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Automatic F—structure Annotation of Treebank Trees'!

Abstract

We describe a method that automatically induces LFG f-structures from treebank tree repre-
sentations, given a set of f-structure annotation principles that define partial, modular c¢— to
f-structure correspondences in a linguistically informed, principle-based way.

This work extends the approach of van Genabith, Sadler and Way (1999a,b,c) where f-
structure annotation of treebanks is driven by manual annotation of treebank-extracted PS
rules. In this paper we present a method for automatic f-structure annotation of treebank
trees, building on a correspondence-based view of the LFG architecture. A rule-based approach
is explored, in parallel, by Sadler, van Genabith and Way (2000).

In our method we build on a correspondence-based view of the LFG architecture, where
annotation principles define ¢—correspondences directly in terms of ¢—projection constraints,
relating partial (possibly non-local) c—structure tree fragments to their corresponding partial f-
structures. Application of the modular annotation principles to treebank trees directly induces
the f-structure. Due to the disambiguated tree input, the resulting f-structures require only
minimal manual disambiguation, and can be used to build large f-structure corpora as training
data for stochastic NLP applications.

The f-structure annotation principles provide by themselves a principle-based, modular de-
scription of the LFG c—structure/f-structure interface. They define characteristic functional
correspondences between partial c—structure configurations and their f-structure projections.
By abstracting from away from irrelevant c—structure context, these principles are highly gen-
eral and modular, and therefore apply to previously unseen tree configurations.

To define and process the annotation principles we make use of an existing term rewriting
system, originally designed for transfer-based Machine Translation. The method is inherently
robust. It yields partial, unconnected f-structures in the case of missing annotation rules.

We present the results of a first experiment where we apply this method to the Susanne
treebank. The experiment is designed to measure to which extent the partial c— to f-structure
correspondences encoded in annotation principles scale up and generalize, by applying them to
previously unseen tree configurations. We then extend the model to selective filtering of ambi-
guities, using lexical subcategorization information in conjunction with an OT-based constraint
ranking mechanism for ambiguity filtering and ranking (cf. Frank et al. 1998, 2000).

Finally we address some conceptual issues. The principle-based projection of f-structures
from disambiguated tree input has interesting implications for the definition of grammatical
constraints as compared to the classical LFG parsing architecture. We also discuss issues such
as systematic modifications of given treebank encodings, and which types of treebank encodings
should be expoited for different applications: the construction of f—structure banks, as opposed to
more far-reaching goals, including rapid, corpus-based LFG grammar development, and robust
parsing architectures.

1 Introduction

Methods and insights of corpus-based linguistics are now applied to practically all areas of natural
language processing, ranging from morphological and syntactic analysis over terminology extrac-
tion, semantic disambiguation and machine translation to areas of categorization or summarization.

This paper addresses two issues in corpus-based linguistics. First, we describe and extend a
method that allows us to build large LFG f-structure resources as training material for stochastic
NLP applications, including but not restricted to LFG processing (see e.g. Bod and Kaplan (1998),
Cormons (1999), Johnson et al. (1999), Way (1999), Eisele (2000), Cancedda and Samuelsson

!Thanks go to Josef van Genabith, Andy Way and Louisa Sadler, for many discussions on the ideas presented
below, and comments on earlier versions of the paper. Fruitful feedback was provided in particular by Ron Kaplan
and John Maxwell, as well as Christer Samuelsson, the members of the Pargram group at presentations given at
IMS Stuttgart and Xerox PARC, the participants of the Tubingen Workshop “Syntactic Annotation of Electronic
Corpora” and the LFG-HPSG2000 conference, as well as my colleagues at XRCE.



(2000), Johnson and Riezler (2000), Bod (2000a, 2000b), Riezler et al. (2000)). More importantly,
this method is itself essentially corpus-based in that it exploits existing corpora of disambiguated
c—structure representations, i.e., large treebanks, to derive such f-structure resources, and, ulti-
mately, independent LFG grammar resources. The approach is also attractive in that it combines
corpus-based methods with traditional rule-based techniques. It allows us to enrich the information
extracted from corpora with higher-level syntactic information, which is captured in generalized
descriptions, and applied automatically. The external linguistic knowledge encoded in annotation
principles imports linguistic generalizations that cannot (easily) be extracted from treebanks, and
represents a substantial gain in information, compared to a purely corpus-driven approach.

Creation of LFG-parsed corpora

The construction of LFG-parsed corpora traditionally proceeds by parsing sentences of a text corpus
with an existing or adapted LIFG grammar, and manually selecting the correct analysis from a set
of alternatives proposed by the system. Depending on the size of the grammar and the availability
of reliable ambiguity filtering mechanisms, this manual disambiguation task can be significant and
cost-intensive: A linguistic expert is needed to choose from a considerable set of alternatives.?
Moreover, existing unification-based grammars are usually restricted to a specific type of text or
domain, and require considerable extension in order to process free text from a variety of domains.
This factor further increases the cost of constructing LFG-parsed corpora on a large scale.

To date, there exist rather small LFG f-structure banks.®> To extend the scope of such f-
structure banks to broad-coverage corpora comparable to e.g. the Penn Treebank or the NEGRA
corpus, the LFG analysis grammars need to be considerably scaled up.* This by itself constitutes
a major effort not yet achieved. In addition, with increasing coverage, ambiguities proliferate,
leading to increased overhead for disambiguation. Proposals have been made for filtering and
ranking parsing ambiguities either by grammar-based preference marks (Frank et al. 1998, 2000)
or by stochastic disambiguation methods (Eisele (2000), Bod (2000a, 2000b), Johnson and Riezler
(2000), Riezler et al. (2000)) to reduce the search space for manual disambiguation — the latter
relying, however, themselves on larger LFG-based training corpora or analysis grammars than
currently available to yield reliable results in practice.

Semi—automatic generation of f—structures from treebanks

In a series of papers van Genabith et al. (1999a, 1999b, 1999c) introduced a new method for
semi-automatic corpus-based construction of LFG f-structure banks, to address the need of broad-
coverage training resources for statistical LFG processing. This method exploits existing treebanks
by extracting the context-free PS grammar implicitly encoded by the individual tree assignments,
following the method of Charniak (1996). The rules of the extracted “treebank grammar” are
manually annotated with functional descriptions. Together with a set of macros for lexical entries,
these rules are then used to deterministically “reparse” the original treebank entries by following the
tree structure assigned by the annotators. In this reparsing process the f-structure annotations are
resolved, and an f-structure is produced. This process is deterministic if the f-structure equations
are, and manual inspection of candidate analyses can be significantly reduced.

While this method circumvents the coverage and ambiguity filtering problems of the classical
approach, it still involves an important labour intensive component, namely the manual annotation
of the grammar rules. This is particularly worrisome due to the fact that treebank grammars

2See King et al. (2000) for ambiguity managing techniques in the LFG grammar development platform XLE.

*Two corpora have been built at Xerox PARC and XRCE Crenoble, using the English and French grammars
developed in the Pargram project: the “HomeCentre” corpus (approx. 1000 sentences for both English and French)
and the VerbMobil corpus (540 sentences for English).

*See Dipper (2000) for grammar-based corpus annotation using an LFG grammar for German, which provides
analyses for a restricted set of sentences within the corpus annotation project TIGER.



are very large (growing with the size of the treebank), and typically consist of flat PS rules with
a significant amount of redundancy in their right-hand sides. Manual annotation of rules with
functional descriptions is therefore very labour-intensive, can give rise to inconsistencies, and risks
missing generalizations.

Automatic f-structure annotation of treebanks and CF grammars

In a collaborative effort the corpus-based approach of van Genabith et al. (1999a, 1999b, 1999c)
was extended to two related methods for automatic f-structure annotation of treebanks (cf. Frank
et al. (1999)). The two methods are based on a common underlying idea, but feature interesting
differences. We present these alternative methods in two separate contributions, to allow for more
in-depth discussion of the respective approaches.’

The key idea for automatic f—structure induction from treebanks is the observation that consti-
tuent- and higher-level feature structure representations stand in a systematic relationship. This
insight is prevalent in theories like LFG and HPSG. In LFG c—structure and f-structure are inde-
pendent levels of representation which are related in terms of a correspondence function ¢. This
correspondence follows linguistically determined principles which are partly universal and partly
language specific (see in particular recent discussions of projection principles in Bresnan (2000)
and Dalrymple (2000)). Following this idea, we propose two methods for automatic f-structure
annotation of treebanks, driven by general annotation principles that describe systematic patterns,
i.e. linguistic generalizations, in terms of partial c—structure/f-structure correspondences.

In one approach® we read off a CFG treebank grammar, develop annotation templates and
compile the templates over the annotation grammar, augmenting it with f-descriptions. A corrected
version of this grammar is then used to induce f—structure assignments for treebank trees following
the reparsing method of van Genabith et al. (1999c).

In the alternative approach, described below, we operate directly on the PS trees from the
treebank. Annotation rules define ¢—correspondences between partial c— and f-—structures. These
rules are applied to the treebank tree structures, and annotate them directly with f—structures.

Both methods are partial: the first requires manual inspection and correction of the output
produced by the automatic annotation process. The method described below is fully automatic
and robust, and yields partial, unconnected f-structures in the case of missing annotation rules.

2 Principles for f-structure annotation of (treebank) trees

In the classical LFG architecture the ¢—correspondence between c— and f-structure is defined
in terms of functional annotations (f-descriptions) on the RHS categories in CFG rules. The f-
structure is constructed in the parsing process by resolving the f-descriptions attached to the PS
rules, with the meta variables 1 and | instantiated to f-structure nodes.

‘LIKE{(1suBJ)(toBI))’

FPREK PRED ‘JOHN’

SUBJ fa: [ NUM  SG ]
PERS 3

PRED ‘MARY’
OBJ fa: [ NUM  SG ]
PERS 3
TENSE PRESENT
‘ ‘ L PASSIVE -

John likes Mary

PS rules define f-structure via functional descriptions

NP VP VP - \% NP
(tsuBy) =} 1=4 1=l (toms)={

®See the companion paper Sadler et al. (2000) in these proceedings.
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Our first annotation method follows this classical LFG architecture, in that f-structure annotation
principles apply to PS rules extracted from treebanks, and enrich them with f-descriptions. The
resulting annotated rules are then used to “reparse” the assigned tree structure of treebank entries,
thereby inducing the f-structure.

On a pure correspondence view of the LFG architecture we describe the correspondence
between a given c—structure and its corresponding f-structure in terms of the projection function
¢ itself, as displayed below.®

‘LIKE{(1suBJ)(t0BJ))’
ﬂg\ [ PRED ‘JOHN’ ]
fa:

SUBJ NUM SG

NP:n2 : fi: PERS 3
1) f3 PRED ‘MARY’
V:n4 NP:n5 OBJ fs: [ NUM  SG ]
T PERS 3
John likes Mary TENSE PRESENT
| PASSIVE - ]
¢—correspondence: f-structure:
$(nl) = f1 é(n2) = f  (f1 sUBJ)= fo, (f2 PRED)= John’
¢(n3) #(n3) = fs (fr oBY)= fs, (fs PRED)= ‘Mary’
¢(nd) (f1+ PRED= ’likes’
301) = $a3) = o(at)

The approach presented in this paper builds directly on this correspondence view of LFG, which
leads us towards f-structure induction from c—structure trees, as opposed to PS rules. That is, an-
notation principles define ¢g—correspondences directly in terms of ¢p—projection constraints, relating
partial c—structure configurations to their corresponding partial f-structures. Automatic applica-
tion of these annotation principles to tree fragments directly induces the f-structure. This approach
has two advantages. First, it can apply to non-local trees, while PS rules are restricted to trees
of depth one. Second, by projecting f-structures from trees we skip the reparsing process for f-
structure composition. While this purely correspondence-based f—structure annotation is decoupled
from the parsing process, it can still be extended to a parsing architecture where a (probabilistic)
PCFG grammar assigns a set (or parse forest) of best-ranked trees, which are then input to auto-
matic f-structure annotation.”

Partial correspondences, partial and non-local trees Before going into details, let us first
illustrate the key ideas of automatic f—structure annotation based on modular, partial annotation
principles. Below we display the complex c—structure/f-structure correspondence of an NP. This
complex picture can be broken down into modular, piece-wise correspondences of partial c— and
f—structures, which abstract away from irrelevant material in their surrounding context.

[PRED ‘GIRL’ 1
‘THE’
Det:n2 AP:x3 N4 PPm5  fi: PRED ‘PRETTY{(1sUBJ))’
fa: fa: PRED ‘GIRL’
the A:né girl fa 1| ADIN fe : | SUBJ l NUM  SG ]
‘ PERS 3
pretty fs: [ ] d

For instance, the functional contribution of the prenominal determiner the is independent from the
presence of the AP or PP, and is captured by the following partial correspondence:

6See Dalrymple (2000) for a correspondence-based exposition of LFG syntax.
"See Section 6 for discussion.
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Detm2 ... N4 '’ [spEC ‘THE’]

| )
the

o(n1) = fi  6(nl) = ¢(n2)
6(n2) = f  spec(fi, the)

Any AP daughter of NP is invariably analyzed as an ADJUNCT of the nominal head, unless the noun
head N is omitted. The former generalization is captured in the following partial correspondence:

NP:nl .
fi :{ADJUNCT { f2:] ]}} ig;; Z ;;1:) adjunct x(f1, fs)
AP:mn3 ... N:n4 ’

Projection principles for head categories and lexical nodes (here for nominal categories) are straight-

NP:n
‘ 17‘ il 1[ ] #(nl) = fi  ¢(nl) = ¢(n4)
fa: ¢(nd) = fa

N:n4

N:n4/\
‘ f1 :[PRED LEX] ¢(nd) = f»  pred(fi, LEX)
Lex

forward.®

Similar correspondences can be defined for the remaining c—structure fragments. By applying them
all to the c—structure above, they define the corresponding complex ¢—projection and f-structure in
a modular, declarative way. Most importantly, due to the abstraction over immaterial c—structure
context, these principles generalize over specific tree configurations, i.e. they can apply to fragments
of unseen tree configurations.

Since the annotation principles apply to trees, they can be defined to involve partial, non-local
tree fragments, while PS rules are restricted to trees of depth one. This allows us to define and con-
strain f-structure assignments in terms of complex non-local c—structure constraints. An example
where this is fruitfully applied is the assignment of complex tense information in binary branching
VPs.? By specifying characteristic partial, non-local c—structure contexts in a binary branching
VP structure, we can capture the tense and active/passive distinctions of verbal constructions in
a natural way. This is illustrated below for the characteristic complex construction indicative of
present perfect tense.

VP:nl
VHZ:n2 .. VP:n3 VTYPE MAIN
\ h PERF +
has VBN:n4 —VPms—— » 2 | proa -
‘ ‘ / fs TENSE PRESPERF
been VVN:n6 fo PASSIVE +

In our approach, modular annotation principles establish correspondences between (possibly non-
local) partial c-structure fragments and their corresponding partial f-structures. This is very much
in the spirit of projection principles as proposed by Dalrymple (2000) and Bresnan (2000), and
provides a principle-based, modular c- to f-structure interface in the LFG architecture.'® The ap-
plication of annotation principles to c—structure trees follows the traditional description-by-analysis
(DBA) approach of Halvorsen and Kaplan (1995) in the c-structure/f-structure interface. Yet,
while in the classical DBA approach complete PS rules are matched against the c—structure, in our
approach partial (non-local) c—structure fragments are matched against the c—structure trees.

8See Sections 3.5 and 5 for the assignment of subcategorized grammatical functions.
See also Section 3.5.
107t is also closely related to principle-based grammar description in HPSG.



3 Automatic f—structure annotation of trees

3.1 The XLE term rewriting component

To define and process f-structure annotation principles, we make use of an existing term rewriting
system, originally designed as a rewriting component for transfer-based Machine Translation in the
XLE (Xerox Linguistic Environment) system (see Kay (1999), Frank (1999)).

The system takes as input an unordered set of n-ary terms p,q, etc. and an ordered set of
rewrite tules p ==> q.!' If the LHS terms p of a rule p ==> q match the input, the matching
terms p are eliminated from the input set, and the terms q are added to the input set. A rule applies
to each instantiation of the LHS terms in the input. The LHS of a rule may contain positive +p
and negative -p terms. A rule with positive constraint +p only applies if p matches some term in
the input. Positive terms are not eliminated from the input set. A rule with negative constraint
-p only applies if p does not match any term in the input set.

The order in which the rules are stated is crucial: each rule applies to the current input set, and
yields an output set. The output set of a rule constitutes the input set for the next rule. Annotation
principles will thus be interpreted as a cascade of rewrite rules that continuously transform, or enrich
the input set of terms, to yield a final set of output terms.

3.2 A term representation of the LFG projection architecture

For the specific task of f-structure annotation of c—structure trees, using the XLE term rewrit-
ing component, we encode the LFFG projection architecture in a term representation language as

follows:'2
imm. dominance arc(MNode, MLabel, DNode, DLabel)
imm. precedence prec(CsNode x, CsNode_y)
lexical insertion lex(TerminalNode, Lex)
¢-correspondence phi(CsNode, FsNode)

equal (FsNode x, FsNode_y)
f-structure features'3 attr(FsNode x, FsNodey), attr(FsNode, Val)

With this, the traditional representation

‘SLEEP{(1sUBJ))’

NP:n2 VP:n3 [PRED Mary ]
SUBJ f2: | NUM  sG
PERS 3
Mary V:n4d >
TENSE PRESENT

PASSIVE -
sleeps

translates to the following set of terms:

arc(ni,s,n2,np), arc(nl,s,n3,vp), arc(n3,vp,nd,v),

prec(n2,n3),

lex(n2,mary), lex(n4,sleeps),

phi(ni, f1), phi(n2, f3), phi(n3, f3), phi(n4, f1), equal(fi, f3), equal(fs, fa),
pred(fi,sleep), subj_arg(fi), subj(fi,f2), pred(fs,mary), num(fs,sg), tense(f;,pres),..

3.3 Automatic annotation of trees with f—structures

The basic steps of f—structure annotation of treebank trees are illustrated below.

" There are obligatory (==>) and optional (?=>) rules. An optional rule creates two output sets, one where the rule
applies, and one where it doesn’t apply. All subsequent rules apply to all output sets of previous rule applications.
The system operates on packed (“contexted”) representations for efficient processing of ambiguities (see Kay (1999)).

12This term representation language can, in conjunction with the XLE term rewriting compenent, also be used for
structure-based corpus queries, and is comparable in scope with the query tool presented in Kallmeyer (2000).

13with attr a variable over f-structure attributes



Preprocessing: converting bracket— to c—structure term representation In a preprocess-
ing stage, we first compile the tree encodings of a given treebank to a canonical bracketing structure
for PS trees. This bracket structure we convert to an equivalent term representation, where nodes
are associated with unique node identifiers n;, besides their category labels.

S S:nl
T arc(nl,s,n2,np), arc(n2,np,nd,n) T~
[s, [np, [n,Maryl], N‘P V‘P _, arc (n1,s,n3,vp), arc(n3,vp,n5,v), NP‘:HZ VP‘:H3
[vp, [v,sleeps]]]. N vV prec(n2,n3), N:n4 V:n5
[ \ lex(n4,mary), lex(n5,sleeps) \ \
Mary  sleeps Mary sleeps

This c—structure term representation constitutes the input to automatic f-structure annotation
with the term rewriting component of XLE. The task is to fill in the appropriate phi predicates
and f-structure terms, i.e. to induce the ¢—projection for the input c—structure.

Initialization: A trivial 1-1 ¢—correspondence of c—structure nodes to f-structure
nodes initializes, in a first step, a piece-wise partial mapping of c—structure nodes n; to fully
underspecified, empty f-structure nodes f;. This is defined by the following rules.

+arc(n1’_,_’_) ==> phi(nl,fl)_ NP:n2 VP:n3
. | | £l f]]
+arc(_,_,CsNode,.) ==> phi(CsNode,FsNode). N:n4 V;n5/\‘
| S~

Mary sleeps fa: [ ] fs [ ]

F—structure annotation rules associate partial c—structure configurations with their corre-
sponding ¢—projected f-structure information, and further restrict the trivial 1-1 ¢—correspondence
via the predicate equal (Fx,Fy). Below we give an example. The first rule defines the f-structure
node f; for the VP-external NP:n2 as the suBJ of the node f; that is projected from the S:nl

node.1> 16
— ¢ )
S:n1 fi: [ ] S:nl 2 :[SUBJ fa: [ ]]
foi[] =
NPm2 ... VPm3 [ ] NP:mn2 ... VP:n3\f3: [ ]
fa:

+arc(A,s,B,np), +phi(A,FA), +phi(B,FB),
+arc(A,s,C,vp), +precx(B,C) ==> subj(FA,FB).

The second rule applies to the output resulting from the previous rule application. The predicate
equal (Fx,Fy) restricts the ¢—function to map the VP and S nodes to identical nodes in f-structure.

T T - .
S:nl fl Z[SUBJ f2 . [ ]] S:nl 1 :|SUBJ f2 : [ ]]
i = equal( f1,fs)
NP:n2 ... VP:n3 fa: [ ] NP:mn2 ... VP:n3 fa: [ ]

+arc(A,s,C,vp), +phi(A,FA), +phi(C,FC) ==> equal(FA,FC).

"n, and f; are designated constants for the tree and f-structure root nodes, respectively. The RHS term

phi(CsNode,FSNode) in the second rule introduces new constants f; for the non-instantiated variable FsNode.
!The graphical representations illustrate the effect of the rules, in terms of input and output set.
'Note the predicate precx(B,C), which is defined (by use of macros) as a finitely constrained transitive closure
over the precedence relation prec. This allows us to underspecify precedence constraints holding between nodes n,
and ny to allow for an arbitrary or else a restricted sequence of intervening categories.



A set of annotation rules of this kind (which we call an annotation grammar)'” is applied to any

given c—structure term representation from the treebank. These rules continuously restrict and
enrich the ¢—projection. After resolution of f—structure node equalities the process yields, in the
general case, a complete c—structure/f—structure projection architecture for the sentence at hand.

3.4 Formal restrictions and simplifications

Formal restrictions Annotation rules are subject to formal constraints in order to guarantee
the functional property of the ¢—correspondence, in particular:

e phi predicates (phi(C_Node,F Node)) are restricted to occur as positive constraints, i.e.

— no phi predicate may be introduced (in RHS of rules)'®
— no phi predicate may be deleted (in LHS of rules), however,
— mnew f-structure nodes may be introduced (in RHS of rules)

Given the input specification of a 1-1 ¢-projection, these constraints guarantee that the
functional property of ¢ is preserved.

e equal (F Node x,F Node_y) predicates restrict the ¢—correspondence, while preserving its
functional property. They may be introduced (in RHS), or used as constraints (in LHS
of rules). equal predicates are resolved after the annotation process is completed.!?

Order independence in a cascaded rewrite system Note that as long as annotation rules do
not consume c—structure terms, or refer to f-structure terms introduced by other rules, the order
in which the rules are stated, and thus applied by the system, is irrelevant.

This is illustrated by inverting the application order of the subject and VP head-projection
rules from above: Below we first apply the VP head-projection rule. The subject annotation rule
is then applied to the output of the first rule. Since we did not consume any c—structure terms, nor
put constraints on f-structure terms, the rules yield the same result in any order of application.?°

— h) ]

S:nl S:nl

f: [ ]

fa: [ ] = |

NP2 ... VPm3 4 NPm2 ... VP:n3\equal(f1,f3)
fai[] i ]

+arc(A,s,C,vp), +phi(A,FA), +phi(C,FC) ==> equal(FA,FC).

/—>f1: [ ]
S:nl f[] ‘|sUBJ f2[]]
> = equal( f1,f3)
NP:mn2 ... VP:n3\equal(f1;f3) NP2 ... VP:nS’\fB: []
fo: [ ]

+arc(A,s,B,np), +phi(A,FA), +phi(B,FB),
+arc(A,s,C,vp), +precx(B,C) ==> subj(FA,FB).

17See Section 3.5 for more detail on the different types of rules, lexical, syntactic and morpho—syntactic, that make
up such an annotation grammar.

19equal predicates could in principle also be resolved immediately during the annotation process.

19 Fxcept, of course, for the initialization rules above, which induce the 1-1 ¢—correspondence.

2°Had we consumed, for example, the term arc(A,s,C,vp) in the first rule, the second rule would not have applied.
Nor would the first rule, if it had stated a positive constraint on the presence of a SUBJ function, which is introduced
later in the annotation process.



Order independence of f—structure annotation rules can be guaranteed by additional formal restric-
tions which prevent consumption of c-structure terms and constraints on (previously introduced)
f-structure terms. This guarantees that all annotation rules have access to (a) the full information
structure that constitutes the initial input, i.e. the c—structure plus the 1-1 ¢-projection as defined
via arc, prec, lex, and phi terms, and (b) no more than the initial information structure, i.e. no
annotation rule is constrained in terms of f-structure information introduced by other rules:

e c—structure terms (arc, prec, lex) and phi terms only occur as positive constraints
e f-structure terms and equal terms only occur in RHSs of rules

These formal restrictions ensure that all f-structure annotation rules have access to the complete
set of c—structure and phi terms, and no more than this, and thereby guarantee order-independence
of rule application. The writer of annotation rules does not need to care about the order in which
the rules are stated, and thus applied. However, the system is more powerful, and can be flexibly
relaxed to allow for limited degrees of order-dependence where it appears to be useful.

There is a trade-off between order-dependence and order-independence. Constraining rules to
c—structure information only can require complex rule constraints in order to avoid application
of different annotation rules to the same tree fragment, leading to inconsistencies. Moreover,
access to f-structure information can be useful for generalizing annotation rules. If several c—
structure configurations are indicative of, e.g. a subject function, or passive voice, it is possible
to capture such diverse configurations in a more general way by referring to the more abstract
f—structure information to guide further aspects of f—structure construction. In this case, the order
of annotation rules needs to be respected, to make sure that the required f-structure information
is being introduced by previously applied annotation rules. The term rewriting system is powerful
enough to allow for flexible definition of annotation rules, providing much room for flexibility and
experimentation in f-structure annotation.?!

Simplifications To avoid cumbersome reference to phi-predicates in our annotation rules, we
can exploit the fact that equal-predicates are resolved after the annotation process. Since the
induced ¢-projection is 1-1, we can effectively eliminate it during the annotation process, and
attach f—descriptions directly to c—structure nodes n;.

sal Sl m1:|SUBJ np:| H
= | .
NP:n2 VP:n3 NP:n2 VPH3’\iZlua|:(f17n3)

+arc(A,s,B,np), +arc(4,s,C,vp), +precx(B,C) ==> subj(A,B), equal(A,C).

After the annotation process, and before resolution of equalities, we can restore the (implicit)
1-1 ¢—correspondence between c—structure and f—structure nodes, which is of course essential to
represent the mapping of distinct c—structure nodes to single (i.e. equated) f-structure nodes. This
is performed by a set of rules which relabel the c—structure with new node identifiers, while encoding
the 1-1 ¢—correspondence between these new node identifiers and the original c—structure nodes,
which are now playing the role of f-structure nodes.??

equal(nj ,ns)

NP:new_n2 VP:neW_n3\n3: [(]

21See also Section 3.7. where order-dependence of rewrite rules is fruitfully applied for general c-structure trans-
formations on existing treebank encodings, to facilitate principle-driven f-structure annotation.

22The rules rewrite the c-structure predicates arc, lex and prec, by replacing the node identifiers n; with new
constants newn;. Concurrently, a (new) phi-projection phi is defined between the new node identifiers newn; and
the corresponding nodes n; that populate the f-structure space.




Alternative annotation schemes As an alternative to restoring the c—structure and ¢—projection
in this simplified annotation scheme, we can also choose to rewrite trees into f-structures, gener-
ating only f-structures instead of a full projection architecture. In this variant, we can consume

c—structure predicates, stepwise, during the annotation process. This is illustrated below for the S
— NP VP structure.

S:nl
/\ arc(A,s,B,np), NP:n2m

NP:n2 VP:n3 +arc(A,s,C,vp), +precx(B,C) ‘ ‘ - :[SUBJ nsy : [ ]]
‘ ‘ ==> subj(4,B). N:n4 V:nb

N:n4 V:n5 ‘ ‘ equal(nl, n3)
‘ ‘ arc(A,s,C,vp) ==> equal(4,C). Mary sleeps

Mary sleeps

Consumption of c—structure induces a certain amount of order-dependence in the annotation
process. Once some c—structure fragment is consumed, later rules cannot refer to this c—structure
bit to constrain the application of another rule. Note, however, that the f-structure that corre-
sponds to consumed c—structure fragments is available for reference at later stages of processing. An
advantage of this annotation variant is that we can easily avoid inconsistent f—structure assignments
by multiple rule applications. Annotation rules that would require complex application constraints
to avoid such situations can in this variant be less constrained, by exploiting the order-dependence
of rule application. An annotation grammar which makes use of c—structure consumption and ref-
erence to f-structure terms was developed for our experiment in Section 4. This grammar defines
a natural order of part-of-speech related sections of annotation rules.

3.5 On the nature of f—structure annotation rules

Just like in an ordinary LFFG grammar, we find, in our f-structure annotation approach, a division
between lexical, morpho—syntactic, and phrasal annotation rules. However, in contrast to classical
LFG PS rules, our syntactic rules describe partial c—structure/f-structure associations, which can
extend to non-local configurations. In addition, our formalism allows us to define underspecified
annotation rules, generalizing over classes of c—structure categories — both lexical and phrasal.

Lexical and morpho—syntactic rules Morpho-syntactic rules introduce morphological (and
to some extent semantic) information encoded in lexical category labels into the f—structure space.
This is illustrated below, for NUMber and NTYPE features. The example illustrates how highly
specific category distinctions in treebank encodings can be neutralized: once NUMber is encoded in
f—structure, based on the nn1 vs. nn2 distinction, this category distinction can be neutralized by
mapping both lexical category labels to the generalized label nn.?® This generalization is essential
for compact rule definition. For example, below, the instantiation of the PRED—value of nouns is
captured in a single lexical rule which applies to all “generalized” nn-daughters.

arc(A,RL,B,nnl) ==> num(B,sg), ntype(B,common), arc(A,RL,B,nn).
arc(A,RL,B,nn2) ==> num(B,pl), ntype(B,common), arc(A,RL,B,nn).

arc(A,RL,B,nnt1) ==> num(B,sg), ntype(B,temporal), arc(A,RL,B,nn).
arc(A,RL,B,nnt2) ==> nun(B,pl), ntype(B,temporal), arc(A,RL,B,nn).

+arc(A,n,B,nn), +lex(B,Lex) ==> equal(A,B), pred(B,Lex), pers(B,’3’).

Tense information as well as the active/passive distinction can be captured by stating constraints on
the partial c—structure context of verbs, as illustrated below for active and passive present perfect
tense in a flat VP structure, as it is assigned in the Susanne corpus.?*

23See van Genabith et al. (1999b) for a similar approach.
#'Gince we assign a flat f-structure for complex tenses, we do not introduce PRED-values for lexical nodes of
auxiliaries in the f-structure. See below for the assignment of appropriate subcategorization frames.
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+arc(A,vp,B,vhz) % have-aux

PERF
-arc(A,vp,D,vbn) % no been-aux ! vp PROG +
+arc(A,vp,C,vvn) % main verb part. /\ ) }
==> perf(A,+) rog(A.-) . tense(A,prespert) vhz vvn TENSE PRESPERF
p P Progif,.=’, »Presp ’ (have) (seen) PASSIVE -
passive(4,-).
+arc(A,vp,B,vhz), 7 have-aux v PERF n
+arc(A,vp,C,vbn), % been-aux P PROG
+arc(A,vp,D,vvn), % main verb part. /N
==> perf (4,+) rog (A.+), tense(A,prespert) vhz vbn vvn TENSE PRESPERF
p P Progii.=/, -presp ’ (have) (been) (seen) PASSIVE +
passive(4,+).
+arc(A,vp,D,vvn), +lex(D,Lex) vx‘m\ PRED LEX
==> equal(A,D), pred(D,Lex), vform(D,main). Lex VFORM MAIN

Given a treebank encoding that represents the verbal complex in terms of binary branching VP
structures (as e.g. in the Penn Treebank, or the Lancester AP treebank), we can assign complex
tense information in similar ways, by applying annotation rules to non-local tree fragments.

+arc(A,vp,B,vhz), % have-aux /VP\ [ PERF + 7]
+arc(A,vp,C,vp), +arc(C,vp,D,vvn) % main verb part. vhz VP/\ PROG -
==> equal(A,C), perf(A,+), prog(a,-), (have) v“m TENSE PRESPERF
tense(A,presperf), passive(A,-). (seen) | PASSIVE - ]
vp
+arc(A,vp,B,vhz) % have-aux _ _ _
o vhz vp PERF —+
+arc(A,vp,C,vp), +arc(C,vp,D,vbn), % been-aux
o . — PROG -
+arc(C,vp,E,vp), +arc(E,vp,F,vvn) % main vb part. (have) vbn vp ) }
==> equal(A,C), equal(C,E) erf(A,+) rog(A,+) ‘ TENSE PRESPERE
E s ed B P 2T/ PTOgRR.™/, (been) vvn PASSIVE +
tense (A,presperf), passive(A,+). - -
(seen)
+arc(A,vp,D,vvn), +lex(D,Lex) vvn\ PRED LEX
==> equal(A,D), pred(D,Lex), vform(D,main). Lex VFORM MAIN

Partial phrasal rules and underspecification As illustrated in Section 3.3, our annotation
rules are designed to apply to linguistically motivated, i.e. modular, partial c—structure configura-
tions, to define their corresponding functional projections. Even though treebanks do not encode
classical X’ syntax, it still holds that specific types of tree branches correspond to functional de-
pendencies in f-structure. Therefore, annotation rules apply, in the general case, to single tree
branches, with some contextual constraints, and generalize to unseen tree configurations. Below,
for example, that-clauses (with category label £) are associated with a function comp in f-structure
by referring to a single branch (arc) in the c—structure, abstracting away from irrelevant differences
in the surrounding c—structure context.

The example also illustrates the effect of underspecification. that-clauses can appear in different
syntactic contexts. By referring to an underspecified (variable) mother node label RL, we generalize
over various possible mother labels (e.g. (in)finite, modal, nominal or adjective phrases).

+arc(A,RL,B,f), +comp form(B,that) ==> comp(A,B).

Finer categorial restrictions can be captured by defining classes of category labels in (disjunctive)
templates.?” Below, the template np_cat(X) defines a class of category labels (n, d, m). The
disjunctive template is called (by union) in the annotation rule for PPs (label p) to define this
restricted class of alternative NP-types as complements (i.e., 0BJ) of prepositions in a single rule.

2*Disjunctive templates encode alternative rules, and can be unioned (%&) with annotation rules. While this does
still involve disjunctive processing, the rules can be stated in a generalized, compact way.
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template definition: mnpcat(X) :: { X ==n} ==> 0; % n: nominal phrase
{X==d}==>0; %d: determiner phrase
{X==mn}==>0. % mn: number phrase
annotation rule: +arc(A,p,B,NP) ==> obj(A,B)

&% np_cat (NP).

Grammatical function assignment In languages like English, grammatical function assign-
ment relies heavily on c—structure configurations, while still not being fully deterministic. In case
marking languages, morphological marking will be used to constrain grammatical function assign-
ment. Below an example for the assignment of 0BJ vs. 0BJ2 functions for transitive and ditransitive
verbs in English, which is determined by surface order.

+arc(A,vp,C,np), +arc(A,vp,D,np), +precx(C,D) ==> obj2(A,D). % secondary OBJ of ditransitives
+arc(A,vp,C,np), +arc(A,vp,D,np), +precx(C,D) ==> obj(4,C). % OBJ of ditransitives
-arc(A,vp,C,np), +arc(A,vp,D,np), {D \== C} ==> obj(4,D). % OBJ of transitives

In various syntactic configurations we also need rules for non-local function distribution. Below,
for example, a simple rule defines subject distribution in (the f-structure constructed from) VP-
coordination.?® Note that this rule refers uniquely to f-structure terms, since the generalization is
easier to capture at the level of f—structure, rather than taking into account possible variations at
the c—structure level.

+conj form(A, ), +element(B,A), +subj(B,D),
+element (C,A), -subj(C,.) ==> subj(C,D).

Non-local dependencies, such as Wh-constructions can be captured by means of restricted
path-equations path(A,C). Below, we display an example from interrogative clauses, where the
TOPIC clause, instantiated by the interrogative adverbial Wh-element (label rrq), is assigned the
ADJUNCT function via restricted functional uncertainty embedding over the functions comp and
XCOMP (comp xcomp path(4A,C)).2"

+arc(A,f,B,r), +arc(B,r,C,rrq) ==> topic(A,B), comp_xcomppath(A,C), adjunctx(C,B).

Subcategorization assignment We induce subcategorization frames (so-called semantic forms)
by collecting grammatical functions assigned by annotation rules into the predicate’s semantic form,
following van Genabith et al. (1999a)’s method.

Below we state the three rules that deal with 0OBJ assignment: an object obj (A,B) that is not
yet assigned an argument position in the PRED’s subcat list (-arg(A,_,B)) will be assigned the
first argument position (arg(A,1,B)) in case of a coocurring non-thematic suBJ (first clause), or if
the head is a preposition (last clause); otherwise, it will be assigned the second argument position.

+obj(A,B), -arg(A,_,B), +subj(A,C), +nonarg(4,_,C) ==> arg(A,1,B).
+obj(A,B), -arg(A,_,B), +subj(A,C), -subj(4,2,C) ==> arg(A,2,B).
+obj(A,B), -arg(A,_,B), -subj(A,C) ==> arg(A,1,B).

26The rule is adjusted to the specificities of the Susanne corpus, where VP coordination is encoded as S-coordination,
leaving the second conjunct without subject NP in the c—structure.
2"In subcategorization filtering (see below Section 5.1) restricted functional uncertainty path equations are expanded
by means of disjunctive templates, and the subcategorization constraints (with subscript _sc: e.g. comp_sc(A,B)) are
checked against the f-structure.
pathexp(A,B) :: compxcomppath(A,B) ?=> equal(A,B);
comp_xcomp_path(A,B) 7?=> 0 &% comp_or xcomp(A,B);
comp_xcomp_path(A,B) 7?=> 0 &% comp_or xcomp(A,C) && comp_or_xcomp(C,B);
comp_xcomp_path(A,B) ==> 0 &% comp_or xcomp(A,C) && comp_or _xcomp(C,D) &&
comp_or xcomp(D,B) .

comp_or _xcomp(A,B) :: 0 7=> compsc(A,B);
0 ==> xcompsc(A,B).
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Obviously, pure c—structure information does not allow us to distinguish between NP /PP arguments
vs. adjuncts, or infinitival complements vs. adjuncts. Similarly, lacking lexical information, raising
and control constructions can only be represented as involving anaphoric control. In Section 5 we
show how to integrate lexical subcategorization information, combined with strategies for ambiguity
filtering (cf. Frank et al. (1998, 2000)).

3.6 Partial annotation and robustness

Our method for f—structure induction from trees embodies an important aspect of robustness. In
cases of missing or incomplete annotation rules, the system does not fail, but partial trees are left
without f-structure annotation. We obtain (typically large) partial, unconnected f-structures. See
in particular the results and discussion of our Experiment in Section 4.

3.7 Moving treebanks

Finally, our framework can also be used to adjust particular treebank encodings, by “moving” tree-
banks to a different structural encoding, thereby facilitating principle-based f-structure induction.
In our treatment of the Susanne corpus, we defined a set of general c—structure rewriting rules,
which transform the encoding of coordination and flat modal VP structures into a more standard

PS analysis, which lends itself to principle-driven f-structure annotation.?®

4 Experiment: An annotation grammar for the Susanne corpus

In a first controlled experiment, we applied our annotation method to the Susanne treebank. We
developed an annotation grammar for two sections of the corpus, using an annotation scheme that
consumes c—structure while building up the f-structure. For this approach, we set up a natural order
for the various types of annotation rules presented in Section 3.5. In the following we summarize the
basic results, and show, in Section 5, how the integration of lexical subcategorization information
and preference ranking solves the obvious shortcoming of this first approach.

Data The Susanne treebank encodes labelled bracketed structures, where category labels are
enriched with functional labels (subject, object). The trees contain traces to indicate certain control
and long-distance dependencies. Functional labels and traces were eliminated in a preprocessing
stage, to guarantee a non-biased evaluation scheme which takes conventional PS trees as input. In
preprocessing we also collapse overspecific category labels, similar to van Genabith et al. (1999b).
The treebank encoding was converted to a term representation as input for f-structure annotation.

Quite a few decisions on PS assignment in the Susanne corpus are debatable, and some make
it difficult to assign f-structures in a principle-driven way. We therefore defined a set of initial
(c—structure) rewriting rules, which transform the encoding of coordination and flat modal VP
structures into a standard PS analysis. Finally, attachments in the NP are often flat, so that, for
instance, complements to adjectives are not always correctly attached in the PS tree.

28Tn the Susanne corpus, coordination is encoded in a rather non-standard way:

n:vl
at:v2 nnl:v3 yec:v4 n—:vh yc:v8 n+:v9
—
t}‘te inter‘lsity N at:vé nnl:v7 N cc:v10 at:vll nnl:vl2
tl.le polari‘zation ar‘ld t}‘te direction

A set of c—structure rewrite rules transforms these into classical coordination structures by moving and creating new

nodes: )
- n:vl
n—:;qgiiiiiiyicjviiiii n—:vh yc:v8 cc:v10 n+:v9
T~ —
at:v2 nnl:v3 s at:vé nnl:v7 s ar‘ld at:vll nnl:vl2
tl.le inter‘lsity t}‘te polari‘zation t}‘te direc‘tion

13



Experiment We chose two sections of the Susanne corpus, JO1 and J02 (text type: learned
writing). We ran an experiment in 3 steps. Pirst, based on the 66 sentences of JO1, we develop
f-structure annotation rules to cover 50 sentences. In step 2 we apply the resulting annotation
grammar AG1 to the unseen first 50 sentences of J02 (J02-1), and evaluate the results of f-structure
annotation. Grammar AG1 is upgraded to AG2, which then covers these 50 sentences of J02-1. We
record the number of rules that were added or modified. In step 3, AG2 is applied to the remaining
unseen 46 sentences of J02 (J02-2). Again, we measure the results of f-structure annotation.

Evaluation and Results Table T1 provides basic data on the relevant subsections: the number
of sentences processed and average sentence length (tokens, including punctuation); the number of
phrasal and lexical categories and the number of distinct (i.e. types of ) PS rules and PS branches
encoded by the corpus trees (after categorial filtering in preprocessing).

Note that the percentage of new (unseen) tree branches in J02-1 and J02-2 is considerably lower
than for new (unseen) PS rules.?? This is not surprising, and supports our annotation scheme, where
annotation involves underspecified, partial trees — often single branches.

T1 sentences length phrasal cat | lexical cat PS rules tree branches

JO1 66 34.27 (max. 94) 32 73 430 281
J02-1 | 50 (1-50) | 21.68 (max. 47) | 25 (3 new) | 64 (8 new) | 249 (150=60.34% new) | 172 (36=20.93% new)
J02-2 | 46 (51-96) | 24.8 (max. 45) | 24 (4 new) | 57 (3 new) | 212 (96=45.28% new) | 163 (26=15.95% new)

166 39 84 676 434

The results are summarized in table T2. Note that in this experiment correctness of f—structure
assignment is measured modulo the PP argument/adjunct distinction, the missing assignment of
control/raising equations, and systematic ambiguities as to the distinction between ADJUNCT vs.
XCcoMP readings of infinitives. Also, attachment or labelling mistakes in the treebank are not
counted as annotation mistakes if the resulting f-structure is predicted from the given tree.

AGT1 consists of 173 tag simplification and lexical rules, and 118 non-lexical f-structure assign-
ment rules. AG1 covers 48% of the unseen sentences of J02-1. As expected from the above data,
the upgrade from AG1 to AG2 required little effort: it involves 28 new and 5 modified rules, and
required approx. 1 person day of work. AG2 applied to the unseen section J02-2 covers 76.09%.

T2 correct fs partial fs tag rules | lexical rules | non-lex rules | all rules

Jo1 with AG1 50 | 75.76% | 16 | 24.24% || 41 132 118 291

J02-1 with AG1 | 24 | 48% 26 | 52% 41 132 118 291

J02-1 with AG2 | 49 | 98% 1 2% 4144 13244 118420 291428 = 319
(2 mod) (3 mod)

J02-2 with AG2 | 35 | 76.09% | 11 | 23.91% || 45 136 138 319

Discussion Our first experiment confirms the intuition that partial c—structure/f-structure cor-
respondences generalize much stronger than full PS rules-to-f-structure correspondences, due to the
fact that annotation principles typically select tree branches (plus some contextual constraints),
which correspond to functional dependencies in f-structure. This is brought out by the ratio of new,
unseen tree branches vs. PS rules in the corpus, and the corresponding ratio of added/modified
annotation rules (table T3). The percentage of added/modified annotation rules corresponds al-
most exactly to the percentage of unseen PS branches. Our figures are of course not yet sufficient
to judge whether the number of new annotation rules will decrease proportional to the number of
new PS branches. But, since our rules make heavy use of category underspecification (see Section
3.5), we anticipate that the number of new annotation rules will show even stronger convergence.

2 And this already as evaluated on types, not on tokens. With growing coverage, novelty percentages at the level
of tokens should be lower.
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T3 new PS rules | new PS branches | new phrasal annotation rules
J01 to JO2-1 60.34% 20.93% 19.49%
J02-1 to J02-2 45.28% 15.95% —

These results are promising, and particularly important for corpus-based approaches that rely on
grammars (or trees) extracted from treebanks. Such grammars typically feature large, flat PS
rules with repeated material in their right-hand sides. That is, they lack the information about
optionality of daughter constituents, which in classical grammar writing is encoded by linguists.
This linguistic knowledge captures generalizations that cannot easily be extracted from treebank
grammars (and if so, only to a limited extent). The figures above confirm that our approach to
f-structure induction compensates for this inherent lack of generalization by defining modular,
principle-based annotation rules that apply to partial c-structure configurations of flat PS rules.
The annotation principles import rule-based linguistic knowledge into the corpus-driven annotation
process: they define how to generalize over varying syntactic contexts, abstracting away from
linguistically irrelevant co-occurrences.

The amount of generalization captured by modular, partial annotation principles is also brought
out by the high percentage of f—structures that could be correctly assigned for unseen portions of
text: 48% and 76.09%, respectively.?® These figures are extremely promising, but further work has
to show how the novelty curve converges with repeated upgrades over new portions of text.

The robustness of our f-structure induction method — clearly indicated by the amount of large,
partial f—structures in the case of missing annotation rules — relies on two main factors. One is
the underlying rule compiler, the XLE term rewriting component. The rules are conditional, i.e.,
they only apply if their LHS terms match the input. They do not apply otherwise, hence the
system doesn’t fail in the case of missing rules. And since the principles specify small, modular
c—structure configurations, they typically do not fail to apply in larger, unseen contexts. Second,
in our application we rely on manually approved (i.e. deterministic) c—structure input, whereas
in a classical LF'G parsing architecture c¢— (and f-) structures are freely constructed from a set
of PS rules, which therefore must encode numerous grammaticality constraints as a filter on a
large set of possible structures assigned to an input string. Such grammars are by necessity more
constrained, and therefore less robust. This burden is taken from annotation grammars that operate
on disambiguated c—structure input.

5 Subcategorization and OT constraint ranking

The evaluation of our experiment in Section 4 does not measure the correctness of certain grammat-
ical function assignments, in particular the argument/adjunct distinction for PPs and to-infinitives,
and raising/control equations. In this first setup we focussed on the structural aspects of f-structure
assignment, to test how well we can do without explicit lexical knowledge. Since we did not incorpo-
rate any lexical subcategorization knowledge, it is obvious that in some nondeterministic contexts
grammatical function assignment cannot be correctly disambiguated, given only c—structure or
lexical category information.

The next step is to integrate lexical subcategorization information in the annotation process.
We first describe the basic formal account on how to integrate subcategorization information to
resolve nondeterminism in grammatical function assignment. However, a simple, straightforward
application of this scheme will involve considerable overhead in computation, and, in essence,
compromise one attractive feature of our approach, its inherent robustness. We therefore propose
a selective approach to subcategorization-based ambiguity filtering, combined with techniques for
OT-based ambiguity ranking in large-scale LF'G grammars (cf. Frank et al. (1998, 2000)).

%Fven though section J01 features sentences with about 10 words in average more than in the later sections, this
result is significant. Note also that these figures are conservative, in that they only record completely connected
f—structures, whereas almost all remaining sentences yielded large pieces of partial, unconnected f-structures.
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5.1 Lexical information for grammatical function assignment

Subcategorization ambiguities that cannot be predicted from ordinary c—structure encodings in
treebanks are illustrated in (1) and (2) for argument /adjunct ambiguities of PPs and to-infinitives.!

(1) A plug and a tube with holes in its cylindrical walls divided the chamber above the porous plug into two parts.

[s, [n, a plug and a tube with holes in its cylindrical walls], [v,[vvd,divided]],[n, the chamber above the porous
plug], [p, into two parts]]

2) The high heat fluxes existing at the electrode surfaces of electric arcs necessitate extensive cooling to prevent
g g g
electrode ablation.

[s,[n, the high heat fluxes existing at the electrode surfaces of electric arcs], [v,[vv0,necessitate]], [n, extensive
cooling], [t, to prevent electrode ablation]]

In such nondeterministic contexts, annotation rules assign grammatical functions disjunctively, by
use of optional rules. Below, the first rule applies optionally, defining the PP (p) as an ApJuNcT
of the VP (v); the second rule (alternatively) assigns the PP the argument function oBLique.
arc(A,v,B,p) ?=> adjunctx(A,B)
arc(A,v,B,p) ==> oblique(4,B)

Without any further lexical information about the governing verb, divide in (1), the ambiguity can
only be resolved manually. Similar rules produce a systematic ambiguity for fo-infinitives as in (2),
which can be either ADJUNCTSs or XCOMP complements.

In order to (partially) resolve such ambiguities, we integrate subcategorization knowledge, ex-
tracted from machine-readable dictionaries.?? The subcategorization frames stated in the dictionary
are compiled into the rule format illustrated below. Largely equivalent to subcategorization encod-
ing in LFG semantic forms, the PRED value is expanded to a predicate pred x, with an index Id, a
unique identifier for the subcat-reading at hand (pred x(X,Lex,Id)), together with a set of terms
GF_sc(X,Id) for each grammatical function GF the lexical item subcategorizes for on reading Id.

pred(A,exist) ==> pred x(A,exist,1), subjsc(A,1).

pred(A,necessitate) ==> predx(A,necessitate,1), subjsc(A,1), objsc(A,1).
pred(A,divide) ?7=> pred x(A,divide,1), subjsc(A,1), objsc(A,1).

pred(A,divide) ==> pred x(A,divide,2), subjsc(A,2), obj_sc(A,2), oblsc(A,2,into).

These lexical rules apply late in the annotation process, after the f-structure is completed through
c-structure-guided, partially nondeterministic grammatical function assignment. With matching
pred terms in the input, the rules introduce the respective subcategorization constraints into the
f—structure space, where they can be used to check and filter the GF assignment ambiguities. This
is done by encoding LFG completeness and coherence constraints in a straightforward way, as
illustrated below for the suBJ function. If completeness or coherence is violated, for any of the
grammatical functions, we record the type of violation in a term o_x(X,0Tmark).

completeness constraints (subj): +predx(A,_,X), +subj_sc(A,X), -subj(A,)) ==> ox(A,incomplete).
coherence constraints (subj): +predx(A,_,X), -subjsc(A,X), +subj(A,)) ==> o_x(A,incoherent).

In this way we model the approach to OT constraint ranking for ambiguity filtering in LFG gram-
mars proposed in Frank et al. (1998, 2000), extending it to well-formedness constraints of complete-
ness and coherence. By declaring the “OT marks” incomplete and incoherent as UNGRAMMATICAL-
or NOGOOD-marks in a grammar-specific constraint ranking hierarchy (see below), the f-structures
marked with the respective OT marks will not be considered grammatical, and therefore effectively
filtered from the set of grammatical f-structures.®?

31Some treebanks, e.g. PennTreebank, encode subcategorization distinctions of this type. See Sec. 6 for discussion.

*The cOMLEX dictionary, for example, (distributed by the Linguistic Data Consortium LDC at
http://www.ldc.upenn.edu) provides extensive subcategorization information for English.

33 For more detail on the interpretation of the various types of OT marks, see Frank et al. (1998, 2000). We
implemented a corresponding constraint ranking algorithm which we apply to filter and rank ambiguities in the
output of f-structure annotation.
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Optimalityranking: pp-obl inf xcomp NEUTRAL UNGRAMMATICAL incomplete incoherent NOGOOD.

Given the lexical entry for necessitate above, the XcomP reading for the to-infinitive in (2) is marked
incoherent, the ambiguity is successfully resolved to the adjunct reading. On the other hand, divide
in (1) optionally subcategorizes for an oBLique PP (into). Whereas an oBL function is penalized
on the transitive reading 1, and vice versa for ADJUNCT assignment with reading 2, we cannot
resolve the ambiguity between subcat reading 1 and 2 in terms of coherence and completeness
constraints. However, in such cases of real syntactic ambiguity we can state a general preference
for the OBLique reading of optional PP arguments, by assigning a preference mark o x(A,pp_obl) in
the corresponding lexical entry, and similarly for ambiguities involving optional XCOMP arguments.

pred(A,divide) ?=> predx(A,divide,1), subjsc(A,1), obj_sc(4,1).
pred(A,divide) ==> predx(A,divide,2), subjsc(4,2), objsc(A,2), oblsc(A,2,into), ox(A,ppobl).

With the OT constraint ranking hierarchy given above, the (preferred) oblique reading will be
determined as the winner in competition against the unmarked (NEUTRAL) ADJUNCT reading, which
will be determined as suboptimal. While it will always be possible to construe counterexamples
where such general preference constraints make wrong predictions, they prove very efficient and
reliable in practice, and can be refined by further knowledge sources (cf. Frank et al. (1998, 2000)).

5.2 A selective approach to ambiguity filtering

With such a general approach for subcategorization-based ambiguity filtering and preference rank-
ing, we could now compile large subcategorization dictionaries into lexical rules as illustrated above.
Given the large amount of subcategorization frames that verbs, adjectives and also nouns can allow,
this does not only imply a significant amount of processing, it also raises the issue of robustness. It
is still easy to account for missing lexical entries in the subcategorization lexicon — here we exploit
the conditional format of our lexical rules: if no entry is present for a given lexical form, no rule
is applied. The worst that can happen in this case is that we do not filter any nondeterministic
function assignments. We still get a set of (minimally) ambiguous f-structures for manual selection.
However, the lexicon might contain a subcat entry for a lexical item which is missing a particular
frame, the one that is crucial for the sentence at hand. In such a case, the corresponding (correct)
function assignment will be judged incoherent or incomplete, the analysis will be rejected. One
possible remedy is to declare completeness and coherence constraint violation as ungrammatical
marks, as shown above. Asin classical Optimality Theory, this type of constraint violation will only
be considered “ungrammatical” if some other, less strongly marked competing analysis is available.
That is, the analysis can surface as long as no other subcategorization frame fits the correct function
assignment better, or no competing analyses can be validated. Yet, in such situations, unwarranted
ambiguities may arise.4

But ...let us step back and reconsider our experiment above, where — without any lexical
subcategorization information — most types of grammatical function assignments could be reliably
stated by looking at c—structure configurations, lexical items, or lexical categories in treebank
entries. For illustration, looking at (3), consider that-clauses adjacent to nouns, which could be
either subcategorized coMPlements or relative clauses. Since the treebank uses distinct lexical
categories for that as a complementizer, relative or demonstrative pronoun, the function assignment
can be unambiguously determined by constraining the local syntactic context. Similarly, we can
distinguish predicative be from the tense auxiliary in terms of its immediate c—structure context.
And even though we generalize over the (original) distinct treebank categories for relative, adjunct,
or complement clauses, the distinct f-structure contributions of these clauses can, again, be assigned
by looking at a small class of lexical functional heads in the immediate syntactic context.

% As an example, if for some verb the lexicon specifies two subcat frames: (SUBJ) and (SUBJ, OBL), but misses
a valid transitive frame (SUBJ, OBI), a structure that introduces suBJ and 0BJ functions will be assigned an equal
number of ungrammatical (completeness & coherence) violation marks for both incorrect readings.
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(3) This result suggests a very high temperature at the solid surface of the planet, although there is the possibility
that the observed radiation may be a combination of both thermal and non-thermal components and that the
observed spectrum is that of a black body merely by coincidence.

A natural, selective approach to ambiguity filtering is thus to rely on grammatical function assign-
ments without lexical validation in all those cases where the information can be gathered from the
c—structure context (or morphological marking in case-marking languages), that is, by exploiting
linguistic insights and generalizations encoded in the respective treebank annotations. Only those
types of ambiguities that need to be validated or disambiguated in terms of lexical subcatego-
rization properties will be checked by consulting lexical knowledge bases — which are by necessity
error-prone and incomplete.®® This selective approach to lexicon-based ambiguity filtering is an
important move, in that it proposes a novel partition of ambiguity filtering knowledge in the LFG
architecture, which is also essential to preserve the inherently robust architecture of our f—structure
induction method. It is evident that this approach is strongly dependent on language-specific
properties, the specific encoding schemes of the underlying treebanks, as well as, of course, our
specific application scenario: f-structure annotation of disambiguated trees. Yet, the investigation
of language-specific encoding strategies of grammatical functions constitutes an interesting research
topic in itself.?6

5.3 Future Work

We have implemented the basic and selective approach to subcategorization filtering and ambiguity
ranking for a toy dictionary. In future work we will extract subcategorization frames for the 3 types
of ambiguities discussed above from a large subcategorization dictionary, and test the lexicalized
f—structure annotation grammar on the sections of the Susanne corpus analyzed in Section 4. The
evaluation will then measure correct subcategorization assignment in optimal f-structures.

6 Annotating Treebanks — A Balancing Act

At this point, we need to raise an issue about varieties in treebank annotation schemes, and how
best to exploit them for different applications. Some treebanks, such as the PennTreebank, encode
a significant amount of subcategorization in complex category labels. The obvious question to ask
then, is why not directly exploit these encodings. If our objective is simply to build f-structure
banks, this is the best option. In our experiment we have shown that our approach is more
flexible, in that it allows us to construct correct f-structures from poorer treebank encodings.
Moreover, encoding grammatical functions in terms of complex category labels and coindexations
in c—structure misses generalizations that appear, in a normalized representation, at f-structure
(consider e.g. active/passive distinctions, extraposition, or topicalization). More importantly,
our method can be extended to free parsing architectures, with c—structure filtering based on
probabilistic CFGs, trained on treebanks. If such grammars are trained on highly complex PS
categories, they will not generalize enough to deliver good statistics. Instead, treebank grammars
are typically trained on suitably impoverished categorizations, stripping off special indexations and
collapsing overspecific functional labels. The c—structures delivered by such a PCFG will miss some
of the extra knowledge encoded in the treebank, but can be supplemented with the additional,
much more general knowledge imported by annotation principles and lexical knowledge sources
in subsequent f-structure projection. Finally, we can define varying annotation grammars for a
validation scenario: one annotation grammar can exploit highly specific treebank encodings, i.e.
functional labels and coindexations. The resulting f-structure bank can then be used as a reference

3*In practice, this means that our subcategorization lexicon contains only a limited subset of lexical entries and
subcat frame types, those related to the specific types of ambiguities we need to resolve — and these are limited.
Lexicon lookup is then restricted to contexts where these respective types of ambiguities arise.

#3See, for instance, the generalizations on morphological marking across languages in Berman (1999), as well as
studies on head-marking languages (e.g., Nordlinger (1997), Bresnan (2000)).
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corpus for evaluation of the second grammar, eventually used in free parsing, which operates on
a coarser set of category labels (both in parsing and annotation), but exploits the complementary
linguistic knowledge encoded in annotation principles and subcategorization lexica.

7 Conclusion

We presented one of two alternative methods to automate the approach of van Genabith et al.
(1999a,b,c). Annotation principles define ¢—correspondences from partial c-structure configura-
tions to their corresponding partial f-structures. OQur first experiment shows that this approach
is a promising method for treebank annotation with f-structures. In particular, we show first
promising figures for upgrading to extended fragments, which stem from generalizations captured
in linguistically motivated, modular and partial annotation principles. Moreover, the method can
be viewed as a technique for rapid, corpus-based grammar development. Qur annotation grammar
was set up in a time frame of about 3 weeks, and covers contiguous real-life text, including sen-
tences with up to 94 words. The grammar comprises lexical and morphological rules (& lexicon
templates), tag compaction rules, as well as rules for virtually all core phenomena of syntax.3”

In our approach — which we might call “corpus-based LF'G” (CB-LFG) — we exploit the linguistic
knowledge about c—structure organization that is implicit in the treebank entries, together with
the fact that the assigned trees are disambiguated. In comparison, classical LFG grammars must
not only define the context-free rule set for a particular language. Broad-coverage LFG grammars
also have to cope with massive ambiguity arising from large sets of PS rules, and therefore state f-
structure constraints to tame the amount of unwarranted ambiguities and ungrammatical analyses.
In the context of f—structure induction from treebanks, we rely on c—structure disambiguation and,
by and large, grammaticality of the input. The f-structure projection principles can be stated in a
less constrained, declarative way, which naturally increases the robustness of such “grammars”.

The annotation principles we use for f-structure induction from trees can be considered as a
modular, principle-based c—structure/f-structure interface for LFG grammar architectures, and we
apply it, here, to real-life language fragments, combining a corpus-driven approach with rule-based
linguistic knowledge. There is, however, still some way to go to extend f-structure induction from
treebank trees to a probabilistic robust parsing architecture for the analysis of new sentences.
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Appendix: An example f—structure from the Susanne Corpus

" observations of the radio emission of a planet which has an extensive atmosphere will probe the atmosphere to a greater — extent than those — using shorter wave lengths and — should in some cases give «

[PRED ' will <[-1-XCOMP:probe] >[-1-XCOMP-SUBJ:observation]

[PRED ' probe <[-1-XCOMP-SUBJ:observation] , [-1-XCOMP-OBJ:atmosphere] >’
RED’ atmosphere ’
oBJ ISPEC [SPEC-TYPEdef , SPEC-FORMhe ]
PERS 3, NTYPEcommon NUMsg
[PRED ’ observation
[PRED’ of <[-15-OBJ:emission] >’
[PRED ’ emission
SPEC [SPEC*TYPEdef, SPEC*FORM‘IE]
RED’ radio ’
MOD {—QI;ERS:'Z, NTYPE common NUMsg}
[PRED’ of <[-16-OBJ:planet] >’
[PRED * planet ’
SPEC [SPEC—FORM. SPEC-TYPEindef , NUMsg]
RED ' have <[-7-SUBJ:pro] , [-7-OBJ:atmosphere] >’
suBJ IADJUNCT: o8) RED ' atmosphere *
ISPEC [SPEC—FORMH, SPEC-TYPEindef , NUMSg]
OBJ f f
IADJUNCT RED’ extensive
OBJ | DIUNCT. DJUNCT{—lZ[;TYPEaIIr , ADEGREEpositive ]}
PERS 3, NTYPEcommon NUMsg
RED’ pro’
SUBJ PRON-TYPHel , PRON*FORMIhiCh]
TOPIC [-7-SUBJ:pro]
—7|PASSIVE -, PROG-, PERF -, VTYPEmain, TENSEpresent , ADJUNCT-TYPEel
xCOMP| -16 PERS 3, NTYPEcommon NUMsg
-15 PERS 3, NTYPEcommon NUMsg
PERS 3, NTYPEcommon NUMpl
[PRED’ to <[-17-OBJ:extent] >’
[PRED ' extent '
SPEC [SPEC*FORM, SPEC-TYPEindef , NUMsg]
[PRED ' than <[-3-OBJ:pro] >’ )
IADJUNCT-TYPEcomparison
[PRED ’ pro’
RED’ use<[-8-SUBJ:pro] , [-8-OBJ:length] >’
RED ' length ’
RED’ wave’
MOD {—10 PERS 3, NTYPEcommon NUMsg}
IADJUNCT. oBJ OBJ n
0BJ ADJUNCT. RED' short
ADJUNCT. ADJUNCT{*ll KTYPE attr , ADEGREEcomparative
PERS 3, NTYPEcommon NUMpl
RED’ pro
SUBJ FRON—TYPBnaph, PRON-FORMUll ]
—-8|PROG+, PASSIVE -, PERF -, VTYPE main, ADJUNCT-TYPEerbal
-3 _PRON—TYPEiemon, NUMpl , PRON-FORNhose
RED' great ’
—-4|ATYPE attr , ADEGREEcomparative
17 IPERS 3, NTYPEcommon NUMsg

PASSIVE -, PROG-, PERF -, VTYPE main

SUBJ [-1-XCOMP-SUBJ:observation]
PERF +, PASSIVE -, PROG-, VTYPE modal

_1>s (-2:shall] )
[PRED ' shall <[-2-XCOMP:give] >[-1-XCOMP-SUBJ:observation]
[PRED ' give <[-1-XCOMP-SUBJ:observation] , [-2-XCOMP-OBJ:information] >’
[PRED * information  *
[PRED’ about <[-5-OBJ:characteristic] >’
RED ' characteristic ’
SPEC [SPEC-TYPEdef , SPEC-FORNMhe ]

RED’ of <[-14-OBJ:surface] >’

ADJUNCTY |0 )
oBJ IADJUNCT. DIUNCT RED’ solid
-13|ATYPE attr , ADEGREEpositive

RED * surface ’
OB. ISPEC [SPEC*TYPEdef f SPEC*FORNhe]
—14 PERS 3, NTYPEcommon NUMsg

X MP|
co PERS 3, NTYPEcommon NUMpl

[PRED ’ unobtainable
ADJUNCT{-19 [PRED" otherwise ]}]
-6|ATYPE attr , ADEGREEpositive
PERS 3, NTYPEcommon NUMsg

SUBJ [-1-XCOMP-SUBJ:observation]
RED’ in <[-18-OBJ:case] >
JADJUNCT- RED' case’
OBJ [SPEC [SPEC—TYPEquanl , SPEC—FORMOm@
-18 PERS 3, NTYPEcommon NUMpl

PASSIVE -, PROG-, PERF -, VTYPE main

ISUBJ [-1-XCOMP-SUBJ:observation]
—-2|PERF +, PASSIVE -, PROG-, VTYPE modal

—20 [CONJ-FORMNd, STMT-TYPEdeclarative

Figure 1: F-structure for: Observations of the radio emission of a planet which has an extensive at-
mosphere will probe the atmosphere to a greater extent than those using shorter wave lengths and should in

some cases qive otherwise unobtainable information about the characteristics of the solid surface.



