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Abstract

This paper discusses our contribution to the
third RTE Challenge – the SALSA RTE sys-
tem. It builds on an earlier system based on
a relatively deep linguistic analysis, which
we complement with a shallow component
based on word overlap. We evaluate their
(combined) performance on various data
sets. However, earlier observations that the
combination of features improves the over-
all accuracy could be replicated only partly.

1 Introduction

This paper reports on the system we used in the third
PASCAL challenge on Recognizing Textual Entail-
ment. The system is based to a large extent on Bur-
chardt and Frank’s system (2006) used in the second
RTE challenge (Bar-Haim et al., 2006); it relies on
a relatively deep linguistic analysis, which we com-
plement with a shallow component based on word
overlap. As the system has been described earlier,
we concentrate on a more systematic discussion of
the system behaviour, aiming at spotting promising
anchors for future extensions and improvements.

It has been observed for related systems that a
combination of separately trained features in the ma-
chine learning component can lead to an overall im-
provement in system performance, in particular if
features from a more “informed” component and
shallow ones are combined (Hickl et al., 2006; Bos
and Markert, 2006). We provide a detailed analysis
of our system’s behaviour on different training and
test sets. However, we could not replicate the effects
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observed by others on all corpora – often, the ac-
curacy of the combined features is not higher than
the best individual features or feature sets. For the
RTE 3 test set, the combined features actually lead
to a slightly lower accuracy.

One candidate future enhancement of our system
is to refine the relatively unrestricted graph match-
ing that compares the analyses of text and hypothe-
sis and underlies the definition of the deep features.
But a more controlled, “rule based” definition of an
adequate graph matching seems to rely on a deeper
understanding of the notion of textual entailment.

In Section 2, we review the basic architecture of
our system, and report on improvements and exten-
sions. In Section 3, we provide a detailed evaluation
of the system on different data sets. In Section 4, we
report on some findings we made in a small annota-
tion experiment we conducted at our department. In
Section 5, we conclude and give a short outlook.

2 The SALSA RTE System

In this Section, we review the basic architecture
of the SALSA RTE system, and report on some
improvements and extensions. More details can be
found in (Burchardt and Frank, 2006).

2.1 Architecture

The SALSA RTE system is based on three main
components: (i) a linguistic analysis of text and hy-
pothesis based primarily on LFG and Frame Seman-
tics (Baker et al., 1998), (ii) the computation of a
match graph that encodes the “semantic overlap” be-
tween text and hypothesis, and (iii) a statistical en-
tailment decision.



Figure 1: Linguistic Analysis ofLeloir discovered
the metabolism of carbon hydrates. (RTE3-test).

Linguistic analysis. The primary linguistic anal-
ysis components are the probabilistic LFG gram-
mar for English developed at PARC (Riezler et
al., 2002), and a combination of systems for frame
semantic annotation: the probabilisticShalmaneser
system for frame and role annotation (Erk and Pado,
2006), and the rule-basedDetour system for frame
assignment (Burchardt et al., 2005).

Frame semantic analysis is especially interesting
for the task of recognising textual entailment as it
offers a robust yet relatively precise measure for se-
mantic overlap. The lexical meaning of predicates
and their arguments are modelled in terms offrames
androles. A frame describes a prototypical situation
and roles identify participants involved in the situa-
tion. Frames provide normalisations over divers sur-
face realisations, including variations in argument
structure realisations. For instance,buy, sell, and
purchase are all associated with the same frame.

The linguistic analysis combines LFG f-structures
and FrameNet frames computed by the Shalmaneser
and Detour systems, resulting in a projection from f-
structures to a semantic layer of frames and “pseudo
predicates” for f-structure predicates that do not
project frames. Figure 1 shows the most important
parts of the analysis of hypothesis 109 from the
RTE 3 test set as an example. The LFG f-structure
is shown on the left, and the dotted lines indicate the
projection to semantic nodes on the right. The pred-
icatediscover is associated with the frame ACHIEV-
ING_FIRST, the semantic roleCOGNIZER points to
the pseudo-predicateLeloir and NEW_IDEA points
to the PROCESSframe evoked bymetabolism.

Semantic nodes are further projected into an on-
tological analysis layer containing WordNet (Fell-
baum, 1997) senses and SUMO (Niles and Pease,
2001) classes. Semantic phenomena not treated
by FrameNet like anaphora, negation or modality
are (approximately) encoded with special operators.
The resulting, layered graph structures for text and
hypothesis thus provide access to the different types
of information in a principled way.

Semantic overlap and match graphs. The sys-
tem approximates textual entailment in terms of the
“semantic overlap” between text and hypothesis. It
compares their LFG f-structures with semantic and
ontological projection by determining compatible,
matching nodes and edges. The result is stored in a
match graph, which contains all (pairs of) matched
nodes and edges. Nodes can match if they are la-
belled with identical frames or predicates, or if the
nodes are semantically related on the basis of Word-
Net or FrameNet frame relations. One node from the
hypothesis may match multiple nodes from the text
and vice versa. The matching of edges is restricted to
edges that connect matching nodes, or nodes taking
identical atomic values.

The match graph primarily encodes the “similar-
ity” of text and hypothesis. In order to capture also
a certain degree of “dissimilarity,” nodes are deleted
from the match graph if they occur in incompatible
modality contexts.

Statistical entailment decision. Given a match
graph and the graphs for text and hypothesis, we
extract various features to train a machine learn-
ing model for textual entailment. In total, we ex-
tract 47 distinct features, which can be grouped ac-
cording to their (i) level of representation (lexical,
syntactic, semantic), (ii) degree of connectedness
in the match graph, (iii) source (text, hypothesis or
match graph), and (iv) proportional relation (hypoth-
esis/text, match/hypothesis ratio).

2.2 Improvements

Sentence splitter. To cope with longer texts, we
integrated the sentence splitter of the JTok tokeniser
(Schäfer, 2005) into the system.

WordNet interface. The WordNet interface now
treats particle verbs likethrow out correctly. More-



over, we tested the usability of WordNet’s verb en-
tailment information as well as antonymy on nouns,
verbs, and adjectives as basis for heuristic infer-
ences in the graph matching process. However, for
the given data, the number of text-hypothesis pairs
where the relations are instantiated at all is marginal.

Frame semantic projection. The interface be-
tween the LFG and the Detour and Shalmaneser sys-
tems has been improved: by now 97% (+7%) of the
frames and 74% (+10%) of the roles can be pro-
jected (on the RTE3 test set), resulting in an average
of 6.6 frames and 5.5 roles per sentence.

2.3 Extensions

In addition to the above improvements, the sys-
tem has been extended in two respects. We added
a shallow component based on lexical overlap and
a “meta learner” to study the combinatorics of ma-
chine learners’ results.

Lexical overlap. In order to evaluate the perfor-
mance of our system, we implemented a simple
baseline system that approximates textual entail-
ment in terms of lexical overlap between text and
hypothesis. This shallow system is also used as a
component to complement our full system in one of
the two runs submitted to the RTE3 challenge.

The shallow system measures the relative num-
ber of words in the hypothesis that also occur in the
text. Both text and hypothesis are tagged and lemma-
tised using Tree Tagger (Schmid, 1994), taking only
nouns, non-auxiliary verbs, adjectives and adverbs
into account. Training a decision tree on the relative
word-overlap as single feature yields a system which
performs comparable to earlier word-overlap based
systems, achieving an accuracy of 60.6 % if trained
and tested on the RTE 2 development and test set,
respectively (using Weka’s J48 classifier), or 57.5 %
if we use Weka’s LogitBoost classifier.

Weka Interface. Finally, we improved the ma-
chine learning back-end which feeds our extracted
features into the Weka toolkit (Witten and Frank,
2005). This allows to train features in arbitrary com-
binations, with different machine learners.1 More-
over, it supports testing the effect of using voting or

1The figures we present in the following are all computed
with the LogitBoost classifier.

IE IR QA SUM
Run 1 (III) 62.25% 51% 68% 74% 57%
Run 2 (II) 62.62% 50% 69% 72.5% 59%

Table 1: Results of the SALSA RTE system (com-
bined training set: RTE2-dev/-test and RTE3-dev).

a “meta learner” after training individual features or
feature groups separately.

3 Results

3.1 RTE3 Results

In the RTE3 task, we submitted two runs, one with
(run 1) and one without (run 2) the lexical overlap
component. Both achieved almost the same results,
as can be seen in Table 1. The feature combinations
(II, III) are explained below in detail.

3.2 Feature Combination

We investigated the behaviour of our systems on var-
ious combinations of three different sets of 800 text
hypothesis pairs (RTE2-dev/-test and RTE3-dev).
We tested four different feature configurations:

(I) All 47 features generated in our system (ex-
cluding the lexical overlap component)

(II) Three selected features of our system (run 2):

• Overlap of LFG predicates

• Matching of grammatical functions (deep
subject/object, modifier, . . . )

• Average size of connected parts (“clus-
ters”) of the match graph, comprising syn-
tactic and semantic information

(III) The features from II plus lexical overlap (run 1)

(IV) Lexical overlap alone

In every configuration (except IV), the features
were trained separately first, then a “meta classifier”
was used to make the final entailment decision. We
will use Featureset-Training_set-Test_set
as notation for the configurations, e.g.,I-D2T2-D3
means all 47 features trained on the development
and test set of RTE2, tested on the development set
of RTE3. The results are shown in Table 2.



test→ D2 T2 D3
↓ train

I II III IV I II III IV I II III IV
D2 56.25 57.25 58.625 57.5 57.875 61.125 66.375 66.625
T2 56.375 58.75 60.625 61.625 57.5 60.875 63.75 64.625
D3 53.875 61.25 61.75 61.75 56.625 58.75 57.25 57.25
D2T2 58.5 64.25 65.875 66.375
D2D3 58 58.625 60 58.5
T2D3 56.75 61.25 60.875 60.875

Table 2: Performance of the different feature combinationson different training and test sets.

3.3 Corpus Variance

A general observation is, that almost all features
behave quite differently on different training and
test sets, as do feature combinations. Testing on T2
(RTE2-test) seems to be the hardest task. Not a sin-
gle feature combination achieved an accuracy of
more than 60%. In contrast, the best performance
was 66.625% accuracy (IV-D2-D3).2

Usually, using a larger training set (the bottom
part of table 2) should lead to a better performance.3

However, this effect could not be observed here for
all configurations. For most feature sets the perfor-
mance gain is very small, e.g. from 56.375 (I-T2-
D2) and 53.875 (I-D3-D2) to 56.75 (I-T2D3-D2).
On some feature sets, the performance even drops,
e.g. from 61.625 (IV-T2-D2) and 61.75 (IV-D3-D2)
to 60.875 (IV-T2D3-D2). The largest boost occurred
for feature set II. It’s performance increased from
61.125 (II-D2-D3) and 60.875 (II-T2-D3) to 64.25
(II-D2T2-D3). It would be very interesting to see
how the performance would develop on a much
larger training set.

3.4 Feature Variance

The variance among individual features and feature
sets is also large. Feature set II contains the most re-
liable and stable features. We tested how this “more
informed” feature set (II) compares to the shallow
word overlap feature (IV) and whether their combi-
nation (III) increases accuracy.

2One indicator for the “difficulty” of a test set is the aver-
age lexical overlap of text and hypothesis. The difference of
the proportion between the entailed and not entailed pairs –the
discriminative power of the overlap feature – differs amongdif-
ferent sets: e.g. 0.05 on T2 and 0.13 on D3.

3In terms of machine learning, extending a training set by
factor 2 (from 800 to 1.600 items) does not make a qualitative
difference. The improvement observed by (Hickl et al., 2006)
was achieved by going to 10.000 items.

As can be seen from Table 2, in most of the cases,
IV performs best, e.g. in the D2-D3 configuration,
where feature set II alone achieves 61.125, while the
combination with IV boosts the performance by 5%
(III). On the other hand, there are cases, where the
inclusion of the word overlap feature lowers the per-
formance, e.g. from 61.25 (II-T2D3-D2) to 60.875
(III-T2D3-D2).

It is also interesting that combinations of features
often perform lower than the best individual feature
in the set. For instance, in D2T2-D3 III achieves
65.875, compared to 66.375 for IV alone. We gener-
ally could not observe a positive effect for the com-
bination of features in a meta feature. In almost all
configurations, the meta feature performed worse or
equally well as the best individual feature. Apart
from the size of the training data, feature depen-
dence might be an explanation for this.

3.5 Task Variance

Figure 2 shows a per task analysis for the feature sets
II, III and IV (D2T2-D3). The system performs best
on the Question Answering task, where it achieves
almost 80% accuracy. This differs from last year’s
experience, where the system performed best in the
Summarization task. Given the general variance dis-
cussed above, this observation does not seem to al-
low general conclusions.

Again, there is a large variability of the overlap
feature as well, which ranges between 52.5% (IE)
and 79% (QA). This variability can partly be ex-
plained if we compare the average word overlap
measures for positive and negative pairs among the
individual tasks (Table 3). Note however, that the
difference (∆) between positive and negative exam-
ples in IE and IR is identical while the accuracy of
the word overlap feature differs drastically.



Figure 2: Per task accuracy (D2T2-D3).

Task Entailed Not Entailed ∆
IE 0.41 0.35 0.06
SUM 0.39 0.22 0.17
IR 0.29 0.23 0.06
QA 0.44 0.20 0.24

Table 3: Average word overlap per task for D3

The per task analysis also confirms the observa-
tion that the combination of (deep and shallow) fea-
tures behaves heterogeneously in terms of accuracy.

A somewhat unexpected result is that the more
“informed” feature II performs better in SUM as the
shallow feature IV while it is the other way round in
QA (see Figure 2).

4 Discussion

It is a bit surprising that a shallow feature like word
overlap performs comparable to, or even better than,
more informed features obtained from a relatively
deep linguistic analysis, and that the combination of
both types of features does not always increase the
overall accuracy.

One possible explanation is the limited size of the
training data, which seems to be too small for the
machine learner to exploit the full potential of the
deep features. One way to compensate for the lim-
ited training size would be to make the implicit lin-
guistic information encoded in the features more ex-
plicit, for instance by making the graph matching
linguistically more informed. Options are to com-
pute a proper embedding of the hypothesis graph
into the text graph, or interlinking of the various lay-
ers of analysis (syntax, semantics, ontology) in some
other more controlled way.

However, to come up with a more explicit model
of textual entailment, a deeper understanding of the

principles involved in establishing textual entail-
ment relations is necessary. An idea which is derived
from the traditional notion of logical entailment is
that the information encoded in the hypothesis must
(somehow) be subsumed by the text for the entailemt
to hold. Although most approaches to textual entail-
ment seem to rely on this assumption in one way or
another, it is easy to find pairs in the RTE corpora
where the relation between text and hypothesis can-
not be modelled so straightforwardly. In (1), for in-
stance, textual entailment holds althoughwas born
in is more specific thanbe from.

(1a) As a real native Detroiter, I want to remind ev-
eryone that Madonnais from Bay City, Mich.,
[. . . ].

(1b) Madonnawas born in Bay City, Mich.

Interestingly, textual entailment sometimes does not
hold even if the information expressed by the hy-
pothesis is subsumed by the text:

(2a) [. . . ] Nizar Hamdoun, announced today, Sun-
day, that thousands of peoplewere killed or in-
jured during the four days of air bombardment
against Iraq.

(2b) Nizar HAMDOON, Iraqi ambassador to the
United Nations, announced that thousands of
peoplecould be killed or wounded due to the
aerial bombardment of Iraq.

Although the hypothesis is logically entailed by the
text (if we ignore the report context) – ‘kill’ implies
‘possibly kill’ – pragmatic principles seem to block
entailment here.

The observation that standard logical entailment
and textual entailment deviate in certain respects is
not surprising and has also been addressed in a dis-
cussion initiated by (Zaenen et al., 2005). Still, there
is no consensus regarding the precise mechanisms
involved in the latter such as “general principles of
plausibility” or pragmatic principles.

We conducted a short annotation experiment dur-
ing a reading circle at our department on a randomly
chosen subset of 10 pairs from the RTE 1 (includ-
ing (1) and (2) from above). A central result was
that it is relatively easy to decidewhether textual en-
tailment holds while it often remained controversial



why this is the case. In particular, it seems difficult
to tell whether an inference is strict or just plausible,
and whether it relies on lexical knowledge only or
whether “world knowledge” is involved. Currently, a
larger subset of the RTE datasets is annotated as part
of a Master’s thesis project, and we hope to learn
more about the principles that underly the notion of
textual entailment from the analysis of this data.

5 Conclusion and Outlook

In this paper, we have compared two approximations
to textual entailment – a shallow one based on word
overlap, and a more informed one based on a rel-
atively deep linguistic analysis. The evaluation on
various data sets shows that both perform (by and
large) comparable; sometimes the shallow compo-
nent even outperforms the deeper one. A modest im-
provement in accuracy can be achieved by combin-
ing both components, but this effect cannot be ob-
served invariably on all data sets.

One reason why the deep system does not perform
better seems to be the limited size of the training data
available for the machine learning component. As
we cannot expect the necessary amount of training
data to be available in the near future, we currently
investigate the data more closely in order to arrive
at a more controlled model of textual entailment. In
another current effort, we work on an interface to
upper-level ontologies (Reiter, 2007) in order to ac-
cess more “world-knowledge” which is a desidera-
tum in natural language processing in general, as in
many approaches to textual entailment.
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