WORD ASSISTANT

Zheng Ye, Philipp Busch, Pei Lu

Department of Computational Linguistics, University of Heidelberg, Germany

Introduction and Project Architecture **Problem**: Due to limited vocabulary, non-native writers are often unsure about specific expressions.

Goal: The purpose of this software project is build a writing support system as one of possible solutions to the problem.

Architecture: The system consists of three modules, three databases, the query function and the GUI interface.

Process

Evaluation

As it takes much time to read all files from the UKWaC and BNC, the software was tested with several mini examples. Herein is one of those examples.

Read UKWaCCorpus	Boad ros	ouroo		relationfre nour	<u>ı.txt</u>
	relationfre	noun tyt		dog love <u>obj</u> 7	
a	relationfre	verb tvt		cat love <u>obj</u> 9	
- 3	vorbcunom	artet		dog love subj 5	
* 33	nounevnon	ny tyt		i love subj 10	
	verb bnc t	xt (same to the	file in the read	you love obj 12	
a Time	noun bnc.t	txt (same to the	file in the rea	ource) i want subj 9	
Beautic		Example	result	book want obj 14	
The user should type a "#" in the position of the missing		i # you	love	fun want obj 12	
word.		i love #	cat		
		Input: noun	you	relationfre verb.txt	verbs
			dog	love you obj 11	love mis
		# love dog	1	love i subj 9	love thir
The user should type a "?" before the word	love ?you	him	love dog <u>subi</u> 10	love wa	
program should find the synonyms.		Input: noun		love cat obi 16	
		1 7love you	miss	love car obj 10	noun
		Input . verb	want	want fun <u>obi</u> 12	dog cat
		i love ?dog	cat	want book obj 13	you hin
		Input: noun		want i subi 10	

Approaches

To achieve our goal, three special approaches are employed.

1. Three databases are extracted from the UK Web Archiving Consortium (UKWAC) and the British National Corpus (BNC). The UKWaC is a wideranged corpus covering diverse domains in English, while the BNC is manually annotated which avoids finding the wrong words.

2. The third database of synonyms is built with the help of two dependency vectors which are generated by DEPENDENCYVECTORS 2.5 (Pado 2010).

3. A search engine is set up on the basis of two hash maps, i.e. RelationMap and SynonymMap, and uses frequency of occurrence of word combination to filter words.

4. The GUI is built as an interface to provide the user a direct access to Word Assistant with a dialog-box.

Conclusion

1 Wall (00) 12		This software has the notantial to be
tionfre verb.txt	verbsynomy.txt	This software has the potential to be
vou obi 11	love miss 0 6324555320336759	expanded despite its limitation on
you <u>obj</u> 11	love think 0.738394847748393	verbs and nouns. The experiment with
subl 9	love want 0.839473739273273	verbs and nouns serves as a basis for
log <u>subj</u> 10		future research. The obvious
cat <u>obj</u> 16	<u>nounsynomy.txt</u>	disadvantage is that it takes much time
fun <u>obj</u> 12	dog cat 0.9973031700969424	to road the files from the corpora due
book obi 13	vou him 0.620712720134246	to read the mes norm the corpora due
i subi 10	,	to their vast size.
I SUD I I U		

References

A Ferraresi, E Zanchetta, M Baroni, S Bernardini (2008). *Introducing and evaluating ukWaC, a very large webderived corpus of English.* http://clic.cimec.unitn.it/marco/publications/Irec2008/Irec08-ukwac.pdf (Consulted on 15 January 2011).

S Pado, U Pado and K Erk (2010). A Flexible, Corpus-driven Model of Regular and Inverse Selectional Preferences. *Computational Linguistics* 36: 4.

S Pado (2010). *Manual for DependencyVectors 2.5.* http://www.nlpado.de/~sebastian/dv/dv_manual_2.5.pdf (Consulted on 20 December 2010).

philippbusch@gmx.net; pamela_yz@yahoo.de; lupei.hd@gmail.com