all action-user
pairings in collaborative filtering etc. For an embedded vector φ ∈ RD, and the widely used linear parametriza-
tion of the prediction (scoring) function f(φ;w) = 〈w,φ〉, the high number of dimensions often allows ap-
proximately achieving linear separability in classification tasks at an acceptable level. In practice however,
the same high number of features can cause learning on sparse and non-integer indexed data to be both space
and performance challenging. On the one hand, efficiently manipulating a model w during learning in most
cases translates into the requirement to keep the complete model in quickly accessible memory. Depending
on the hardware a learner must be run on, w of even a relatively modest dimension D may not easily fit into
device’s addressable RAM. On the other hand, naive storage of sparse data in ordered associative arrays or un-
ordered hash tables, that bind non-integer feature keys to numerical values, becomes progressively slower with
increasing dimensionality D.

The common approach to deal with both problems is the hashing trick (also called alphabet elimination or
random feature mixing) [1, 2, 3]. The idea is to use a data-independent (pseudo-) random hashing function
HASH to define a per-coordinate mapping from RD into a lower dimensional feature space RM :

for d′ = 1 . . .M φ′d′ =
∑

d:HASH(d)=d′

φd or φ′d′ =
∑

d:HASH(d)=d′

ξdφd, (1)

where d is a feature key (usually a string) and ξd are independent uniformly distributed binary (+1/-1) Bernoulli
variables [3]. Both mappings provide, respectively, biased and unbiased estimators for inner products 〈φ′n,φ

′
m〉

in the reduced space [2, 3]; and both enjoy exponential tail bounds on the distortion of products [2, 3] or, in
other words, lengths of vectors are approximately preserved with high probability.

In this work we design a data-dependent feature hashing technique to answer the question if better classification
performance can be achieved with a mapping HASH that is better informed of the final learning objective.
The (ideal) solution that we are aiming for, should leverage existing highly optimized learning procedures: in
the simplest case, it should be implementable as a preprocessing step that can be prepended early in the data
processing pipeline and does not interfere with black-box online algorithms that optimize model w.

1

We achieve this by requiring that for each feature d there exists a separate vector representation ν(d) ∈ RV .
E.g., for word features, each word d could be accompanied with various NLP or IR statistics describing its
usage in the wild, collected into ν(d) over some text corpus not necessarily related to the task being solved.
Based on the ν-representation we propose to, first, learn a mappingH : RV → {0, 1}T , such that the Hamming
distance DH(H(ν(d1)),H(ν(d2))) between two features d1, d2 captures their similarity for the task. Second,
a surjective mapping B : {0, 1}T → {0, . . .M} is done, which has a property that sufficiently close (according
to DH) vectors get projected into the same integer. Finally, new hashing function HASH is defined as the
compositionH ◦ B whose outputs can be interpreted as memory addresses.

Related work Oblivious (data-independent) locality-sensitive hashes [4] were initially proposed for the task
of nearest-neighbor search and for specific (dis)similarity measures: Hamming distance [4, 5], `2 [5], `p [6],
cosine [7], resemblance [8], edit distance [9] etc. Supervised data-dependent learning-to-hash approaches were
later shown to significantly outperform LSH-based techniques (e.g., [10, 11]). Contrary to the oblivious ap-
proaches, here a measure to preserve is not known beforehand, rather it is inferred from examples of close/distant
data instances obtained either from human labels or class memberships. A straight-forward application of the
learning-to-hash to feature hashing would be to use domain-specific feature similarity, e.g. semantic closeness
in NLP. Having clustered the feature vocabulary into classes, class id can be used as hash value in (1). In [12]
correlated feature hashing using top-k words with highest DICE coefficient as similarity class fingerprint was
indeed shown to be helpful, but in general this approach requires considerable trial-and-error effort. As the re-
lation of the hash learning and the actual task (2)) is absent, one may miss some deeply hidden and not evident
relations between words that would be advantageous to the task. Boosting was previously used to learn data-
dependant binary hashes (e.g. in [10, 13]) with a different task to preserve pair-wise similarity and requiring a
separate set of similarity-labelled data, which is absent in our setup.

2 Learning to Hash Features

Setup Suppose the training data is given in the form of N vectors φn ∈ RD paired with a binary (±1) class
label yn: {(φn, yn)}n=1...N . For NLP tasks, an individual component φd can be an indicator or frequency
counts of the corresponding token d from a vocabulary of size D. For each feature d is accompanied by a
representation ν(d) ∈ RV . These vectors provide an apriori view of the input feature vocabulary relatively to
some, in general, independent feature set of size V . We consider a supervised task of finding optimal parameter
vector w∗ ∈ RM that minimizes training empirical loss

w∗ = arg min
w

L(w) = arg min
w

∑
n

`(〈w,φ′n〉, yn), (2)

and a setup where the efficiency and/or resource constrains suggest using the hashing trick. Here `(〈w,φ′n〉, yn)
is the instance penalty suffered for predicting 〈φ′n,w〉 instead of yn and the transformed vectors φ′ are obtained
using one of the mappings (1). In the following we focus on the hinge loss (1 − y〈w,φ′〉)+ and, for brevity,
omit a regularization term that is likely to be needed in practice.

MQP formulation The unknown hashing function HASH can be represented by a binary matrix A ∈
{0, 1}M×D, where am,d = [[HASH(d) = m]]. By definition A is sparse and has a special structure: for each
d’th input feature, the d’th column of A contains exactly one 1; all other cells in the column are zero. As
normally M � D, some rows will contain several 1’s. The task of learning a data-dependant function HASH
(matrix A) and w∗ simultaneously can be formulated as a mixed quadratic programming (MQP) problem:

min
w,A,ξ

∑
n

ξn, s.t. yn〈A>w,φn〉 ≥ 1− ξn, ξn ≥ 0,
∑
m

am,d = 1, am,d ∈ {0, 1} ∀n,m, d (3)

Because of the size of the problem, outsourcing the task to QP solvers is hard: e.g., for cross-lingual information
retrieval [12, 14] or collaborative filtering [15] D is easily in the billions and M in tens/hundreds of millions. If
w is fixed (e.g., found separately for fixed A) we still obtain a hard Boolean LP task over am,d that are known
to be NP-complete in general [16] and the size of the problem is not handled by available ILP solvers.

The complexity of the MQP formulation (3) stems, on the one hand, from the over-generality of A that permits
any mappings of even related features into arbitrary hash values, something that runs contrary to the idea of a
useful data-dependant hashing. On the other hand, directly considering am,d as variables makes the optimization

2

task discrete and, therefore, non-smooth. We will use two distinct mappings, to separate the similarity-modeling
part of A and its non-smooth part that actually produces the integer indexes. First, we restrict possible A by
grounding them on a mappingH : ν 7→ [h1(ν), . . . , hT (ν)] from RV into a proxy Hamming space {0, 1}T that
hopefully reflects task-similarity of different ν’s in the Hamming distance DH . Hamming space is a convenient
tool to approximate the similarity of features represented by ν(d) by progressively increasing dimension T until
satisfactory quality is reached, also it is well studied and has efficient dimensionality reduction techniques [5, 7,
4]. Second, we fix a subsequent embedding B : {0, 1}T → [0 . . .M] to be a dimensionality reducing mapping
such that P [B(h1) = B(h2)] is high for h1,h2 such that DH(h1,h2) is small. The values of the last mapping
are interpreted as memory addresses, so M is dictated by the available memory size. After the hash function
HASH is learned it is fixed and any standard learning algorithm can be applied to solve (2).

First mapping: greedy learning of Hamming vectors We use the following intuition: the smaller is
|wd − wd′ | for two distinct features d, d′, the less loss distortion is incurred by hashing them in (1) into the
same value HASH(d) = HASH(d′). In the extreme case wd = wd′ , the loss remains the same after mod-
ifying HASH to make the two features collide. To reflect proximity of wd with adjustable accuracy we use
Hamming vectors H(ν(d)) = [h1(ν(d)), . . . , hT (ν(d))] for each d and look for weights representable as
wTd =

∑
t≤T αtht(ν(d)). If we now set all αt = α, then DH(H(ν(d)),H(ν(d′))) = (wd − wd′)/α. Hence,

closeH(ν(d)) for different d would correspond to close1 values of respective wd. Empirical loss rewrites as:

L({αt, ht}) =
∑
n

(1− yn
∑
d

wTd φn,d)+ =
∑
n

(1− yn
∑
d

∑
t≤T

αtht(ν(d))φn,d)+. (4)

Learning ofH(νd) can be done greedily in a boosting fashion. At step t = 0 the initial representationH0(ν) is
empty. Let the representation on step (t − 1) be Ht−1(ν) = [h1(ν), . . . , ht−1(ν)] ∈ {0, 1}t−1. The Ht(ν) is
obtained fromHt−1(ν) by appending a simple bit-function ht from a family of weak bit-functions, in our case,
the standard per-coordinate decision stumps: h(ν; k, θ) = [[νk > θ]]. Selecting h(ν; k, θ) is done seeking for a
coordinate k and θ that has the largest absolute value of partial gradient of (4):

k∗, θ∗ = arg max
k,θ

∣∣∣ ∂L
∂αt
|αt=0

∣∣∣ = arg max
k,θ

∣∣∣ ∑
n:yn〈wt,φn〉<1

yn
∑
d

φn,d[[νd,k ≥ θ]])
∣∣∣.

The optimization can be efficiently done using for each k a set ∪d{νd,k} presorted in descending order and
inverted index for features d that return training instances d occurs in.

Second mapping: distance-sensitive projection After we have replaced joint learning of w and A with
greedy learning of H(ν) = [h1(ν), . . . , hT (ν)], we compress these potentially long vectors into shorter codes
that have a high collision probability for close H(ν). To that end, we use the Kushilevitz-Ostrovky-Rabani
random traces [5] as bit representations of hash indexes. For a bit-vector h = [h1, . . . , hT] and vectors rm =
[rm,1, . . . , rm,T] of Bernoulli (0/1) random variables with probability parameter p, the trace t is a bit-vector
t = [t1, . . . , tM], where tm = 〈h, rm〉 mod 2. The probability for two vectors h1 and h2 to have identical
traces decays monotonically with DH(h1,h2) and M :

P
[
t1 = t2|DH(h1,h2) ≤ ∆

]
≥
(1

2
+

1

2
(1− 2p)∆

)M
. (5)

As shown in [5] a single test bit tm has a small bias towards closer h, which is amplified by repeating the
test M times. Decreasing p increases tolerance, i.e., the probability that distant bit-vectors will be hashed to
the same M -bit hash. The memory address (new feature index) d′ then has a binary M -bit representation:
d′ =

∑M
m=1 2m−1

[
〈rm,h〉 mod 2

]
.

3 Experiments

For a proof-of-concept verification we used 20news dataset2 and the preprocessed version of the RCV1-V2
dataset3. As baseline learning algorithm with a pseudo-random hashing function, we used the implementation

1We assume that α is a sufficiently small to accurately represent w.
2http://qwone.com/˜jason/20Newsgroups
3http://hunch.net/˜vw/rcv1.tar.gz

3

http://qwone.com/~jason/20Newsgroups
http://hunch.net/~vw/rcv1.tar.gz

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

ac
cu

ra
cy

b

Random Hash
Learned Hash

(a) 20news-1g: comp vs all

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

ac
cu

ra
cy

b

Random Hash
Learned Hash

(b) 20news-1g: sci vs all

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

ac
cu

ra
cy

b

Random Hash
Learned Hash

(c) 20news-1g: talk vs all

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

ac
cu

ra
cy

b

Random Hash
Learned Hash

(d) 20news-2g: comp vs all

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

ac
cu

ra
cy

b

Random Hash
Learned Hash

(e) 20news-2g: sci vs all

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 6 8 10 12 14 16 18 20

ac
cu

ra
cy

b

Random Hash
Learned Hash

(f) 20news-2g: talk vs all

Figure 1: Test error rate for 3 classification tasks on 20news. Different fusing curves for the learned hash
correspond to different p in (5). The feature space is an order of magnitude larger in the experiments in the
lower row, showing an increased gain for learned hashes, compared to smaller scale experiments in the upper
row.

of hinge loss optimization in Vowpal Wabbit (VW) with 5 epochs, variable number of bits b = 4, 5 . . . 20 for
the hash length and default other settings. The same configuration was used to evaluate learned feature hash
functions by first preprocessing training data with (1) and switching feature hashing off. For our approach we
additionally equipped each (word or bigram) feature d with an array of, respectively, uni- or bi-gram DICE
coefficients: νd′(d) = dice(d, d′), collected over the training set. Using the learned models, the train and test
data were preprocessed for b = 4, 5 . . . 20 and p = 0.5%, 1%, 5%, 10% to produce integer-indexed features.

20news Following [1, 17] we created 3 binary (one vs. all) tasks to classify between comp, sci and talk
classes of the newsgroup hierarchy and randomly split them into training (70%, N = 5, 083) and test (30%,
N = 2, 178) subsets. For each task two sparse φ representations were created: 1) bag-of-words weighted
with tfidf and 2) binary bag-of-bigrams vectors, obtaining vocabulary sizes of D1 = 74K and D2 = 700K,
respectively. The boosting algorithm was run until T1 = 2, 500 and T2 = 3, 500 weak bits were accumulated
for the uni-gram and bi-gram version, that contained on average, respectively, 278 and 282 unique weak learner
per newsgroup type. Figure 1 shows the error rates for each of the task as a function of b.

0.6
0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

4 6 8 10 12 14 16 18 20

ac
cu

ra
cy

b

Random Hash
Learned Hash

Figure 2: Test error rate for the
RCV1 classification task. Different
fusing curves for the learned hash
correspond to different p in (5). The
upmost curve for the learned hash
corresponds to p = 0.005.

RCV1 Experiments on the binary classification RCV1-V2 dataset fol-
lowed the same setup. Hash learning was done on the firstN = 100K ex-
amples, obtaining a vocabulary of D3 = 40K elements, until T3 = 517
(77 unique) weak hashes were obtained. For training VW we used the
whole dataset (780K instances). Results are shown in Figure 2.

4 Conclusion

We presented a boosting-style technique to learn hashing functions while
optimizing a task-based objective. We showed experimentally that learn-
ing hashes is beneficial in the case when dimensionalities of the input
and the hashed feature spaces differ substantially, and that the gains over
random hashes increase with this difference. This can be explained by a
higher damage from collisions of random hash functions that harms per-
formance. Learning hash functions during task-driven optimization coun-
terbalances the effects of more expressive feature spaces and collisions.

4

Acknowledgments

This work was supported in part by DFG grant “Cross-language Learning-to-Rank for Patent Retrieval”.

References
[1] Kuzman Ganchev and Mark Dredze. Small statistical models by random feature mixing. In Proceedings of the ACL-

2008 Workshop on Mobile Language Processing. Association for Computational Linguistics, 2008.

[2] Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alexander J. Smola, and Alexander L. Strehl. Hash
Kernels. 5:496–503, 2009.

[3] Kilian Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh Attenberg. Feature hashing for
large scale multitask learning. Computing Research Repository, abs/0902.2:140–1120, 2009.

[4] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on Theory of computing, STOC ’98, pages 604–613, New York,
NY, USA, 1998. ACM.

[5] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate nearest neighbor in high
dimensional spaces. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, STOC ’98,
pages 614–623, New York, NY, USA, 1998. ACM.

[6] Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme based on p-stable distributions. In In SCG 04:
Proceedings of the twentieth annual symposium on Computational geometry, pages 253–262. ACM Press, 2004.

[7] Moses S. Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the thirty-fourth
annual ACM symposium on Theory of computing, STOC ’02, pages 380–388, New York, NY, USA, 2002. ACM.

[8] Andrei Z. Broder. On the resemblance and containment of documents. In Proceedings of Compression and Complexity
of Sequences (SEQUENCES’97, pages 2–12. IEEE Computer Society, 1997.

[9] Artem Sokolov. Vector representations for efficient comparison and search for similar strings. Cybernetics and System
Analysis, 43(4):484–498, July 2007.

[10] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation with parameter-sensitive hashing. In
Proceedings of the Ninth IEEE International Conference on Computer Vision - Volume 2, ICCV ’03, pages 750–,
Washington, DC, USA, 2003. IEEE Computer Society.

[11] Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In NIPS’08, pages 1753–1760, 2008.

[12] Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko Sadamasa, Yanjun Qi, Olivier Chapelle, and
Kilian Q. Weinberger. Learning to rank with (a lot of) word features. Inf. Retr., 13(3):291–314, 2010.

[13] Antonio Torralba, Robert Fergus, and Yair Weiss. Small codes and large image databases for recognition. In Proceed-
ings of Computer Vision and Pattern Recognition (CVPR’08), page 18. IEEE, 2008.

[14] Artem Sokolov, Laura Jehl, Felix Hieber, and Stefan Riezler. Boosting cross-language retrieval by learning bilingual
phrase associations from relevance rankings. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1688–1699. Association for Computational Linguistics, 2013.

[15] J. Bennett and S. Lanning. The netflix prize. In Proceedings of the KDD Cup Workshop 2007, pages 3–6, New York,
August 2007. ACM.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.
1979.

[17] Amit Goyal, Piyush Rai, and Hal Daume III. Multiple hash functions for learning. In Proceedings of the NIPS’11
Workshop on Big Learning, 2011.

5

	Introduction
	Learning to Hash Features
	Experiments
	Conclusion

