
GlueTag

Linear Logic based Semantics for LTAG

– and what it teaches us about LFG and LTAG –

Anette Frank Josef van Genabith

Language Technology Group Computer Applications
DFKI GmbH Dublin City University

Saarbrücken, Germany Dublin, Ireland
frank@dfki.de josef@compapp.dcu.ie

Proceedings of the LFG01 Conference

University of Hong Kong, Hong Kong

Miriam Butt and Tracy Holloway King (Editors)

2001

CSLI Publications

http://csli-publications.stanford.edu

GlueTag ∗

Linear Logic based Semantics for LTAG

– and what it teaches us about LFG and LTAG –

Abstract

We review existing appoaches to semantics construction in LTAG (Lexicalised Tree Adjoining
Grammar) based on the notion of derivation (tree)s. We argue that derivation structures in
LTAG are not appropriate to guide semantic composition, due to a non-isomorphism, in LTAG,
between the syntactic operation of adjunction on the one hand, and the semantic operations of
complementation and modification, on the other.

Linear Logic based “glue semantics”, as developed within the LFG framework (cf. Dalrymple
(1999)), allows for flexible coupling of syntactic and semantic structure. We investigate applica-
tion of glue semantics to LTAG syntax, using as underlying structure the derived tree, which is
more appropriate for principle-based semantics construction. We show how Linear Logic based
semantics construction helps to bridge the non-isomorphism between syntactic and semantic
operations in LTAG. The glue approach captures non-tree local dependencies in control and
modification structures, and extends to the treatment of scope ambiguity with quantified NPs
and VP modifiers. Finally, glue semantics applies successfully to the adjunction-based analysis
of long-distance dependencies in LTAG, which differs significantly from the f-structure based
analysis in LFG.

1 Introduction

In this paper we review existing appoaches to semantics construction in LTAG (Lexicalised Tree
Adjoining Grammar) based on the notion of derivation (tree)s. We argue that LTAG derivation
trees are not appropriate to guide semantic composition, due to a non-isomorphism, in LTAG,
between the syntactic operation of adjunction on the one hand, and the semantic operations of
complementation and modification, on the other.

Linear Logic based “glue semantics”, by now the classical approach to semantics construction
within the LFG framework (cf. Dalrymple (1999)) allows for flexible coupling of syntactic and
semantic structure. We investigate application of glue semantics to LTAG syntax,1 using as un-
derlying structure the derived tree, which seems more appropriate for principle-based semantics
construction. We show how Linear Logic based semantics construction helps to bridge the non-
isomorphism between syntactic and semantic operations in LTAG. Glue semantics captures non-tree
local dependencies in control and modification structures, and extends to the treatment of scope
ambiguity with quantified NPs and VP modifiers. Finally, glue semantics applies successfully to
the adjunction-based analysis of long-distance dependencies in LTAG, which differs significantly
from the f-structure based analysis in LFG in terms of functional uncertainty.

On a more general perspective, the exercise is instructive in that it elucidates the role that
f-structure plays in LFG syntax and semantics, and helps clarify the similarities and differences
between the two frameworks.

The paper is structured as follows. In Section 2 we review basic assumptions of the LFG and
LTAG frameworks to set the stage for our investigations. Section 3 examines previous approaches
to semantics construction in LTAG based on derivation (tree)s, namely Shieber and Schabes (1990),
Schabes and Shieber (1994), Joshi and Vijay-Shanker (1999) and Kallmeyer and Joshi (1999). In

∗We are grateful for valuable comments from the audiences of the LFG01 conference and the University of Kon-
stanz, in particular Ron Kaplan, Josef Bayer and Ellen Brandner. Thanks go also to Dick Crouch and Mary Dalrymple
for comments on earlier versions of this paper. Some interesting observations could not be given full justice in this
paper, but provided important feedback for the overall conception of this work, which we hope to extend in future
research. This research was partially funded by a BMBF grant to the DFKI project whiteboard (FKZ: 01 IW 002).

1Hepple (1999) sketches LL-based semantics for D-Trees, to overcome problems faced by categorial semantics in
the analysis of quantification. Muskens (2001) develops a description-based syntax-semantics interface for LTAG, yet
with extension to tree descriptions as used in D-Trees. We briefly discuss these related approaches in Section 4.7.

Section 4 we design LL-based semantics construction for LTAG on the basis of derived trees. In
Section 4.1 we design labelling principles for LTAG elementary and derived trees as an interface
to LL-based glue semantics. In Section 4.2 these principles are extended and refined to account
for non-tree local dependencies and scope constraints, exemplified by modification structures. Sec-
tion 4.3 summarises the specific assumptions introduced for glue semantics from LTAG derived
trees. Section 4.4 shows that glue semantics successfully bridges the non-isomorphism between
adjunction in syntax and corresponding operations in semantics. In Sections 4.5 and 4.6 we con-
sider control and long-distance constructions which, in their syntactic analysis, differ considerably
from the corresponding analyses in LFG. We show that LL-based semantics construction for LTAG
straightforwardly extends to these more intricate cases. It is especially in the context of these
constructions that differences and similarities between the two syntactic frameworks emerge most
clearly. This is the topic of Section 5. Section 6 concludes.

2 Basic tenets of LFG and LTAG syntax and semantics

In LFG syntactic structure is represented in terms of two levels of syntactic description: c-structure
and f-structure (1). Context-free PS rules with f-descriptions and lexical entries define the functional
correspondence between c- and f-structure. Subcategorisation and long-distance dependencies are
represented in f-structure, via functional descriptions. The correspondence function between c- and
f-structure also accounts for word order variation. LFG semantics is driven by Linear Logic based
meaning construction from f-structure, which allows for flexible coupling of syntax and composi-
tional semantics. Lexical entries are associated with so-called meaning constructors. These consist
of a “glue part”, expressions in Linear Logic which refer to f-structure nodes, and a meaning part.
The (instantiated) meaning constructors contributed by lexical entries are assembled as premises
to a Linear Logic meaning derivation, based on the glue part. Following the Curry-Howard isomor-
phism, a meaning is computed, in parallel, on the meaning side. We assume familiarity with the
glue semantics approach (see Dalrymple (1999), Dalrymple (2001) for more detail).

(1) S:f

NP:(f subj)= g VP:f

N:g ADV:m ∈ (f adj) VP:f

often V:f NP:(f obj)= h

John meets N:h

Mary

f:



























pred ‘meet〈(↑subj)(↑obj)〉’

subj g:

[

pred ‘John’

num sg

pers 3

]

obj h:

[

pred ‘Mary’

num sg

pers 3

]

adj
{

m:
[

pred ‘often’
]}

tense present

passive -



























Lexical entries with associated meaning constructors Instantiated meaning constructors

John N (↑ pred)= ‘John’ john : gσ

john :↑σ mary : hσ

Mary N (↑ pred)= ‘Mary’ λy, x.meet(x, y): hσ −◦ (gσ −◦ fσ)
mary :↑σ λP, x.often(P (x)) : (gσ −◦ fσ) −◦ (gσ −◦ fσ)

meets V (↑ pred)= ‘meet’
λy, x.meet(x, y): (↑ obj)σ −◦ ((↑ subj)σ −◦ ↑σ)

often ADV (↑ pred)= ‘often’
λP, x.often(P (x)): ((adj ∈ ↑) subj)σ −◦ (adj ∈ ↑)) −◦ ((adj ∈ ↑) subj)σ −◦ (adj ∈ ↑))

Meaning derivation

λy, x.meet(x, y) : h −◦ (g −◦ f) mary : h

λx.meet(x,mary) : g −◦ f λP, x.often(P (x)) : (g −◦ f) −◦ (g −◦ f)

λx.often(meet(x,mary)) : g −◦ f john : g

often(meet(john, mary)) : f

An LTAG grammar (Joshi 1987) consists of a set of lexicalised elementary trees (etrees), which are
composed by two operations: substitution and adjunction (2). Elementary trees encode lexical syn-
tactic properties: subcategorisation, agreement,2 and syntactic variation in terms of tree families.
The syntactic representation consists of the constituent tree (derived tree) built by substitution
and adjunction of elementary trees (see (2), (3.a)), and a derivation tree (3.b), which records the
dependencies between elementary trees as established by substitution and adjunction operations in
parsing. LTAG semantics is traditionally based on the structure of derivation trees.

(2) Elementary trees, substitution and adjunction

S

NP1 ↓ VP NP NP

V NP2 ↓ N N

meets John Mary

Substitution

S

NP1 VP

N V NP2

John meets N

Mary

VP

ADV VP∗

often

Adjunction

(3) Derived trees and derivation trees

(3.a) S

NP1 VP

N ADV VP

John often V NP2

meets N

Derived tree Mary

(3.b) meet

John Mary often

Derivation Tree

Extended Domains of Locality and Adjunction A central feature of LTAG syntax is strict
lexicalisation combined with the concept of Extended Domains of Locality. Besides being strictly
lexicalised, elementary trees localise all subcategorised arguments of the lexical head, representing
them as substitution or foot nodes of the elementary tree. The joint assumptions of strict lexicalisa-
tion and localisation of arguments lead to adjunction as a major operation in syntactic composition.
This is already evident in (2). Due to localisation of subject and object NPs in the etree meets, the
derived tree for John often meets Mary can only be obtained by “folding in” the auxiliary tree for
often into the etree of meets by use of the adjunction operation.

Besides optional (or recursive) modification structures, as in (2), localisation of arguments
plays a central role in the analysis of long distance dependencies. In (4) the etree for meets locally
encodes a fronted object wh-phrase. In order to derive sentence (4), the etree for thinks must again
be “folded into” the etree of meets via adjunction. Thus, joint with the concept of localisation of
arguments in strictly lexicalised elementary trees, the operation of adjunction naturally leads to
the concept of extended domains of locality.

(4) Whom does Peter think John meets?

S[+wh]

NP2↓[+wh] Aux S[−wh]

does NP1↓ VP

V NP2

meet(s) e

S[−wh]

NP1↓ VP

V S[−wh] *

thinks

S[+wh]

NP2[+wh] Aux S[−wh]

whom does NP1 VP

N V S[−wh]

peter think NP1 VP

N V NP2

john meets e
2Subject to feature constraints on nodes, not shown here.

Derivation trees are not dependency trees Derivation trees record the relations between
elementary trees as established by substitution and adjunction operations in tree composition, and
are traditionally used as the basis for semantics construction in LTAG.

Derivation trees do not in general correspond to well-formed dependency structures. This was
observed by Rambow et al. (1995), and is illustrated below. In the derivation tree (4.a) for sentence
(4) the dependence of think upon meet is in fact inverted, as evidenced by the correct dependencies
displayed in (4.b). One could argue that dependencies established by adjunction could be specially
marked to account for such inverted dependencies, but more complex cases prove that this cannot,
in general, lead to a well-formed dependency tree. (5.a) displays the derivation tree for (5).3 Since
claim and seem independently adjoin to the S and VP nodes of the etree adore, the derivation tree
cannot represent the dependence of seem upon claim, as given in the correct dependency tree (5.b).

Note further that due to the principle of localisation of arguments, the operation of adjunction
applies both to modifiers in (3) and to complementation structures such as sentence embedding
verbs in (4).4 As we shall see, this constitutes an additional complication for principle-based
semantics construction from derivation trees.

(4) Whom does Peter thinks John meets? (5) Spicy hotdogs he claims Mary seems to adore.

(4.a) meet

whom john think

peter

(4.b) think

peter meet

whom john

(5.a) adore

Mary hotdog claim seem

spicy he

(5.b) claim

Peter seem

adore

Mary hotdog

spicy

3 Semantics in LTAG

3.1 Shieber and Schabes: Semantics construction with Synchronous TAG

Shieber and Schabes (1990) associate LTAG syntax with a semantic representation in a synchronous
TAG extension, where the grammar components are pairs of syntactic and semantic trees. The
semantic representation, a tree-like logical form, is built in parallel with the syntactic derivation,
making use of a specification of links between nodes in the paired tree components. On substitution
of a tree t1 into a substitution node n1 in the syntactic tree, a parallel substitution takes place of
the paired semantic tree t2 into the node n2 that n1 is linked to. After substitution, the link being
used is removed. This is illustrated for substitution of the trees for Mary and hotdogs into α below.

〈

α : S

NP2 ↓ S

NP1 ↓ VP

V NP

adore e

F

R T↓ T↓

adore’

〉

〈

NP

Mary

T

mary’

〉

〈

NP

hotdogs

T

hotdog’

〉⇒

〈

α′ : S

NP2 S

hotdogs NP1 VP

Mary V NP

adore e

F

R T T

adore’ mary’ hotdog’

〉

Crucial in this approach is the specification of links between paired syntactic and semantic trees,
since they determine the attachment sites for the parallel semantic operations. Note in particular
the link between the tree internal S and VP nodes of adore to the single root of the associated
semantic tree. It is due to these links that the more complex cases of non-isomorphic derivations
vs. dependencies as in (5) can be accounted for. The syntactic tree for seems can adjoin to the tree
internal VP node of α′, triggering a corresponding operation on the linked root node F in the paired
semantic tree, which results in the correct scoping of seem’ over adore’. Second, the syntactic tree

3The example is slightly changed from Rambow et al. (1995).
4As well as control constructions, see below.

for claim adjoins to the internal S node of the resulting syntactic tree in α ′′, leading to adjunction
of its associated semantic tree to the root formula F with relation seem. The reader may verify
that the same result is obtained for alternative derivations with claim being adjoined before seem.

α
′

〈

VP

V VP*

seems

F

R F*

seem’

〉

⇒

〈

α′′ : S

NP2 S

hotdogs NP1 VP

Mary V VP

seems V NP

adore e

F

R F

seem’ R T T

adore’ mary’ hotdog’

〉

α
′′

〈

S

NP1 VP

Peter V S*

claims

F

R T F*

claim’ peter’

〉

⇒

〈

S

NP2 S

hotdogs NP1 VP

Peter V S

claims NP1 VP

Mary V VP

seems V NP

adore e

F

R T F

claim’ peter’ R F

seem’ R T T

adore’ mary’ hotdog’

〉

However, as pointed out in Shieber and Schabes (1990), the order of derivations can have an effect
on the semantic representation in that different orders of substitution of quantified NPs yields
alternative scopings. Parsing must therefore compute all possible syntactic derivation histories,
explicitly or implicitly (cf. Schabes and Shieber (1994)) in order to capture ambiguities that are
essentially semantic. This is not only problematic conceptually, but in fact leads to spurious analyses
in cases like (5) where the order of derivations is not distinctive for semantic interpretation.5 Finally
– in view of the following discussion – it is important to note that in this approach it is the linking
of tree internal nodes in (elementary and derived) trees that accounts for cases of non dependency-
like derivations, as in (5). This, however, characterises the approach as a hybrid one, in that
semantics construction is essentially built on the structure of derived trees, while accounting for
scope ambiguities in terms of derivation histories as determined by syntactic analysis.

3.2 Compositional Semantics from Derivation Trees

Joshi and Vijay-Shanker (1999) propose compositional semantics construction from deriva-
tion trees, focussing primarily on predicate-argument relations. Elementary trees are associated
with tripartite semantic representations. The first part specifies the main variable of the pred-
ication, the second part states the predicate with argument variables, the third part associates
variables with argument nodes in the elementary trees.6 7

5Schabes and Shieber (1994) distinguish modifier-type from predicative auxiliary trees such as sentence embedding
verbs (say, claim), where the foot node corresponds to an argument of the anchor. In contrast to the generally assumed
notion of standard derivations, which excludes multiple adjunction to single nodes, Schabes and Shieber (1994) propose
the notion of extended derivations, licensing multiple adjunction to single nodes. Allowing extended derivations for
multiple adjunction of modifier-type auxiliary trees can yield alternative scopes in semantics construction, due to
alternative derivation histories. For predicative auxiliary trees, however, standard derivation – i.e. the constraint
against multiple adjunction at single nodes – is preserved. Scoping ambiguities are therefore correctly prohibited
with cascaded sentence embeddings driven by adjunction.

6This association is not made explicit, but could be formalised by stating pairs of variables and the node addresses
of the corresponding arguments in the elementary tree.

7For reasons of space we can only illustrate some selected entries (see continuation next page)

For substitution of NP arguments the binding of variables in the associated semantic repre-
sentations is straightforward. For adjunction of predicative auxiliary trees (say, think, wonder),
however, the derivation structure does not mirror semantic embedding: while in (8) think takes
scope over say, this dependency is inverted in the derivation tree (8.a). Joshi and Vijay-Shanker
(1999) propose a special treatment for predicative auxiliary trees, in that the adjunction node is
basically processed as if it were a substitution node, during semantic composition. This allows for
correct embedding of say by think, as well as like by wonder in the semantic representation for (8).

Yet, as in (5), multiple adjunction of predicative auxiliary trees to distinct nodes of a single
elementary tree (here wonder and seem into like) leads to additional complication. While the
relative scope of think and say can be correctly determined – in that the trees stand in a direct
adjunction relation – the relative scope of wonder and seem cannot be determined through variable
bindings at adjunction nodes: They adjoin to distinct nodes in the verb’s elementary tree. In order
to derive the correct relative scopes in such configurations Joshi and Vijay-Shanker (1999) impose
an ordering constraint for processing multiple (predicative) adjunctions into etrees, in a bottom-up
manner: since seem adjoins to a lower node in the etree of like than wonder (node 2.2 vs. ε in (8.a)),
it is processed first in semantic composition, thereby taking narrow scope relative to wonder.

It seems conceptually problematic to resort to specially designed ordering constraints for the
traversal of derivation trees in semantic composition, especially in view of language specific con-
stituent structure properties which might not correspond to the structure of semantic composition.
The analysis does also not explicitly deal with scope ambiguities induced by NP quantification.

(8) Mary wondered who Peter thought John said Bill seemed to like.
(8.a) αlike

2.1 2.2 2 ε 1
αBill βseem βsay βwonder αwho

1 ε 1
αJohn βthink αMary

1
αPeter

Kallmeyer and Joshi: Underspecified Semantics with MRS Kallmeyer and Joshi (1999)
develop an account for underspecified semantics construction from LTAG derivation trees using
MRS semantics. Very close to the architecture proposed in Joshi and Vijay-Shanker (1999) they
associate flat semantic representations with elementary trees, now adopting the framework of Min-
imal Recursion Semantics to deal with scope underspecification. Semantic composition is again
determined by the structure of derivation trees. The paper provides an underspecified analysis
of quantification which accounts for quantifier scope ambiguities. It then focusses on examples of
adjunct scope as in (9), where – given the assumption of standard derivation – allegedly must adjoin
to usually, and is therefore restricted to take wide scope. Yet, given the assumption of standard
derivations, scope ambiguities as in (10) can only be derived in terms of distinct derivations, i.e.
distinct derivation trees. It is not clear in which way a single underspecified representation can be
constructed from distinct derivation trees.

(9) Pat allegedly usually drives a cadillac.

(10) John intentionally knocked twice.

7

S’

NPi S

NP VP

V NPi

like e

wh: x3

about: s7

like(s7,x4,x3)

x3 x4

NP

N

Peter

named: x5

about: x5

peter(x5)

VP

V VP

seemed

about: s8

seem(s8,s9)

s9

S

NP VP

V S*

thought

about: s3

think(s3,x1,s4)

x1 s4

The paper is not really explicit about the distinction between semantic composition operations
for adjunction versus substitution, in particular concerning the distinction between modifier and
predicative auxiliary trees. We suppose that cascaded sentence embeddings can be handled along
the lines of Joshi and Vijay-Shanker (1999)’s approach, by special conditions for variable binding
on adjunction of predicative auxiliary trees. However, we see similar problems, in Kallmeyer and
Joshi’s account, to determine the correct embedding structure for multiple auxiliary trees adjoining
to distinct nodes in a single elementary tree, as discussed for examples (5) and (8) above.

3.3 Discussion

We detailed the characteristics of LTAG syntax, in particular the structure of derivation trees, and
the complexities that arise for semantics construction on the basis of LTAG derivation trees. We
conclude that LTAG derivation trees do not provide an appropriate structure for principle-based
semantics construction. The non-isomorphism between adjunction in syntax and modification in
semantics introduces considerable complexity in semantics construction from derivation trees. The
principle of extended domains of locality, in conjunction with the adjunction operation, yields se-
mantically inappropriate dependencies in derivation trees, as these are imposed by purely syntactic
operations in the composition of strictly lexicalised elementary trees. We therefore set out to in-
vestigate semantics construction in LTAG on the basis of the derived tree, which we consider more
appropriate to guide principle-based meaning composition. We apply the framework of Linear
Logic based glue semantics, which allows for considerable flexibility in the coupling of syntactic
and semantic structure, while still remaining compositional in meaning construction.

4 Glue Semantics for LTAG

In applying glue semantics to LTAG we (i) define semantics on the basis of derived trees, which seems
more appropriate for principle-based semantics construction. (ii), the loose coupling of syntactic
and semantic structures with glue allows us to bridge the gap imposed by the aforementioned non-
isomorphism in LTAG. (iii), we show that the glue approach captures non-tree local dependencies in
modifier and control constructions. Finally, (iv) we propose a glue-based analysis of long-distance
constructions, which in LTAG are driven by tree adjunction – as opposed to the f-structure based
analysis in LFG with functional uncertainty.

4.1 Meaning constructors for LTAG initial elementary trees

To drive LL-based semantics construction, we need to associate meaning constructors with elemen-
tary trees, the lexical units of an LTAG grammar. As an interface to glue semantics we define
principles for labelling nodes in elementary and derived trees with variables. These variables are
referred to in the glue part of the associated lexical meaning constructors, and guide meaning
composition.

Tree Labelling Principle I, to be stepwise refined along the way, labels argument and root nodes
in LTAG initial trees with atomic features Lt and Lb, which we will call upper and lower labels:

Tree Labelling Principle I
Assign variables f, g, h ∈ V AR to top/bottom labels Lt/Lb of nodes n in LTAG initial etrees α

• Root nodes root(α) : Lb(root(α)) = x, x a new variable from V AR

• Argument nodes argi(α) : Lt(argi(α)) = x, x a new variable from V AR

(11.a) displays sample etrees with associated meaning constructors. For John meets Mary we obtain
the labelled derived tree (11.b). On substitution, feature bundles on substitution nodes and inserted
root nodes are unioned, the resulting nodes display both upper and lower labels Lt and Lb.

(11.a) Labelled elementary trees (11.b) Derived tree
with associated meaning constructors with assembled meaning constructors

S:

[

Lb= f

]

NP1 :

[

Lt= g
]

VP

V NP2 :

[

Lt= h
]

meets

h −◦ (g −◦ f) : λy, x.meet(x, y)

NP:

[

Lb= q

]

N

John

q : john

NP:

[

Lb= m

]

N

Mary

m : mary

S:
[

Lb= f

]

NP1 :

[

Lt= g

Lb= q

]

VP

N V NP2

[

Lt= h

Lb= m

]

John meets N

Maryq : john
m : mary
h −◦ (g −◦ f) : λy, x.meet(x, y)

The meaning constructors of the etrees used in tree composition are assembled (11.b), but in
their present form do not yield a successful proof in meaning derivation, since the variables in the
glue parts are not connected. The missing equalities between variables are determined by tree
composition, along the following lines.

Variable Equations in Tree Composition

• Substitution: when substituting β into α at node nα, add equation: Lt(nα) = Lb(root(β))
• Adjunction: see below

Using this information about variable equations, we could either resolve the equation system glob-
ally, or else trigger systematic variable substitutions in the set of assembled meaning constructors.
We choose the latter option here, by adopting the following convention: for all substitution nodes
n, and all assembled meaning constructors mcs, we replace (all occurrences of) the lower label
variable Lb(n) = t by n’s upper label variable Lt(n) = t′. In (11.b), this triggers the substitutions
q → g and m → h.

Variable Substitution in (glue part of) meaning constructors mcs

• ∀n∀mcs.((Lb(n) = t ∧ Lt(n) = t′ ∧mcs[t]) → mcs[t → t′])

LL-derivations for meaning construction With this in place we obtain the set of meaning
constructors in (12) which yields a successful proof of the meaning associated with the tree’s root
variable, based on the Curry-Howard isomorphism.

(12) g : john

h : mary

h −◦ (g −◦ f) : λy, x.meet(x, y)
g : john

h −◦ (g −◦ f) : λy, x.meet(x, y) h : mary

g −◦ f : λx.meet(x,mary)

f : meet(john,mary)

4.2 Non-tree local dependencies I: VP modification

Up to now we were only looking at constructions involving tree-local dependencies identified by
argument substitution nodes. We now turn to constructions involving non-tree local dependencies,
i.e. dependencies which are not identified by tree-local nodes in elementary trees. Constructions
that fall into this class are modifiers and control constructions.

Let us first consider a VP modifying adverb like often. In LTAG, it is represented as an auxiliary
tree that adjoins to VP, as displayed in (2). We extend our tree labelling principle to modifier-type
auxiliary trees, assigning identical bottom and top labels to root and foot nodes: Lb(root(β)) =
Lt(foot(β)) = x, x a fresh variable from the set of variables V AR.

For often, we obtain a labelled tree β as in (13). The meaning constructor for often, as a
VP modifying adverbial, should consume and produce a VP meaning, which is characterised by
consuming the subject’s glue variable Lt(NP1α) of the tree α that β adjoins to, to produce the
glue variable Lb(root(α)) of α’s root node, as sketched below. But neither of these is local to the
auxiliary tree β (often), and can therefore not be referred to in its associated meaning constructor.

(13) S:

[

Lb= f

]

NP1:

[

Lt= g

Lb= q

]

VP

N V NP2:

[

Lt= h

Lb= m

]

John meets N

Mary

h −◦ (g −◦ f) : λy, x.meet(x, y)

VP:

[

Lb= i

]

ADV VP*:

[

Lt= i
]

often

λP, x.often(P (x)) :
(Lt(NP1α) −◦ Lb(root(α))) −◦ (Lt(NP1α) −◦ Lb(root(α)))

S:

[

Lt= f

]

NP1:

[

Lt= g

Lb= q

]

VP:

[

Lb= i

]

N ADV VP:

[

Lt= i
]

John often V NP2:

[

Lt= h

Lb= m

]

meets N

Mary

4.2.1 Labelling tree internal nodes: head projections

To capture such non-tree local dependencies, we revise our Tree Labelling Principle in two ways:
(i) instead of root nodes, we label the lexical anchor (head) node with some variable x⊥. (ii)
this anchor node label is projected to all non-labelled tree internal nodes, introducing a chain of
variables with intermediate projection labels x⊥, x1, x2, . . . , x

>, as seen in (14).8 Yet, given LTAG’s
concept of lexicalised elementary trees, with direct encoding of subcategorised argments, we will
keep these projection variables distinct, triggering variable substitutions only locally, i.e. at local
adjunction nodes, as opposed to unification of f-structure nodes in head projection chains in LFG.

Tree Labelling Principle II
• Anchor nodes: Lb(anchor(α)) = x⊥, x new variable from V AR

• Argument nodes argN (α): Lt(argN (α)) = x, x new variable from V AR

• Modifier-type auxiliary trees β: Lb(root(β)) = Lt(foot(β)) = x, x new variable from V AR

• Projecting anchor node variable to all non-labelled tree internal nodes, introducing interme-
diate projection variables x⊥ x1 x2 ... x>

On adjunction of some auxiliary tree β to a node n in α, n’s label features are split: the top label
feature Lt of n is assigned as the top label feature Lt of root(β), and the bottom label feature Lb of
n is assigned as the bottom label feature Lb of β’s foot node. We obtain the derived tree in (14).

(14) S:

[

f>

]

NP1:

[

g
]

VP:

[

f>

f1

]

V:

[

f1

f⊥

]

NP2:

[

h
]

meets

h −◦ (g −◦ f):λy, x.meet(x, y)

VP:

[

i

]

ADV:

[

k>

k⊥

]

VP*:

[

i
]

often

λP, x.often(P (x)) :
(Lt(NP1α) −◦ i) −◦ (Lt(NP1α) −◦ i)

S:
[

f>
]

NP1:

[

g

q>

]

VP:

[

f>

i

]

N ADV:

[

k>

k⊥

]

VP:

[

i

f1

]

John often V:

[

f1

f⊥

]

NP2:

[

h

m>

]

meets N

Mary

8In the following we omit the feature names Lt and Lb, to avoid confusion with the upper and lower bounds of
projected labels x⊥ x1 x2 ... x>.

We now extend the conditions for equating variables in tree composition to the case of adjunction,
and generalise the conditions for variable substitutions in meaning constructors to account for both
substitution and adjunction. With these extensions and the labelling of tree internal nodes by pro-
jected anchor variables, the variable i in the meaning constructor for often will – after variable
substitution – successfully refer to the sentence’s root node variable f>.9

Variable Equations in Tree Composition

• Substitution: when substituting β into α at node nα, add equation: Lt(nα)=Lb(root(β))
• Adjunction: when adjoining β to α at node nα, add equation: Lt(nα) = Lb(root(β))

Variable Substitutions in meaning constructors mcs using set of equations EQ (final)

• ∀n ((Lt(n) = x and x = y ∈ EQ) → ∀mcs : mcs[y → x])

4.2.2 Labelling arguments as arguments of lexical heads

With these changes it is still not possible to refer to the non-tree local variable for the subject
Lt(NP1α) in the meaning constructor of often. We therefore further revise Tree Labelling Principle
(II) by encoding argument nodes in elementary trees as arguments of their lexical head, using the
local tree’s anchor label and a grammatical function identifier. Rather than using identifiers like
NP1, NP2, etc., which in LTAG encode grammatical functions, we make use of grammatical function
labels subj, obj, comp, etc., similar to those used in LFG.10 So, if f⊥ is the label of the lexical
anchor, the subject node NP1 will be labelled f⊥:subj, the object node NP2 f⊥:obj.

As a result, the labelled trees look more LFG-like, but do not introduce additional linguistic
assumptions into LTAG: Note that indices on NPs, such as NP1, NP2 do in fact encode grammatical
functions in LTAG. This is brought out by looking at pairs of trees in the passive relation change.11

Lexical heads are identified as primary anchors of elementary lexicalised trees, and head projection
lines from these anchors emerge naturally as the complement of the set of nodes which are marked
as argument or paired root/foot nodes of the local tree. Finally, LTAG’s principle of extended
domains of locality requires all arguments of a lexical item to be encoded within its elementary
tree. Encoding arguments as arguments of their head is thus in line with LTAG’s basic assumptions.

Tree Labelling Principle III (clause (ii)) (revised from (II))

• Argument nodes: Lt(argN (α)) = Lb(anchor(α)):GFN ,
where GFN is the grammatical function corresponding to argN

Elementary trees and meaning constructors for John often sees Mary are now revised according
to the new conventions (see (15)). The meaning constructor for often refers to the non-tree local
subject NP variable in terms of the local variable i: (i:subj −◦ i) −◦ (i:subj −◦ i).

In tree composition we establish variable equations, which trigger variable substitutions in the
assembled set of meaning constructors (16.a). The resulting set of (resolved) meaning constructors
is (16.b). The glue formula contributed by often does now refer to the verb’s subject node label as
f>:subj and to the root node label as f>.

9We will display the analysis in (15) and (16), after a further revision to our Tree Labelling Principle.
10See also extensions in FTAG, which makes use of grammatical function features like subj, obj, etc.
11The subject NP in the active tree is marked NP1, the object NP2. In the passive, the logical object is marked as

the passive subject, again by index 1. The demoted logical subject, if present, is labelled NP0.
S S

NP1 ↓ VP NP1 ↓ VP

V NP2 ↓ Aux VP

loves V PP

loved P NP0 ↓

by

(15) S:
[

f>
]

NP1:

[

f⊥ :subj
]

VP:

[

f>

f1

]

V:

[

f1

f⊥

]

NP2:

[

f⊥ :obj
]

meets

f⊥:obj −◦ (f⊥:subj −◦ f>) : λy, x.meet(x, y)

VP:

[

i

]

ADV:

[

k>

k⊥

]

VP*:

[

i
]

often

λP, x.often(P (x)):(i:subj −◦ i) −◦ (i:subj −◦ i)

(16.a)
john : q>

mary : m>

λy, x.meet(x, y): f⊥:obj −◦ (f⊥:subj −◦ f>)
λP, x.often(P (x)) : (i :subj −◦ i) −◦ (i :subj −◦ i)

Substitutions: q> → f⊥:subj, m> → f⊥:obj, i → f>

(16.b)
john : f⊥:subj
mary : f⊥:obj
λy, x.meet(x, y): f⊥:obj −◦ (f⊥:subj −◦ f>)
λP, x.often(P (x)) : (f>:subj −◦ f>) −◦ (f>:subj −◦ f>)

S:
[

f>

]

NP1:

[

f⊥:subj

q>

]

VP:

[

f>

i

]

N ADV:

[

k>

k⊥

]

VP:

[

i

f1

]

John often V:

[

f1

f⊥

]

NP2:

[

f⊥: obj
m>

]

meets N

Mary

However, the set of meaning premises (16.b) does not yield a successful meaning derivation. The
resource f⊥:obj (from Mary) can be consumed by f⊥:obj −◦ (f⊥:subj −◦ f>), to produce the
resource f⊥:subj −◦ f> corresponding to the VP meaning λx.meet(x,mary). But this latter re-
source cannot be consumed by the meaning constructor for often, which expects a VP constructor
(f>:subj−◦f>). This latter glue formula resulted from variable substitutions in the meaning con-
structor of often, which can only refer to its local variable i in root and foot node. In tree composition
we established equality of this variable with the connecting adjunction node’s top label f >.

4.2.3 Labelling arguments as arguments of local head projection

The LFG instructed reader will now suggest that we give up the distinction between head projection
variables x> . . . x⊥, by triggering global variable substitutions on head projection labels. However,
we want to introduce as little additional assumptions in LTAG-based semantics construction as
needed. We will show that we can continue to restrict ourselves to local variable substitutions at
adjunction nodes, by a weaker extension of our labelling principle, which will encode the attachment
of arguments as attachments to the respective level of the local head projection. And as we shall
see later, in the discussion of long-distance dependencies, it is by this move – as opposed to global
variable substitutions in head projections – that we can correctly define scope constraints in long-
distance constructions, given LTAG’s principle of extended domains of locality.

Our final version of the Tree Labelling Principle does now encode argument nodes argN (α)
as arguments of their local head projection, by referring to the projection label of the argument’s
mother node (a tree internal node). That is, the projection index y in labels xy:GF refers to the
projection variable of the argument’s mother (head projection) node.

Tree Labelling Principle (Final Version)

• Anchor nodes: Lb(anchor(α)) = x⊥, x new variable from V AR

• Modifier-type auxiliary trees: Lb(root(β)) = Lt(foot(β)) = x, x new variable from V AR

• Projecting anchor node variable to all non-labelled tree internal nodes, introducing inter-
mediate projection variables x⊥ x1 x2 ... x>

• Argument nodes argN (α): Lt(argN (α)) = Lb(mother(argN (α))): GFN

The labelling of elementary trees differs only slightly from the previous version, the subject NP of
meets being labelled f>:subj as before, since it attaches to the highest projection of the elementary
tree, whereas the object NP attaches to projection level f1, and is thus labelled f1:obj. With variable
substitutions q> → f>:subj, m> → f1:obj, and i → f> the premises to meaning construction in
(18.b) yield a successful proof in meaning derivation.

(17) S:

[

f>

]

NP1:

[

f> :subj
]

VP:

[

f>

f1

]

V:

[

f1

f⊥

]

NP2:

[

f1 :obj
]

meets

f1 :obj −◦ (f> :subj −◦ f>) : λy, x.meet(x, y)

S:

[

f>

]

NP1:

[

f>:subj
q>

]

VP:

[

f>

i

]

N ADV:

[

k>

k⊥

]

VP:

[

i

f1

]

John often V:

[

f1

f⊥

]

NP2:

[

f1: obj

m>

]

meets N

Mary
(18.a) john : q>

mary : m>

λy, x.meet(x, y):f1:obj −◦ (f>:subj −◦ f>)
λP, x.often(P (x)) :

(i :subj −◦ i) −◦ (i :subj −◦ i)

(18.b) john : f>:subj
mary : f1:obj
λy, x.meet(x, y):f1:obj −◦ (f>:subj −◦ f>)
λP, x.often(P (x)) :

(f>:subj −◦ f>) −◦ (f>:subj −◦ f>)

λy, x.meet(x, y):f1:obj −◦ (f>:subj −◦ f>) mary:f1:obj

λx.meet(x,mary):f>:subj −◦ f> λP, x.often(P (x)):(f>:subj −◦ f>) −◦ (f>:subj −◦ f>)

λx.often(meet(x,mary)):f>:subj −◦ f> john:f> :subj

often(meet(john, mary)):f>

4.2.4 Deriving scope ambiguities

With our Tree Labelling Principle in place, we will now illustrate that LTAG semantics construction
based on derived trees accounts for scope ambiguities induced by modifiers and NP quantifiers.

By identifying root and foot labels of modifiers, and due to local variable substitutions in tree
composition, we account for the scoping behaviour of modifiers to take scope over other modifiers
within their clausal projection. In particular, proper labelling conditions of argument nodes ensures
that the meaning constructor’s non-local variable stays local to the clause nucleus.12

In (19) we consider a case of modifier scope ambiguity, with one of the adverbs adjoining
to S, the other to VP.13 After substitutions, the set of premises allows for derivation of al-
ternative meanings, by either first consuming the meaning constructor for twice, and then in-
tentionally, or vice versa. That is, from the single derived tree we obtain ambiguous seman-
tic analyses, with alternative modifier scopes: intentionally(john, twice(call(john,mary))), and
twice(intentionally(john, call(john,mary))).

12See Section 4.4 for the analysis of predicative auxiliary trees.
13Example (19) brings us to the special case where modifier adjunction applies to the root node, which doesn’t

specify an upper label. For this case we need to refine the conditions for adjunction in tree composition by adopting
clause (i), which provides an upper label for modifier adjunction to root nodes. Clause (ii) can then apply as before.
Clause (ii) will also cover predicative auxiliary trees (see below).

(i) On adjunction of a modifier auxiliary tree β to a node n in α, if n does not specify an upper label, we instantiate
an upper label, assigning it the value of n’s lower label.

(ii) On adjunction of some auxiliary tree β to a node n in α, n’s label features are split: the top label feature Lt of
n, if instantiated, is assigned as the top label feature Lt of root(β), and the bottom label feature Lb of n is assigned
as the bottom label feature Lb of β’s foot node.

We further assume that for meaning derivation it is the lower label of the sentence’s root node that constitutes the
target of the proof in meaning derivation (resp. the variable it is substituted with).

(19)
john : q>

mary : m>

λy, x.call(x, y): f1:obj −◦ (f>:subj −◦ f>)
λP, x.intent(x, P (x)): (j:subj −◦ j) −◦ (j:subj −◦ j)
λP, x.twice(P (x)): (i:subj −◦ i) −◦ (i:subj −◦ i)

Substitutions: q> → f>:subj, m> → f1:obj, i → f>, j → f>

john : f>:subj
mary : f1:obj
λy, x.call(x, y): f1:obj −◦ (f>:subj −◦ f>)
λP, x.twice(P (x)): (f>:subj −◦ f>) −◦ (f>:subj −◦ f>)
λP, x.intent(x, P (x)): (f>:subj −◦ f>) −◦ (f>:subj −◦ f>)

S:

[

f>

j

]

ADV:

[

n>

n⊥

]

S:

[

j
f>

]

intentionally NP1:

[

f>:subj
q>

]

VP:

[

f>

i

]

John VP:

[

i
f1

]

ADV:

[

k>

k⊥

]

V:

[

f1

f⊥

]

NP2:

[

f1: obj
m>

]

twice

called Mary

Yet, for left and right adjoining VP modifiers as in John intentionally called Mary twice, assuming
standard derivation, we obtain alternative derived trees with identical, ambiguous meanings. We
therefore adopt Schabes and Shieber (1994)’s extended derivations for modifier-type auxiliary trees,
allowing multiple adjunction to single nodes. Assuming further that simultaneous left and right
adjunction to a single node produces a shared adjunction root node, as described in (Schabes and
Waters 1995), we obtain a single derived tree, which yields the same ambiguity as in (19).

Finally, we need to account for scope restrictions. In Crouch and van Genabith (1999) scope
restrictions are defined by scope constaints, which restrict the order of derivations in meaning
construction, to yield corresponding scope meanings. Scope constraints refer to variables in glue
expressions. But modifiers attaching to the same clause exhibit identical glue variables (after equa-
lity resolution) – they cannot be distinguished in the glue part. This problem could be solved by
allowing scope constraints to refer to glue : meaning pairs, i.e. by exploiting the Curry-Howard
isomorphism. In John called Mary intentionally twice the governing modifier could introduce a con-
straint intentionally ≺ twice – an instruction to consume/apply the glue : meaning pair associated
with intentionally before the one associated with twice, corresponding to wide scope of twice.

Scope ambiguities with NP quantifiers are accounted for in the definition of the associated
meaning constructors, in line with standard glue semantics (cf. Dalrymple (1999)). In (20) we
display the entries for quantified pronominal NPs. For Everyone meets someone, we obtain – after
substitutions – a set of instantiated meaning constructors which allows for alternative meaning
derivations, corresponding to alternative quantifier scopes.

(20) NP:
[

g>
]

NP
[

h>
]

everyone someone

λP.∀x(person(x) → P (x)): λP.∃x(person(x)∧ P (x)):

(g> −◦ X) −◦ X (h> −◦ X) −◦ X

Instantiated mcs for Everyone meets someone
λP.∀x(person(x) → P (x)):(f>:subj −◦ X) −◦ X

λP.∃x(person(x) ∧ P (x)):(f1:obj −◦ X) −◦ X

λy, x.meet(x, y):f1:obj −◦ f>:subj −◦ f>

4.3 Taking stock

Let us review the basic assumptions in our design of LL-based semantics construction for LTAG.
As in glue semantics applied to LFG, semantics construction is lexicon driven, here by associating
meaning constructors with lexicalised elementary trees. While glue semantics in LFG is based on
f-structure – variables in the glue part of meaning constructors refer to instantiated f-structure
nodes (or their semantic σ–projections) – glue semantics for LTAG is based on labelled derived
trees. The principle for labelling elementary trees was introduced stepwise, in order to introduce
as little additions to the LTAG framework as needed, and to motivate specific conceptual moves
and machinery. Labelling of trees with features assigning upper and lower variables is a necessary
extension to LTAG if semantics construction is based on derived as opposed to derivation trees,
and we have presented evidence for serious shortcomings of the latter approach in Section 3. It

is especially the labelling of tree internal nodes by (projected) anchor labels that extends basic
assumptions of LTAG, which in its basic form only “talks about” root, substitution and adjunction
nodes in elementary trees. As we have seen, in semantics construction from derived trees, reference
to tree internal nodes is crucial for connecting variables in adjunction structures for modification.
Further we have seen that non-tree local dependencies as in the case of VP modifying adverbs (and
similarly for control verb constructions, see below) can only be captured by (i) labelling arguments
as arguments of their lexical head, and (ii) association with grammatical function labels (or similar
naming conventions). Finally, (iii), the labelling of arguments needs to specify the head projection
level where attachment takes place in order to allow for a principled solution to the scoping of
adverbs and – as we shall see – wh-elements in long-distance constructions.

In tree composition we establish equations between variables in upper and lower labels, based on
two basic principles for substitution and adjunction. Variable substitutions in meaning constructors
are uniquely based on these equations. That is, only those variables that are local to substitution or
modifier root nodes play a role in establishing connections between the isolated variables assigned in
elementary trees. Variables of intermediate projection nodes which are not touched by adjunction
or substitution operations can be safely ignored in meaning construction.

We consider head projection labelling as the most crucial addition to LTAG’s standard assump-
tions. It is a necessary extension for semantics construction from derived trees, and a crucial
assumption to account for the most characteristic and difficult aspects of LTAG syntax and its
syntax-semantics interface, namely adjunction and its interplay with semantic composition and the
definition of scope. This is evident in the analysis of modifiers and scope ambiguity, and required
for long distance dependencies in Section 4.6.

4.4 Bridging the syntax-semantics non-isomorphism in LTAG

As outlined in Section 2, a main characteristic of LTAG syntax is that – due to the principle of
extended domains of locality and the existence of long distance phenomena – sentential embedding
is necessarily driven by adjunction in syntax, that is, by the same syntactic operation that applies to
optional (and recursive) modifiers. This results in a non-isomorphism between adjunction in syntax
on the one hand, and the semantic operations of complementation vs. modification on the other.
As we saw in discussion of Joshi and Vijay-Shanker (1999), this generates inverted embedding
structures in derivation trees, as opposed to correct embeddings in derived tree structures, and
leads to complications in semantics construction from derivation trees.

One would therefore expect that in our approach, where the syntax-semantics interface is built
on the derived tree, the problem of this non-isomorphism is automatically circumvented. But this
is not the case. The problem arises in our approach as well, yet in a slightly different way.

Let us take a look at a sentence embedding verb like think in a simple embedding configuration
(21). Sentence embedding verbs (and similarly control verbs) are represented as auxiliary trees, yet
differ from modifier-type auxiliary trees in that their foot node corresponds to an argument of the

(21)

S:

[

j>

]

NP1:

[

j>:subj
]

VP:

[

j>

j1

]

V:

[

j1
j⊥

]

S*:

[

j1:comp
]

think(s)

λP, x.think(x, P): j1:comp −◦ (j>:subj −◦ j>)

S:

[

f>

j>

]

NP1:

[

j>:subj
p>

]

VP:

[

j>

j1

]

Peter V:

[

j1
j⊥

]

S:

[

j1:comp
f>

]

thinks NP1:

[

f>:subj
q>

]

VP:

[

f>

f1

]

John V:

[

f1

f⊥

]

NP2:

[

f1:obj
m>

]

meets Mary

lexical head. In LTAG this difference is captured by the distinction between modifier and predicative
auxiliary trees. In our Tree Labelling Principle labelling of root and foot nodes with identical
variables was restricted to modifier auxiliary trees. The foot node of a predicative auxiliary tree,
by contrast – as argument node of the lexical anchor – falls under the conditions for argument
nodes, and is assigned a composed label, consisting of a projection variable and a grammatical
function label.14 For the predicative auxiliary tree think we thus obtain a labelled elementary tree
as displayed in (21). In contrast to modifier trees, root and foot node labels are distinct.

In tree composition, the bottom label of the foot node is instantiated with the bottom label of
the S node to which adjunction applies (f> in (21)), in accordance with our principles for assigning
top and bottom labels in tree composition.15

Although the derived tree does not reflect any crucial difference between adjunction and sub-
stitution, we need to adjust the conditions for variable equations in tree composition to account for
the special aspects of semantic composition with predicative auxiliary trees, as opposed to modifier
auxiliary trees. On adjunction of modifiers root and foot node variables need to be equated with
the projection variable of the adjunction node, to allow modifiers to take scope within the maximal
projection. This we obtained by equating upper and lower labels at the modifier’s root node in the
derived tree. For predicative auxiliary trees, by contrast, we need to link, i.e. equate, the labels of
argument foot node and adjunction node, parallel to the standard case of argument substitution.

All other things being equal, then, we account for the non-isomorphism of adjunction in se-
mantics construction through refinement of variable equations in tree composition: We distinguish
between adjunction of modifier and predicative auxiliary trees, the latter being defined along the
lines of standard cases of argument substitution. Thus, in variable equation, on adjunction of pred-
icative auxiliary trees the foot node plays the role the substitution node nα plays in substitution,
and the adjunction node nα plays the role of the root node of the inserted tree in substitution.

Variable Equations in Tree Composition (Final Version)

• Substitution: When substituting β into α at node nα, add equation: Lt(nα)=Lb(root(β))

• Adjunction: When adjoining β to α at node nα,
if β is a modifier auxiliary tree, add equation: Lt(nα) = Lb(root(β))
if β is a predicative auxiliary tree, add equation: Lt(foot(β)) = Lb(nα)

With these adjustments we trigger substitution of f> by 1:comp in the set of meaning constructors
(22) assembled for (21).16 After substitution of variables, complex terms such as j1:comp:subj are
treated as atoms in matching producers and consumers in Linear Logic meaning derivation.

(22) Substitutions: p> → j>:subj, q> → f>:subj, m> → f1:obj, f> → 1:comp

peter : p>

john : q>

mary : m>

λy, x.meet(x, y):f1:obj −◦ (f>:subj −◦ f>)
λP, x.think(x, P):j1:comp −◦ (j>:subj −◦ j>)

peter : j>:subj
john : j1:comp:subj
mary : f1:obj
λy, x.meet(x, y):f1:obj −◦ (j1:comp:subj −◦ j1:comp)
λP, x.think(x, P):j1:comp −◦ (j>:subj −◦ j>)

` think(peter,meet(john,mary))

14We assume a mapping from argument foot nodes S with discriminating features (such as [±fin] etc.) to corre-
sponding grammatical functions comp and xcomp.

15Since the upper label of the adjunction node is not instantiated, the upper label of the root node is instantiated
to f> (see the refined definition for adjunction in fn. 13). The target variable in the meaning proof is Lb(root) = j>.

16Note that in this example the order in which substitutions are triggered is critical. In general, though, we can avoid
specification of some canonical order for substitutions by repeatedly applying substitutions to the modified premises
in the same, arbitrarily fixed order, until no more modifications are triggered in a complete run. Alternatively, one
could adopt a general resolution algorithm, along the lines of Kaplan and Bresnan (1995).

4.5 Non-tree local dependencies II: Control constructions

We now show how LL-based semantics construction on the basis of labelled LTAG trees accounts
for non-tree local dependencies in control constructions.

4.5.1 Control constructions in LFG

We first take a quick look at the treatment of control in LFG syntax and LL-based glue semantics.
Lexical entries of control verbs specify the relation between controller and embedded subject in
terms of functional equations. In the resulting f-structure the matrix subj of tries is unified with
the subj of the embedded verb, that is, they are instantiated to some unique f-structure node (g in
(23)). The meaning constructor associated with tries17 consumes the VP meaning of the embedded
verb (↑xcomp subjσ) −◦ (↑xcompσ) to produce the VP meaning of tries, which then consumes the
overt matrix subject to produce the sentence meaning ((↑subjσ) −◦ ↑σ). Parallel to linear logic
derivation based on the glue formulae the meaning is computed in the associated meaning terms.

(23) tries V,
(↑ pred)= ‘try〈 (↑ subj) (↑ xcomp)〉’
(↑ subj)= (↑ xcomp subj)
λP, x.try(x, P):
((↑xcomp subjσ) −◦ (↑xcompσ)) −◦ ((↑subjσ) −◦ ↑σ)

Mcs for: John tries to meet Mary
john : g

mary : m

λy, x.meet(x, y):m −◦ (g −◦ h)
λP, x.try(x, P):(g −◦ h) −◦ (g −◦ f)

λy, x.meet(x, y) : m −◦ (g −◦ h) mary : m

λx.meet(x,mary) : g −◦ h λP, x.try(x, P) : (g −◦ h) −◦ (g −◦ f)

λx.try(x, λx.meet(x,mary)) : g −◦ f john : g

try(john, λx.meet(x,mary)) : f

4.5.2 Control constructions in LTAG

In LTAG syntax control verbs are encoded as predicative auxiliary trees, since they can occur in long-
distance dependencies. Infinite verbs embedded under control verbs do not display an overt subject.
The corresponding elementary tree therefore encodes a PRO subject node. Due to adjunction, the
derivation tree for John tries to meet Mary incorrectly represents the control verb as dependent on
the embedded verb, meet. Moreover, since no substitution takes place into the subject argument
position of meet the derivation tree does not represent John as an argument of meet.

(24) S

NP1 ↓ VP

V to S*

tries

S

PRO VP

V NP2 ↓

meet

meet

try mary

john

4.5.3 Glue Semantics for LTAG control contructions

Applying our Tree Labelling Principle to the predicative auxiliary tree tries (25.a), we label the sub-
ject NP and the adjunction foot node S* as subj and xcomp arguments, anchored to the respective
head projection variables j> and j1. Labelling and meaning constructor for the embedded infinitive
etree meet (see (24)) is identical to (17), except for the presence of a subject PRO argument, which
is not a substitution node. For John tries to meet Mary we obtain the labelled derived tree (25.b).
With variable substitutions in the set of assembled meaning constructors, we obtain a successful
proof of the sentence meaning, similar to the meaning derivation in the LFG analysis.

17We follow the analysis given in Asudeh (2000) and Asudeh (2001).

(25.a)
S:

[

j>
]

NP1:

[

j>:subj
]

VP:

[

j>

j1

]

V:

[

j1
j⊥

]

to S*:

[

j1:xcomp
]

tries

λP, x.try(x, P):
(j1:xcomp:subj −◦ j1:xcomp) −◦ (j>:subj −◦ j>)

(25.b) S:

[

f>

j>

]

NP1:

[

j>:subj

q>

]

VP:

[

j>

j1

]

John V:

[

j1
j⊥

]

to S:

[

j1:xcomp

f>

]

tries PRO:

[

f>:subj
]

VP:

[

f>

f1

]

V:

[

f1

f⊥

]

NP2:

[

f1:obj

m>

]

meet MarySubstitutions: q> → j>:subj, m> → f1:obj, f> → j1:xcomp

john : q>

mary : m>

λy, x.meet(x, y) : f1:obj −◦ (f>:subj −◦ f>)
λP, x.try(x, P):
(j1:xcomp:subj −◦ j1:xcomp) −◦ (j>:subj −◦ j>)

john : j>:subj
mary : f1:obj
λy, x.meet(x, y) :
f1:obj −◦ (j1:xcomp:subj −◦ j1:xcomp)

λP, x.try(x, P):
(j1:xcomp:subj −◦ j1:xcomp) −◦ (j>:subj −◦ j>)

λy, x.meet(x, y) : f1:o −◦ (j1:xcmp:s −◦ j1:xcmp) mary : f1:o

λx.meet(x,mary) : j1:xcmp:s −◦ j1:xcmp λP, x.try(x,P) : (j1:xcmp:s −◦ j1:xcmp) −◦ (j>:s −◦ j>)

λx.try(x,λx.meet(x,mary)) : j
>:s −◦ j> john : j

>:s

try(john, λx.meet(x,mary)) : j
>

On closer inspection, though, an interesting difference emerges between the LFG and LTAG analy-
ses. In LFG coreference of controller and controlled subject is represented in f-structure by mapping
them to a single f-structure node, due to the control relation in the lexical entry of the control verb.
This is explicit in the instantiated meaning constructor of tries. In the LTAG analysis this control
relation is not expressed in terms of tree labelling. This is seen in the meaning constructor of tries,
where embedded and matrix subject are referred to by distinct labels, j1:xcomp:subj and j>:subj,
both before and after variable substitutions. Despite the missing identification of controller and
controlled argument, meaning derivation in the LTAG analysis yields the same sentence meaning.

This fact is interesting in that it points to an important difference between the LFG and LTAG
frameworks. LFG’s syntactic f-structure representation effectively encodes predicate-argument de-
pendencies. In LTAG syntax – even if augmented with grammatical relation labelling – neither
labelled derived trees, nor derivation trees reflect full-fledged predicate-argument structures. While
the embedded subject in (25.b) displays an upper label f>:subj, there is no equivalent to a control
relation to establish coreference of controller (j>:subj) and controlled argument. It is even more
compelling, then, that in coupling LTAG syntax with glue semantics construction from labelled de-
rived trees, we obtain a well-formed meaning, i.e., the same meaning we obtain from fully specified
dependencies in LFG f-structures.18 We will come back to this issue in Section 5.

18The reader might object here, since the meaning of controlled infinitives is a property, which does not express the
control relation in question. This is most evident with transitive control verbs, where the derived meaning does not
encode a subject vs. object control reading. For John promised Mary to leave, e.g. we obtain the meaning promise

(john, mary, λx.leave(x)). Meaning postulates need to encode which of the matrix arguments satisfies the property.
A slight revision of the meaning of control verbs proposed in Asudeh(2000, 2001) solves this problem. Instead of

a property meaning, tries could select an open proposition λP, x.try(x,P (x)), a verb like promise could be assigned
the meaning λP, y, x.promise(x, y, P (x)). In meaning derivation, then, consumption of the matrix subject will ap-
propriately instantiate the embedded open proposition (promise(john, mary, leave(john)) in the above example).
Note that an open proposition analysis still accounts for the well-known inference problems with control verbs, if we

4.6 Long-distance dependencies and wh-scope

We finally turn to long-distance constructions, which turned out to be particularly difficult for LTAG
semantics construction from derivation trees. Wh-constructions involve the additional complexity
of defining an operator semantics for wh-phrases such as who(m), and defining the scope of the
wh-operator. As we shall see now, it is the treatment of scope and wh-semantics in long-distance
constructions which motivated much of the architecture we developed in the previous sections.

Labelling etrees for long extraction (26) displays an etree for wh-object extraction, with
a fronted wh-object NP and a corresponding (unlabelled) trace. Due to object fronting and the
additional projection level, argument labelling differs from (17): the object attaches to the highest
projection, while the subject NP attaches to the f2 projection level. Note further that the meaning
constructor is specified to produce f2 as (the glue equivalent of) the meaning of the clause headed
by meet, which is the label of the tree internal node that is the target for adjunction for clause
embedding auxiliary trees, such as think. The assignment of f2 as the target of sentence meaning
reflects – on the semantic side – the split that is triggered – in syntax – by adjunction of sentence
embedding trees, which split the basic elementary tree into a long-distance extracted projection
level (f>), and the clause’s basic tree trunk, cut at projection level f2. This is seen in (27): on
adjunction of think to S[−wh], the foot node’s argument label j1:comp is linked to f2.

19

Deriving meanings for long extractions Ignoring the role of the wh-phrase for a moment,
by looking at the lower projections in (27), a meaning for f2 can only be derived by hypothesising,
or assuming a resource z : f>:obj, z an unbound variable, to fill the object argument position of
meet. This kind of hypothetical reasoning we observe in the upper part of the meaning derivation
(28), which leads to the partial meaning meet(john, z) : j1:comp, z the unbound variable from the
assumed premise [z : f>:obj]. Due to variable equations, j1:comp (= f2) is consumed by think, which
after consumption of its subject (j1:subj) delivers the partial meaning think(peter,meet(john, z)) :
f>. Since this meaning was obtained on the assumption of [z : f>:obj], the assumption has to
be discharged in order to yield a valid proof. This is done in the implication introduction step
(I) in (28), which yields the partial meaning λz.think(peter,meet(john, z)) : f>:o −◦ f>. This
basically says that had we found a premise z : f>:o, whatever the meaning of z, it is of this z

that Peter thinks that John meets z. The meaning constructor associated with whom in (28) is
now easily understood: it combines with a (property) meaning which was built on the assumption
of an object-NP meaning for meets (f>:o −◦ f>), and should deliver the meaning of the root
node (f>) to which whom attaches, by applying the function λv.who(v) to this partial meaning
λz.think(peter,meet(john, z)): (f>:o −◦ f>) −◦ f> : λv.who(v).

Defining wh-scope The difficult aspects in meaning construction for long wh-extractions are
the following: (i) the scope of the wh-operator is constrained by the position of the wh-phrase in
the derived tree. That is, we are not allowed to derive narrow scope of the wh-operator in (27) and
(28). (ii) from the local elementary tree of whom we cannot access the nodes S[−wh] or S[+wh] of
the verb’s tree, which are crucial to define these scope constraints. The labelling of the etree whom
captures the non-tree local variable f> of the tree it is substituted in by assigning its root node the
label X>:obj, X a metavariable. The meaning constructor is defined by reference to X>. In tree
composition, substitution triggers the equality X>:obj = f>:obj, and at the same time instantiates
X> to f>. With global substitutions as given in (27) we obtain a set of premises that yield the

assume quantification to range over a variable P of type property, just as in the classical property analysis.

Peter tries to leave.
John tries everything Peter tries.
` John tries to leave.
6` John tries for Peter to leave.

try(peter,λx.leave(x)(peter))
∀P [try(peter,P(peter))→try(john,P(john))] where P = λx.leave(x)
` try(john,λx.leave(x)(john))

With these additional assumptions we can safely argue that Linear Logic based semantics construction is in fact able
to bridge the missing control relation in LTAG syntax.

19See the variable equation conditions for predicative auxiliary trees (p. 15).

desired meaning in (28), with wide scope of the wh-operator over the clause headed by think.
Wide scope is enforced by the definition of whom, which is constrained to consume f>:obj −◦ f>,
where f> is the clause label of the projection whom is attached to. Narrow scope is prohibited
due to the labelling of the etree meets, which produces the resource f2, and thus a partial meaning
meet(jn, z) : f2, where f2 = j1:comp by variable substitution. If implication introduction (I) were
to apply to this partial meaning, the resulting meaning term λz.meet(john, z) : f>:obj −◦ j1:comp
would not provide an adequate resource for whom to define narrow scope under think.

(26) S[+wh]:
[

f>
]

NP2[+wh]:

[

f>:obj
]

Aux:

[

f>
]

S[−wh]:

[

f>

f2

]

NP1:

[

f2:subj
]

VP:

[

f2

f1

]

V:

[

f1

f⊥

]

NP2

meets eλy, x.meet(x, y):f>:obj −◦ (f2:subj −◦ f2)

NP[+wh]:

[

X> :obj

]

whom
λv.who(v): (X>:obj −◦ X>) −◦ X>

(27) S[+wh]:
[

f>
]

NP2[+wh]:

[

f>:obj
X>:obj

]

Aux:

[

f>

k>

]

S[−wh]:

[

f>

j>

]

whom does NP1:

[

j>:subj
p>

]

VP:

[

j>

j1

]

Peter V:

[

j1
j⊥

]

S[−wh]:

[

j1:comp
f2

]

think NP1:

[

f2:subj
g>

]

VP:

[

f2

f1

]

John V:

[

f1

f⊥

]

NP2

meets e

Substitutions:
g> → f2:subj, f2 → j1:comp, p> → j>:subj, j> → f>, X>:obj→ f>:obj, X> → f>

λv.who(v) : (X>:obj −◦ X>) −◦ X>

peter : p>

john : g>

λy, x.meet(x, y):f>:obj −◦ (f2:subj −◦ f2)
λP, x.think(x, P):j1:comp −◦ (j>:subj −◦ j>)

λv.who(v) : (f>:obj −◦ f>) −◦ f>

peter : f>:subj
john : j1:comp:subj
λy, x.meet(x, y):f>:obj −◦ (j1:comp:subj −◦ j1:comp)
λP, x.think(x, P):j1:comp −◦ (f>:subj −◦ f>)
` who(λz.think(peter,meet(john, z)))

(28)
λv.who(v) :(f>:o −◦ f>) −◦ f>

•

pt : f
>:s

λP, x.think(x, P) : j1:comp −◦ (f>:s −◦ f>)

jn : j1:comp:s

λy, x.meet(x, y) : f
>:o −◦ (j1:comp:s −◦ j1:comp) [z : f>:o]

λx.meet(x, z) : j1:comp:s −◦ j1:comp

meet(jn, z) : j1:comp

λx.think(x, meet(jn, z)) : f
>:subj −◦ f>

think(pt, meet(jn, z)) : f
>

I
λz.think(pt, meet(jn, z)) : f

>:o −◦ f>

who(λz.think(pt, meet(jn, z))) : f
>

In sum, by tree internal projection labelling, meaning constructors in extraction contexts can
refer to the adjunction node label (f2) which defines the upper bound of the embedded clause trunk,
and thereby correctly constrains the scope of the extracted wh-phrase, which by reference to X>

(=f>) is forced to take scope over the projection level to which it attaches in the derived tree.
Note that in the labelled derived tree (27), similar to the case of control constructions, substi-

tution of equated variables does not yield a well-formed dependency structure. The object whom
labelled (f>:obj −◦ f>) −◦ f> is not linked to meets, which is looking for a premise labelled
f>:obj. So, similar to what we observed in control constructions, it by Linear Logic meaning
derivation that the missing dependency link is established, here in terms of hypothetical reasoning.
This contrasts again with the architecture of LFG, where extracted phrases are represented in their
basic argument position in the f-structure, local to their governing predicate, by the interplay of
functional uncertainty equations and completeness and coherence constraints.

Having dealt with long-distance dependencies, we can resume our discussion of semantics con-
struction from derivation trees in Section 3. These approaches were shown to have difficulties in
representing the embedding structure of long distance constructions involving adjunction of sen-
tential embedding and raising verbs to distinct nodes in the basic verb’s elementary tree, as in
examples (5) and (8). For reasons of space we cannot go through the examples in detail, but we
sketch the relevant aspects here.20

For long object topicalisation in (5) and long object extraction in (8) we assume transitive verb
trees along the lines of meet in (26), without auxiliary insertion at the root node. Raising verbs like
seem are represented as modifier-type VP auxiliary trees, with a meaning constructor λP.seem(P) :
i −◦ i, where i the variable assigned to root and foot node labels. Variable substitutions in tree
composition ensure that in the derived meaning for (5) (Spicy hotdogs he claims Mary seems to
adore) claim takes scope over seem, which in turn takes scope over adore. Given appropriate
meaning constructors for question embedding verbs, our account provides the correct semantics
and embedding structure in cases like (8).

4.7 Related approaches: Semantics construction for D-Tree Grammars

Finally we briefly mention two approaches which are related to our work, yet at the same time need
to be differentiated. Hepple (1999) proposes categorial-style semantics construction from derived
trees of D-Tree Grammar (DTG, Rambow et al. (1995)), to dispense with the more problematic,
process-based interpretation model provided by derivation structures. To overcome problems faced
in the analysis of NP quantification he then provides a small fragment for glue semantics from DTG
derived trees,21 exploiting the greater flexibility of glue semantics in meaning assembly. Yet, while
closely related to LTAG, DTG elementary trees (d-trees) can provide a larger syntactic context than
LTAG etrees22 and therefore lead to a different set-up for tree labelling, as compared to the LTAG
framework we were dealing with. Still, we believe that comparison of our LTAG-based approach
to (an extended fragment of) Hepple’s account in DTG could lead to interesting insights into the
special aspects of the respective frameworks in the syntax-semantics interface.

Muskens (2001) develops a very elegant description-based model of syntax and the syntax-
semantics interface, which allows syntactic and semantic representations to be highly underspecified.
The model is applied to LTAG syntax, yet again coupled with extension to tree descriptions as
used in D-Tree Grammar. As in Hepple’s and our approach, semantics construction is not guided
by derivation structures. Elementary tree descriptions are enriched with semantic expressions
in predicate logic, and instructions for meaning composition. The design of the syntax-semantics
differs from our approach in using D-Tree Grammar and a different model for semantic composition.
Detailed discussion and comparison cannot be provided within the scope of this paper.

20The reader is invited to go through the analysis in detail.
21The fragment in Hepple (1999) does not cover VP modification, control or long-distance dependencies.
22Especially for operators in long-distance dependencies and quantifiers.

5 What we learn about the relation between LTAG and LFG

We defined a Linear Logic-based semantics interface for LTAG syntax which is lexicon driven, and
builds on the structure of derived trees. We argued that a major extension to the LTAG framework
is labelling of tree internal nodes by projected anchor variables. Since we operate on derived trees,
tree composition records variable equations which are restricted to variables of substitution and ad-
junction nodes, and allow for coherent meaning composition from assembled meaning constructors.

We noted a striking difference of LTAG tree labelling as opposed to the LFG framework: while
in LFG all levels in head projection chains are unfied in terms of ↑=↓ equations, LTAG tree labelling
can restrict itself to equation of variables at substitution and adjunction nodes. This is of course
due to the principle of strict lexicalisation and localisation of arguments in elementary trees.

We observed that labelled LTAG derived trees are not merely a mirror image of LFG c-structures
annotated with f-descriptions. LTAG labelled trees do not encode control relations, nor are ex-
tracted arguments represented as local to their governing predicates. That is, we could conceive
of labelled LTAG trees as an impoverished version of annotated c-structure trees in LFG: impov-
erished in that they lack functional path and uncertainty equations, and only allow for restricted
variable equations, at local substitution and adjunction nodes. As a consequence, labelled derived
trees (including variable equations) do not in general encode dependency structures, yet they pro-
vide semantically valid embedding structures, as opposed to LTAG derivation trees. An interesting
observation emerging from this comparison is that this lack is compensated by LL-based semantics
construction, which establishes the correct dependencies at the level of meaning representation.

It is especially with respect to long distance constructions that semantics construction from
constitutent trees proved to be superior to meaning composition from derivation trees. This we
achieved by a major addition to the LTAG framework, in that we label arguments to record the local
projection level to which they attach. This addition is critical for the definition of scope constraints,
as well as the correct definition of embedding structures, in particular in long extraction contexts
with multiple adjunctions into single elementary trees. Moreover, we could show that glue semantics
from labeled derived trees accounts for modifier and quantifier scope ambiguities.

Should we conclude from this exercise, then, that the additional power that LFG provides –
the projection of f-structure by functional descriptions (in particular functional uncertainty, and
other path equations), completeness and coherence constraints in f-structure, and global variable
equations of head projection chains – is a luxury, or formal overhead which we could dispense with
on the basis of a sparser syntactic formalism? The answer is certainly – No.

It is, first of all, a matter of conceptual clarity and modularity of linguistic representation which
calls for an adequate syntactic representation of predicate-argument relations, as it is provided by
dependency, or f-structure representations. Second, it is a well-known fact that tree composition
operations in LTAG syntax are restricted in formal power, and do not extend to languages with
special word order properties. Example (29) from Kashmiri, discussed in Rambow et al. (1995),
illustrates such a case where wh-words end up in sentence-second position, preceded by a topic from
the matrix clause. This type of interleaved combination of elementary trees, called subsertion in
D-Tree Grammars, cannot be accounted for by adjunction of atomic, elementary lexicalised trees.
– A case for (functional uncertainty in) f-structure.

(29) Rameshan kyaai chu baasaan [ki me kor ti]
RameshERG what is believeNperf that IERG do
What does Ramesh believe that I did?

6 Conclusion

In conclusion we argue that LTAG derivation trees are inappropriate for principle-based semantic
composition. We developed an account for semantics construction from LTAG derived trees by
establishing a tree labelling regime as an interface to Linear Logic-based meaning deduction. We

showed that glue semantics from LTAG derived trees captures non-tree local dependencies in mod-
ification and control constructions, and extends to the adjunction-based analysis of long-distance
dependencies, which is, however, formally and empirically more restricted than LFG’s analysis
in terms of functional uncertainty. Linear Logic-based semantics from derived trees successfully
bridges LTAG’s non-isomorphism between syntactic and semantic operations. It further allows
us to derive scope ambiguities induced by modifiers and quantified NPs, and accounts for scope
constraints in long-distance extraction contexts.

We established that labelled LTAG derived trees do not correspond to full-fledged dependency
structures, as opposed to LFG f-structures, since LTAG tree labelling does not extend to the formal
power of f-descriptions in LFG. However, dependencies which cannot be established by local variable
substitutions can be appropriately bound at the meaning level, that is, through Linear Logic-based
meaning assembly in the glue semantics interface.

References

Asudeh, A. (2000). Functional Identity and Resource-Sensitivity in Control. In Butt, M. and King, T.,
editors, Proceedings of the LFG00 Conference, pages 2–24, University of California, Berkley. CSLI Online
Publications, http://csli-publications.stanford.edu/.

Asudeh, A. (2001). A Resource-Sensitive Semantics for Equi and Raising. In Beaver, D. and Kaufmann, S.,
editors, Proceedings of Semantics Fest 2000, pages 5–25. CSLI Publications, Stanford, CA.

Crouch, R. and van Genabith, J. (1999). Context Change, Underspecification, and the Structure of Glue
Language Derivations. In Dalrymple, M., editor, Semantics and Syntax in Lexical Functional Grammar,
pages 117–189. MIT Press.

Dalrymple, M., editor (1999). Semantics and Syntax in Lexical Functional Grammar. MIT Press.

Dalrymple, M. (2001). Lexical-Functional Grammar, volume 34 of Syntax and Semantics. Academic Press.

Hepple, M. (1999). A Functional Interpretation Scheme for D-Tree Grammars. In Proceedings of the Third
International Workshop on Computational Semantics, pages 117–130, KUB, Tilburg.

Joshi, A. (1987). An Introduction to Tree Adjoining Grammar. In Manaster-Ramer, A., editor, Mathematics
of Language. John Benjamins, Amsterdam.

Joshi, A. and Vijay-Shanker, K. (1999). Compositional Semantics with Lexicalized Tree-Adjoining Grammar
(LTAG): How Much Underspecification is Necessary? In Bunt, H. and THijsse, E., editors, Proceedings
of the Third International Workshop on Computational Semantics (IWCS-3), pages 131–145, Tilburg.

Kallmeyer, L. and Joshi, A. (1999). Factoring Predicate Argument and Scope Semantics: Underspecified
Semantics with LTAG. In Dekker, P., editor, Proceedings of the 12th Amsterdam Colloquium, pages
169–174.

Kaplan, R. and Bresnan, J. (1995). A Formal System for Grammatical Representation. In Formal Issues in
Lexical-Functional Grammar. CSLI Lecture Notes, No.47.

Muskens, R. (2001). Talking about Trees and Truth-conditions. Journal of Logic, Language, and Informa-
tion, 10(4).

Rambow, O., Vijay-Shanker, K., and Weir, D. (1995). D-Tree Grammars. In Proceedings of ACL-95, pages
151–158.

Schabes, Y. and Shieber, S. (1994). An Alternative Conception of Tree-Adjoining Derivation. In Computa-
tional Linguistics 20(1), pages 91–124.

Schabes, Y. and Waters, R. C. (1995). Tree Insertion Grammar: A cubic-time, parsable formalism that
lexicalizes context-free grammar withough changing the trees produced. In Computational Linguistics
21(4), pages 479–513.

Shieber, S. and Schabes, Y. (1990). Synchronous Tree-Adjoining Grammars. In Proceedings of COLING,
pages 1–6.

