Selectional Preferences for Word Sense Disambiguation – error detection

Hamdiye Arslan*, Martin F. Simmeth *, Oumar M. Dia*
*Department of Computerlinguistik, Universität Heidelberg

1 Introduction/Motivation

✓ Selectional Preferences: Resnik’s association strength:

\[p(\text{class} | \text{predicate}) = \log \left(\frac{p(\text{class})}{p(\text{predicate})} \right) \]

To determine how closely the verb selects his arguments (object / subject), calculate the Selectional preferences for this verb. This means the association between the predicate and the semantic categories with reference to the arguments

✓ WSD(word sense disambiguation): Is the process of identifying which sense of a word is used in a sentence, when the word has multiple meanings

WSD is a difficult task for every WSD-System

✓ Goal: compute the Selectional Preferences of verb-object-pairs in order to compare the gold standard senses with the given Ukb_WSD-senses

2 Approach (Figure 1)

1. Compute selectional association

- Hadoop (Figure 2)
 - Framework for distributed computers
 - Base on MapReduce Algorithm
 - Implemented in Java

- Dumbo
 - Python interface for Hadoop
 - Facilitate the writing and running of hadoop programs in Python
 - could not get up to now a complete access to Hadoop API
 - poor documented

- Hadoop/ Dumbo
 - enable the use of UKWAC corpus as Database

2. Semcor for UKB_WSD-System

- Convert Semcor-xml-corpus into .conll Format
- Parse Semcor -conll-corpus with Malt Parser to get a dependent parsed basedata in order to identify verb-object-pair.
- run UKB_WSD to disambiguate

3 Classify

✓ MaxEntClassifier with NLTK
- takes FeatureSet with Label as Input

Example of a featureset:

\{('context: record': True, 'obj: action': True, 'verb: see': True, 'context: be ': True, 'selPrefInTopTen': False, 'context: start ': True, 'SenseNumber: 01': True, 'context: week ': True), False\}

- Data has been splitted into Train-set, Development-set and Test-Set

4 Evaluation

Evaluation was done on the Test-Set.

Precision: 0.712
Recall: 0.712
F1-Measure: 0.712

5 References

- Agirre and Soroa 2009. UKB: Graph Based Word Sense Disambiguation and Similarity

www.maltparser.org Malt Parser

Figure 1: Procedure

Figure 2: Mapper and Reducer

Example: ukb_output

ctx_02 w9 07190941-n !! charge
ctx_02 w12 06693198-n !! praise
ctx_03 w9 06681551-n !! report
ctx_04 w12 05682950-n !! interest