Learning and Predicting Verb Argument Binding

software project winter term 2013/14

Damian Gorski, Angelika Kirilin, Elisa Starke, Mengfei Zhou Department of Computational Linguistics Heidelberg University, Germany

Motivation

- coreferring arguments in pairs of co-occurring verbs can be arbitrarily linked:
- $Mary_i$ visited the new art gallery with $Susann_j$. $She_{i/j}$ loves art.
- meaning of the involved verbs can make one argument binding more probable/obligatory:
- Ed_i shouted at Tim_i because he_i crashed the car. Ed_i shouted at Tim_i because he_i was angry. (Rahman & Ng 2012)
- analysis of semantic properties of verbs reveal patterns
- → Certain verbs can stand in a particular (semantic) relation
- → How can we squeeze profit from these insights?

Corpora

I. OntoNotes-4.0

- (CoNLL 2011 subset)
- 10 Mbyte of text
- multi-layer annotation
- gold-standard annotation of i.a. coreference

II. GigaWord 5th Edit.

- · ca. 26 Gbyte of Text
- automatic annotation (MATE parser)

Verb Pairs

I. Tremper & Frank (2013)

- verbs in semantic relation: entailment, presupposition, antonomy, temporal inclusion
- 200 pairs

II. Chambers & Jurafsky (2009)

- 'narrative chains'
- 8,069 pairs

Statistics

co-occurrences found within 2 sentences:

OntoNotes

- 11,703 (of 1,415 verb pairs)
- average co-occ. per verb pair: 32

GigaWord

- 42,857,885 (of 4,456 verb pairs)
- average co-occ. per verb pair: 4006

Argument Patterns

- dependency resolution for subjects, dir. + ind. objects
- coreference resolution (GW): extraction of verb pairs with coreferring arguments (= arg. pattern):
- I. OntoNotes:
 - 2,603 patterns
- II. GigaWord: 3,354,693 patterns
- Ed shouts at Tim. He overslept.

Conclusion

- performance decreases on larger training sets
 - insufficient ability of features to generalize for coreference, though precise prediction:
 - hence better performance on rare patterns (i.e. inObj_{v1}_obj_{v2}) than on frequent (i.e. subj_{v1}_subj_{v2})
 - thus overfitting on non-coreferent patterns, especially for cases
 - 1. in which one argument is not realized John eats a burger and __ drinks a coke.
 - 2. in which tokens of both arguments are identical
 - data is inconsistent/widespread: big data reduces determination of pattern strength and requires more robustness
- argument binding patterns can help improve coreference resolution systems (important features: include proper names, identical tokens and realization)
- to be examined
 - suspicion of different performances of certain features (e.g. 'ProperName') at different argument patterns
 - precision recommends an implementation in elaborated coreference resolution systems
 - prior probability (resp. association) of coreferent argument bindings

Goals • Are t

- Are there predictable argument binding (coreference) patterns?
- What are the possibly involved factors?
- Does big data help finding reliable patterns?
- · Can we reliably predict such patterns on type-/token-level?

Feature Extraction

- I. pattern-based (association measures):
 - coreferential probability
 in relation to all coref. patterns
 - of verb x x = {v1,v2}; i,j = {subj, obj, inObj}:
 - $\frac{C(coref(\arg_{j(v)}, \arg_{j(v2)}))}{C(coref(\arg_{j(v)}, *))}$
 - in relation to all patterns: $\frac{C(coref(\arg_{\{v^1\}},\arg_{\{v^2\}}))}{C(coocc(\arg_{\{v^1\}},\arg_{\{v^2\}}))}$

II. argument-based:

e.g. same word, string match, proper name

III. verb-based:

e.g. tempus, voice, verb distance

Classification (WEKA J48)

number of argument patterns

training (GigaWord)
WPB (1.3%) 43,726

+ XIN (25%) 838,750

+ AFP (68.6%)

2,303,020

testing

OntoNotes 5,205

Problems

- entire automatic annotation of GigaWord
- correct treatment of verbs containing prepositions/adverbs
- not realized arguments (evaluation): not recognized by SIEVE yet recognized by presented system
- gold-standard corefence information
 of OntoNotes: displaced word no.

Results

more training data leads to:

- drop of learning curve → levels out at 0,64 (f-measure)
- precision: increase for coreferent and decrease for non-coreferent patterns; recall: vice versa
- smaller decision tree: less features: asso1_{v2}, infinitive, pronouns discarded
- worst classified argument pattern: subj_{v1}_subj_{v2} (32.3% false)
- **best** classified argument pattern: inObj_{v1}_obj_{v2} (9.8% false)

comparison of performances:

	coreferent	
	SIEVE	presented
Precision	0.79	1
Recall	0.58	0.47

non-coreterent			
	SIEVE	presented	
Precision	0.67	0.65	
Recall	0.85	1	

- similar alternation of performance with regard to classes
- though less class-dependent behavior
- generalization (SIEVE) vs. specialization (presented system)

References

- N. Chambers & D. Jurafsky (2008). Unsupervised learning of narrative event chains. In Proceedings of the ACL/HLT 2008 Conference. N. Chambers & D. Jurafsky (2009). Unsupervised learning of narrative schemas and their participants. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL.
- M. Gerber & J.Y. Chai (2012). Semantic Role Labeling of Implicit Arguments for Nominal Predicates. Computational Linguistics, 38 (1).
 A Rahman & V. Ng (2012). Resolving Complex Cases of Definite Pronouns: The Winograd Schema Challenge. In Proceedings of EMNLP-CANLI.
- Contact.

 6. Tremper & A. Frank (2013). A Discriminative Analysis of Fine-Grained Semantic Relations including Presupposition. Dialogue and Discrepance 4 (2) 283-324