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Our project’s goal was to analyze how much an anglicism’s meaning changes during its transition from English to German. 

For this task, we built two vector space models based on the English and German Wikipedia        by using dictionary data 
extracted from dict.cc. 

We applied our tool „CrOssInG“ on this data to analyze which anglicisms displayed a significant change in meaning.
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We used word2vec to create two vector space models on the English and German Wikipedia. Every word’s meaning could then be 
represented by a word vector of the following form: 

  katze  0.006136 -0.052587 0.012688 -0.01403 -0.046991 0.042845 -0.023529 -0.001199 . . . 

  cat  -0.067114  0.033746 0.020565  0.032246 0.113999 0.016741 -0.021005  0.043264 . . .

The next step was to acquire a suitable translation into English for every German word. dict.cc provided a dictionary in the 
following format: 

  German {Num./Gen.} Addition <Abbr.>/[com.] English <Abbr.>/[com.] word type 

An example entry might look like this: 

  platituedenhaft [alt.] [geh.]      platitudinous    adj 

Having removed stop words, ambiguous translations and other low-priority words, we extracted this format for every respective 
translation, and created a bijective mapping from a German word to its English translation.

From the previous steps, we established a mapping from each 
German word v to an English translation: translation(v) = w. 

Our next task was to find the transformation matrix T that 
would map v to w as close as possible: 

  Tv = w’ ≈ w. 

From the difference between w’ and w (calculated by cosine 
similarity), we could deduct how close an anglicism is to its 
original meaning.
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During the process described in       , we created several 
transformation matrices based on different linear regression 
methods (ridge, elastic net and lasso) using the Python package 
scikit-learn. S denotes the set of those matrices. 

Given a set of false friends pairs F, the most accurate mapping 
T* could then be found using the following formula:

Highest similarity pairs similarity

1 peeling - exfoliation 81.80%

2 body - onesie 77.97%

3 spray - spray 76.75%

4 aftershave - aftershave 76.59%

5 t-shirt - t-shirt 76.09%

Lowest similarity pairs similarity

1 city - city 46.83 %

2 team - team 47.65%

3 campus - campus 48.57%

4 in - in 48.87%

5 golden_goal - golden_goal 49.27%

Evaluation
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Conclusion
Comparing different combinations of models and alpha values, we 
found that an elastic net model with an alpha value of α = 0.1 
performed best using our method of evaluation. 

Whilst the top ten of highest similarities seem promising at first 
glance, many of the results of the lowest-similarity top ten seem to 
be beyond the usual amount of freak values and therefore let us 
question our approach regarding the following points: 

1. The vector data obtained from word2vec (small values between 
0.1 and 0.01) 

2. Similarly to 1., the performance of scikit-learn on that vector 
data. 

3. Calculating the precision of our transformation matrices by 
evaluating false friends pairs. Evaluating on German and English 
words with a similar meaning might have been more precise.
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