
Treebank vs. Xbar-based Automatic F-Structure Annotation

Josef van Genabith Anette Frank Andy Way

Computer Applications Language Technology Group Computer Applications
Dublin City University DFKI GmbH Dublin City University

Dublin, Ireland Saarbrücken, Germany Dublin, Ireland
josef@compapp.dcu.ie frank@dfki.de away@compapp.dcu.ie

Proceedings of the LFG01 Conference

University of Hong Kong, Hong Kong

Miriam Butt and Tracy Holloway King (Editors)

2001

CSLI Publications

http://csli-publications.stanford.edu

Treebank vs. Xbar-based Automatic F-Structure Annotation

Abstract

Manual, large scale (computational) grammar development is time consuming, expensive and requires
lots of linguistic expertise. More recently, a number of alternatives based on treebank resources (such as
Penn-II, Susanne, AP treebank) have been explored. The idea is to automatically “induce” or rather read
off (P)CFG grammars from the parse annotated treebank resources and to use the treebank grammars thus
obtained in (probabilistic) parsing or as a starting point for further grammar development. The approach
is cheap, fast, automatic, large scale, “data driven” and based on real language resources. Treebank
grammars typically involve large sets of lexical tags and non-lexical categories as syntactic information
tends to be encoded in monadic category symbols. They feature flat rules (trees) that can “underspecify”
attachment possibilities. Treebank grammars do not in general follow Xbar architectural design princi-
ples (this is not to say that treebank grammars do not have design principles). As a consequence, treebank
grammars tend to have very large CFG rule bases (e.g. Penn-II > 17,000 CFG rules for about 1 million
words of text) with often only minimally differing rules. Even though treebank grammars are large, they
are still incomplete, exhibiting unabated rule accession rates. From a grammar engineering point of view,
the size of the rule base poses problems for maintainability, extendability and, if a treebank grammar is
to be used as a CF-base in a LFG grammar, for functional (feature-structure) annotations. From the point
of view of theoretical linguistics, flat treebank trees and treebank grammars extracted from such trees
do not express linguistic generalisations. From the perspective of empirical and corpus linguistics, flat
trees are well-motivated as they allow underspecification of subtle and often time consuming attachment
decisions. Indeed, it is sometimes doubted whether highly general Xbar schemata usefully scale to “real”
language. In previous work we developed methodologies for automatic feature-structure annotation of
grammars extracted from treebanks. Automatic annotation of “raw” treebank grammars is difficult as
annotation rules often need to identify subsequences in the RHSs of flat treebank rules as they explicitly
encode head, complement and modifier relations. Xbar-based CFG rules should substantially facilitate
automatic feature-structure annotation of grammar rules. In the present paper we conduct a number of
experiments to explore a space of possible grammars based on a small fragment of the AP treebank re-
source. Starting with the original treebank fragment we automatically extract a CFG G. We then apply
an automatic structure preserving grammar compaction step which generalises categories in the original
treebank fragment and reduces the number of rules extracted, resulting in a generalised treebank frag-
ment and in a compacted grammar Gc. The generalised fragment is then manually corrected to catch
missed constituents (and the like) resulting in an automatically extracted, compacted and (effectively
manually) corrected grammar Gc,m. Manual correction proceeds in the “spirit” of treebank grammars
(we do not introduce Xbar analyses). We then explore how many of the manual correction steps on
treebank trees can be achieved automatically. We develop, implement and test an automatic treebank
“grooming” methodology which is applied to the generalised treebank fragment to yield a compacted
and automatically corrected grammar Gc,a. Grammars Gc,m and Gc,a are very similar to compiled out
“flat” LFG-82 style grammars. We explore regular expression based compaction (both manual and au-
tomatic) to relate Gc,m to a LFG-82 style grammar design. Finally, we manually recode a subsection of
the generalised and manually corrected treebank fragment into “vanilla-flavour” Xbar based trees. From
these we extract a compacted, manually corrected, Xbar-based grammar Gc,m,x. We evaluate our gram-
mars and methods using standard labelled bracketing measures and according to how well they perform
under automatic feature-structure annotation tasks.

1 Introduction

Manual, large scale (computational) grammar development is time consuming, expensive and requires lots
of linguistic expertise. More recently, a number of alternatives based on treebank resources (such as Penn-II,
Susanne, AP treebank) have been explored. The idea is to automatically “induce” or rather read off (P)CFG
grammars from the parse annotated treebank resources and to use the treebank grammars thus obtained
in (probabilistic) parsing [Charniak,93] or as a starting point for further grammar development [Krotov
et al,98]. The approach is cheap, fast, automatic, large scale, “data driven” and based on real language
resources.

Treebank grammars typically involve large sets of lexical tags and non-lexical categories as syntactic
information tends to be encoded in monadic category symbols. They feature flat rules (trees) that can
“underspecify” attachment possibilities. Treebank grammars do not in general follow Xbar architectural
design principles (this is not to say that treebank grammars do not have design principles). As a consequence,
treebank grammars tend to have very large CFG rule bases (e.g. Penn-II > 17,000 CFG rules for about 1
million words of text) with often only minimally differing rules. Even though treebank grammars are large,
they are still incomplete, exhibiting unabated rule accession rates. From a grammar engineering point of
view, the size of the rule base poses problems for maintainability, extendability and, if a treebank grammar
is to be used as a CF-base in a LFG grammar, for functional (feature-structure) annotations. From the point
of view of theoretical linguistics, flat treebank trees and treebank grammars extracted from such trees do
not express linguistic generalisations. From the perspective of empirical and corpus linguistics, flat trees are
well-motivated as they allow underspecification of subtle and often time consuming attachment decisions.
Indeed, it is sometimes doubted whether highly general Xbar schemata usefully scale to “real” language.

In previous work [Sadler, van Genabith and Way,00] and [Frank,00] developed methodologies for au-
tomatic feature-structure annotation of grammars extracted from treebanks (see also [Frank et al,01]). Au-
tomatic annotation of “raw” treebank grammars is difficult as annotation rules often need to identify subse-
quences in the RHSs of flat treebank rules. Xbar-based CFG rules should substantially facilitate automatic
feature-structure annotation of grammar rules as they explicitly encode head, complement and modifier
relations [Bresnan,01].

In the present paper we report on a number of experiments in which we explore a space of possible
grammars based on a small fragment of the AP treebank resource.

Starting with the original treebank fragment we automatically extract a CFG G. We then apply an auto-
matic structure preserving grammar compaction step which generalises categories in the original treebank
fragment and reduces the number of rules extracted, resulting in a generalised treebank fragment and in a
compacted grammar Gc. The generalised fragment is then manually corrected to catch missed constituents
(and the like) resulting in an automatically extracted, compacted and (effectively manually) corrected gram-
mar Gc,m. Manual correction proceeds in the “spirit” of treebank grammars (we do not introduce Xbar
analyses). We then explore how many of the manual correction steps on treebank trees can be achieved
automatically. We develop, implement and test an automatic treebank “grooming” methodology which is
applied to the generalised treebank fragment to yield a compacted and automatically corrected grammar
Gc,a. Grammars Gc,m and Gc,a are very similar to compiled out “flat” LFG-82 style grammars. We explore
regular expression based compaction (both manual and automatic) to relate Gc,m to a LFG-82 style gram-
mar design. Finally, we manually recode a subsection of the generalised and manually corrected treebank
fragment into “vanilla-flavour” Xbar-based trees. From these we extract a compacted, manually corrected,
Xbar-based grammar Gc,m,x.

We evaluate our grammars and methods using standard labelled bracketing measures and according to
how well they perform under automatic feature structure annotation tasks.

2 Automatic F-Structure Annotation

F(eature)-structures [Kaplan and Bresnan,82] are “higher level”, abstract syntactic representations. It would
be desirable to have treebank resources with both CF-PSG and feature-structure representations

• as training resources for probabilistic LFG/unification/constraint-based grammars

• to develop stand-alone LFG/unification/constraint-based grammar resources

In previous work [Sadler, van Genabith and Way,00] and [Frank,00] developed two methodologies for
automatically annotating treebank trees and grammars extracted from such trees with feature-structure in-
formation. One method involves the statement of regular expression based feature-structure annotation
principles, the other (cascaded) rewriting of tree descriptions in a tree description language.

2.1 Regular Expression Based Annotation

Regular expression based annotation is best explained by way of example. The following is a flat CFG rule
extracted from a treebank resource (note that each constituent is of the form cat:Fwhere cat is a monadic
CFG category and F is a variable designed to carry feature-structure information):

vp:VP > adv:A v0:V0 v0:V1 v0:V2 s:S pp:P

In flat treebank rules such as this, RHSs often correspond to sequences of multiple (embedded) con-
stituents. As a consequence, annotation principles need to be partial and underspecified in order to be
able to associate subsequences of RHSs with the required feature-structure annotations. We employ regular
expression to express underspecified rule LHSs and RHSs and to pick out subsequences in rule RHSs. An-
notation principles are of the form LHS > RHS @ ANN, where ANN is a set (in our implementations a list)
of conjunctions or disjunctions of feature-structure equations, such as:

vp:VP > * v0:V1 v0:V2 * @ [V1:xcomp=V2,V1:subj=V2:subj].

vp:VP > *(˜v0) v0:V0 * @ [VP=V0].

vp:VP > * v0:V0 s:S * @ [V0:comp=S].

: :

The first principle identifies v0:V1 v0:V2 subsequences in rule RHSs and states that for two adjacent
v0s the feature structure associated with the second v0 provides the value of an xcomp feature of the
first. Additionally, both share the same value for their subj attributes. The second principle states that the
leftmost v0 is the head of a vp rule. A particular principle may apply several times to different subsequences
in the RHS of a single rule and a number of different principles may apply to any one rule. All principle
applications are collected and the rule is annotated accordingly:

vp:VP > adv:A v0:V0 v0:V1 v0:V2 s:S pp:P
@ [VP=V0, V0:xcomp=V1, V0:subj=V1:subj, V1:xcomp=V2,

V1:subj=V2:subj, V2:comp=S].

2.2 Tree Annotation Using Tree Descriptions

In our second method annotation principles are applied to partial configurations of treebank trees using a
tree rewriting technique. Again, we illustrate the approach by way of a simple example.

Treebank trees are first encoded as a flat collection (conjunction) of basic tree description predicates
(arc, prec, lex) in a tree description language. Tree nodes are associated with a unique identifier
(n1,n2,..).

[s,[np,[n,Mary]],
[vp,[v,smiles]]].

S

NP VP

N V

Mary smiles

⇒

arc(n1,s,n2,np), arc(n2,np,n4,n)
arc(n1,s,n3,vp), arc(n3,vp,n5,v),
prec(n2,n3),
lex(n4,Mary), lex(n5,smiles)

S:n1

NP:n2 VP:n3

N:n4 V:n5

Mary smiles

We then state annotation principles in terms of rewriting rules which apply to the flat set of tree descrip-
tions. Rewriting rules are of the form CD =⇒ AD where CD is a constraining tree description and AD is
an annotation description. The formalism supports a set of switches that optionally allow consumption of
constraining tree descriptions during rule application. Annotation principles can thus support both order
independent (enriching) and cascaded order dependent (rewriting) annotation.

In the case at hand the constraining tree configuration is provided by a local s > np vp subtree. The
annotation description introduces new tree description predicates which associate each tree node with a
feature-structure via the phi projection. The feature-structure associated with the subject np is constrained
to be the value of the subj attribute of the feature-structure associated with the sentence node.

Unlike the regular expression based annotation method which is restricted to (partial) local trees of depth
one, the description-based approach can access (partial) non-local tree configurations.

+arc(A,s,B,np),
+arc(A,s,C,vp), +prec(B,C)

=⇒ phi(A,FA), phi(B,FB), subj(FA,FB).

s:n1

np:n2 . . . vp:n3
⇒

s:n1

np:n2 . . . vp:n3

f1 :

[

SUBJ f2 :

[]]

f3:
[]

In the present paper we will use the regular expression based method operating on PS rules for specifying
feature-structure annotation principles and the tree description based rewriting approach for our automatic
treebank “grooming” methodology presented in Section 7 below.

3 Flat vs. Xbar-based Treebank Rules and Annotation

Consider again the flat treebank example rule here displayed as a local tree configuration:

vp

������

�
�
�

H
H

H

XXXXXX

adv

..

v0

..

v0

..

v0

..

s

..

Automatic annotation can be difficult as annotation principles have to identify suitable subsequences on
the RHS of the corresponding CFG rule for annotation. This may not always be possible resulting in partial
and/or incorrect annotations.

Contrast this with a “vanilla flavour” Xbar recoding of the tree (we will say more in Section 9 below
about what exactly we mean by “vanilla flavour” Xbar encoding):

vp

v1

�
�
�

H
H

H

advp

adv

..

v1

�
��

H
HH

v0

..

vp

�
��

H
HH

v0

..

vp

v1
�� HH

v1
��HH

v0

..

s

..

pp

..

The recoding is exclusively binary and unary branching with each local subtree clearly identifying head,
adjunct and complement relations. The Xbar configuration and grammar design principles should guide and
facilitate automatic feature-structure annotation to a much greater extent than the flt treebank rule represen-
tations which often conflate otherwise embedded subconstituents. The rule base for the recoded tree consists
of:

vp > v1 v1 > advp v1 v1 > v1 pp
vp > v0 vp v1 > v0 vp v1 > v0 s

The corresponding annotation principles are:

__:X > __:Y @ [X=Y]
v1:X > v1:Y _:Z @ [X=Y,X:adjn $ Z]
v1:X > _:Z v1:Y @ [X=Y,X:adjn $ Z]
v1:X > v0:Y s:Z @ [X=Y,X:comp Z]

...

The first principle states that any unary branching rules project their feature-structures. The second
and third identify the head in pre- and post-modifier configurations and make the modifiers elements ‘$’
of an adjunct set. Finally, a sentential complement provides the value of the complement attribute comp.
Notice that in the case at hand, f-structure annotation is completely driven by Xbar configuration. Notice
further that in contrast to our original annotation principles, for the flat treebank configuration, Xbar-based
annotation principles are no longer underspecified. There is no need to identify subsequences of constituents
as a separate constituent in RHSs of binary branching Xbar rules.

Intuitively, Xbar-based automatic annotation looks attractive. At this stage we may summarise our
preliminary findings in the following table:

Xbar TreeBank
principle based architecture underspecification and pragmatism
generalisations many flat rules
small rule base large rule base
conducive to automatic annotation difficult for automatic annotation

However, there are a number of considerations (often expressed by practitioners working in the fields of
empirical and corpus linguistics) that sound a more cautionary note:

• Xbar design principles often force subtle and difficult attachment decisions and sometimes it may not
even be clear how these can be resolved. Cases in point are modifier attachment. Binary branching
rules force attachment decisions which are not always clear cut in the case of multiple modifiers,
pre- and post-modifiers of the same bar one level node or multiple attachment possibilities for a
single modifier (e.g. where does the pp in our recoded example rule attach?). In any case, subtle
and difficult decisions such as these are too time consuming and thus not practical for treebanking
purposes. By contrast, flat treebank representations support (albeit in a somewhat crude fashion) a
notion of underspecification not provided by classical Xbar design principles.

• Somewhat more speculatively it is sometimes assumed that Xbar design principles do not really scale
up to real language in any useful way.

4 Treebank Grooming

In the present paper we report on a number of experiments to evaluate a “vanilla flavour” Xbar design
approach to a fragment of the AP treebank to measure performance under automatic feature structure an-
notation and to ascertain the feasibility of Xbar inspired approaches to tree banking tasks and resources
derived from treebanks. Starting with the original treebank fragment we move the fragment in stages to a
resource inspired by Xbar design principles. Some of the moves are automatic and involve novel treebank
“grooming” methodologies; others are manual. The different stages (and their interdependencies) are best
displayed by way of a family tree:

AP100

AP100c

�
�

�
�

�

H
H

H
H

H

AP100c,m

�
�

�
�

H
H

H
H

AP100c,m,x

..

AP100r

..

AP100c,a

..

Our experiments are based on the publicly available subsection AP100 (the first 100 parse-annotated
sentences) of the AP treebank [Leech and Garside,91]. From this we automatically extract a grammar G

following the method of [Charniak,93].1 As our starting point we apply an automatic, structure preserv-
ing grammar compaction technique [van Genabith, Sadler and Way,99], [Hepple and van Genabith,00] to
AP100 and generate AP100c. The technique generalises overspecific categorisation and this can have the
effect of collapsing grammar rules. From AP100c we extract a compacted grammar Gc. We manually anno-
tate Gc with feature-structure annotations to create a “gold-standard” against which we evaluate automatic
feature-structure annotation. We then develop a set of regular expression based feature-structure annotation
principles and apply them automatically to an unannotated version of Gc. We evaluate the results of auto-
matic annotation against the gold standard using precision and recall measures [Sadler, van Genabith and
Way,00]. These results provide the base line for our further experiments.

In the next step, we manually correct any “obvious” errors in AP100c. These include missed groupings
of constituents, attachment errors, relabelling of certain nodes and changes to the original representation
of punctuation. All changes are in the spirit of the original treebank grammar (i.e. we do not introduce
Xbar assumptions at this stage). Manual correction transforms AP100c into AP100c,m. From this we extract

1All the grammars in our experiments are automatically extracted from the original or “groomed” parse-annotated treebank
resources in this fashion. The basic idea is simple: a recursive procedure traverses treebank trees and for each local tree of depth
one records a corresponding CFG rule. CFG rule token counts allow the computation of simple relative frequency based maximum
likelihood estimators to compute probabilistic versions of the CFGs extracted.

grammar Gc,m. We manually2 annotate the corrected Gc,m to produce a gold standard against which to
evaluate automatic feature-structure annotation of Gc,m. We then develop a set of regular expression based
feature-structure annotation principles and apply them automatically to an unannotated version of Gc,m. We
evaluate the results of automatic annotation against the gold standard using precision and recall measures.
The expected outcome is, of course, that a manually corrected grammar is “cleaner”, more systematic and
contains fewer “quirks” than the orginal treebank grammar and is thus easier to annotate automatically. We
also report labelled bracketing measures to compare the structure of the trees in AP100c to the manually
“groomed” AP100c,m.

In our next experiment, we investigate to which extent the manual transformation operations required to
“groom” or “convert” the trees in AP100c into AP100c,m can in fact be performed automatically. Automatic
treebank grooming is important as manual correction is extremely time consuming, error prone and risks
missing analysis “bugs” in some of the source trees. We apply automatic treebank conversion techniques,
which are based on the description based tree rewiting methodology presented in Section 2.2. above. A
similar approach to treebank conversion is presented in [Frank,01]. We apply this technique to AP100c to
generate an automatically converted (“groomed”) resource AP100c,a. We compare the manually groomed
AP100c,m with the automatically converted AP100c,a in terms of standard labelled bracketing measures and
precision and recall results on transformation events.

Our next move is based on the observation that grammars Gc,m and Gc,a extracted from both the manu-
ally and the automatically groomed AP100c,m and AP100c,a look very much like compiled out (expanded)
versions of flat LFG-82 [Kaplan and Bresnan,82] style grammars which involve regular expressions (such
as optionality or Kleene-star) in CFG rule RHSs. We conduct two experiments to relate Gc,m to a flat
LFG-82 style grammar. The first is based on FST machinery: given a LHS we collect the corresponding
RHSs in the grammar and union them into a regular expression. We then use FST machinery to compile the
regular expression into a FSA and apply minimisation. The resulting net is then retranslated into a regular
expression. In the second experiment, for a given LHS we hand code a regular expression based rule RHS
based on the attested RHSs in the grammar. We verify that the language defined by the regular expression
includes the language of the attested RHSs. Regular expression based rule RHSs can provide compact rep-
resentations of CFG resources facilitating automatic (and manual) feature-structure annotation. For reasons
of space, here we can only briefly outline our experiments. We hope to report on the regular expression
based “compactions” elsewhere.

Finally, we manually recode the first 50 parse-annotated sentences from the generalised and manually
corrected AP100c,m using “vanilla flavour” Xbar design principles in AP50c,m,x. From this we extract a
grammar Gc,m,x. In all the grammars extracted in our experiments, the NP fragments pose the largest,
most varied and complicated annotation tasks. We extract the NP fragment from AP50c,m,x. We manually
construct gold-standard feature-structure annotations for the Xbar-based NP fragment and develop regular
expression based feature-structure annotation principles for the NP fragment. We evaluate the results of
automatic annotation against the gold standard in terms of precision and recall measures. We also compare
CFG rule growth rates for AP100c and AP50c,m,x.

5 Structure Preserving Grammar Compaction

Treebanks tend to express considerable amounts of information in monadic category labels.3 Typically, this
results in large lexical tag sets and in a large number of non-lexical categories. The AP treebank features

lexical tags > 180
non-lexical cats > 50

2Actually, to a large extent the gold standard annotation of G
c,m is done automatically: the majority of the CFG rules in G

c,m

are identical to rules in G
c. The corresponding annotations from the already available gold standard G

c are moved automatically to
the manually corrected G

c,m and it is only the residue G
c,m

−G
c that needs to be annotated manually to create the gold standard

feature-structure annotations for G
c,m.

3In addition, some treebanks allow adornment of CFG nodes in terms of a simple feature decoration mechanism, e.g. Penn-II
supports features indicating grammatical functions or coindexation.

This, together with the flat treebank analyses, results in many often only minimally different CFG rule
types. From the AP100 fragment we extract 509 rule types,4 that is more than 5 distinct types per tree.
(Automatic) feature-structure annotation repackages information: often - particularly so in the case of lex-
ical entries - it “copies” information originally encoded in monadic category labels into feature-structure
annotations (and hence the resulting feature-structure representations). As a consequence we can collapse
highly discriminating tags into “supertags”. In the original tag set, number information in nominals is en-
coded in terms of two tags nn1 and nn2 for singular and plural common nouns, respectively. Once number
information is represented in terms of a feature value pair in a feature-structure description num=sgwe can
collapse the two orginal tags into a supertag n0

{ nn1,nn2 } => n0

Collapsing tags into supertags can have the effect of collapsing grammar rules. Consider the following
scenario where jj and jb are two types of adjectives:

n > at1 jb nn1
n > at1 jj nn1

Collapsing { jj,jb } => adj has the effect of collapsing the two CFG rules expanding n into the
single rule

n > at1 adj nn1

Structure preserving grammar compaction can be applied automatically to parse-annotated treebank
resources and compacted grammars can then be extracted [van Genabith, Sadler and Way,99], [Hepple
and van Genabith,00]. In previous work [Sadler, van Genabith and Way, 00] applied structure preserving
compaction to AP100 generating AP100c and extracted the corresponding grammars G (from AP100) and
Gc (from AP100c) with the following number of rule types:

rule types
G 509
Gc 331

In order to evaluate automatic feature-structure annotation in terms of a gold standard, Gc was first an-
notated manually. This was followed by the development of regular expression based annotation principles.
These annotation principles are then applied automatically to an unannotated version of Gc.

Automatic annotation is evaluated against the gold standard in terms of precision and recall results.
Precision measures how many of the automatically generated annotations are correct (i.e. are in the gold
standard); recall measures how many of the target gold standard annotations were in fact generated auto-
matically:

precision recall
Gc 93.4 % 91.6 %

Automatic annotation is more partial than incorrect. The results for the compacted grammar Gc provide
the base line for our further treebank grooming experiments reported below.

4As opposed to rule tokens.

6 Manual Correction

In the following sections we move the automatically generalised (with respect to category labels) treebank
fragment to an Xbar-based encoding in stages. The first step is a manual correction/clean up of the gener-
alised fragment. The idea is to correct obvious errors or omissions in the generalised trees. The clean up
step is performed in the general spirit of the flat treebank design philosopy (i.e. at this stage we do not in-
troduce Xbar assumptions). As a rough guideline for restructuring transformations, we use analyses attested
elsewhere in the fragment. We illustrate this step by way of an example. Consider the very first NP in the
(generalised) treebank fragment:

np
___________________________|___________________________

/ | | | | | \
np n0 n0 n0 p np tgp

_______|______ | | | | __|__ |
/ | \ | | | | / \ |
n0 n0 pnct 18-foot jump shot with num n0 v0
| | | | | |
| | | | | |

alvis rogers gen-sym one second remaining

The example shows a missed PP post-modifier grouping at the tail of the NP. In addition we also relabel
the initial NP daughter as a determiner phrase DETP:

np
___________________|____________________

/ | | | \
detp n0 n0 n0 pp

_______|______ | | | _____|_____
/ | \ | | | / \
n0 n0 pnct 18-foot jump shot p np
| | | | _______|______
| | | | / | \

alvis rogers gen-sym with num n0 tgp
| | |
| | |

one second v0
|
|

remaining

Notice that it would be possible to further restructure the initial DETP daughter into:

detp
___|____
/ \

np gen
__|_ |

/ \ ,
n0 n0
| |

alvis rogers

However, here we abstain from this restructuring as this analysis is not attested elsewhere in the treebank
fragment.

Manual correction involved a total of 143 transformation events on the 100 trees in the generalised
treebank fragment. The major transformation types can be classified in the following typology:

• missed groupings

• single node relabelling

• attachment restructuring

• surrounding punctuation

Due to space limitations here we cannot give a detailed discussion of the transformation types. The first
two transformation types were illustrated in the example above. Attachment restructuring mainly concerns
certain instances of pre- and post-modifier phrases while surrounding punctuation restructures opening and
closing punctuation as daughters of the same mother node.

We then extract a grammar Gc,m from the generalised and manually corrected treebank fragment. As
expected, the extracted rule set is “cleaner” and “improved” compared to Gm. To give but a single illustration
based on the NP example discussed above, Gm features a rule

np -> np n0 n0 n0 p np tgp

derived from the top level NP local tree while in Gc,m this rule is replaced by

np -> detp n0 n0 n0 pp

Gc,m features the same number of rule types as Gc, however, Gc,m has more rule tokens (applications
of rules) as evidenced by the labelled bracketing counts. Intuitively this means that the manually corrected
treebank has more structure:

rule types labelled bracketing
G 509 1318
Gc 331 1318
Gc,m 331 1422

In order to evaluate manual correction in terms of how well the extracted grammar performs under
automatic feature-structure annotation, we manually annotate Gc,m with feature-structure information. The
results of the manual annotation provide a gold-standard for automatic annotation. We then develop a set
of regular expression based annotation templates and apply these automatically to an unannotated version
of Gc,m. We then compare the manually annotated grammar with the automatically annotated grammar in
terms of precision and recall results and contrast the results obtained with the corresponding figures for Gc

precision recall
Gc 93.4 % 91.6 %
Gc,m 93.7 % 94.9 %

Precision and recall results for grammar Gc,m extracted from the generalised and manually correct
treebank fragment are improved. This is as expected. Gc,m shows fewer quirks and “odd” rules compared
to Gc. The strongest reflection of this is in the 3.3% increase in recall, meaning that automatic annotation
generates more of the gold-standard target annotations compared to Gc.

7 Automatic Correction

Manual correction or clean up of a treebank resource is very time consuming, expensive, error prone and
partial in that it risks missing appropriate corrections. In this section we apply a method for automatic
treebank conversion, based on rule-based rewriting of trees encoded in a flat tree description language. The
method is a special application of the automatic feature-structure annotation methodology developed in
[Frank,00], yet applied to convert the structure of treebank trees. A similar approach to treebank conversion
is presented in [Frank,01].

In the first step, trees are automatically translated into a set (a conjunction) of basic tree description
predicates of a general tree description language. The tree description language features a number of basic
and derived predicates:

Basic tree predicates (A,B node identifiers)

arc(A,LA,B,LB)B daughter of A, with category labels LA,LB
prec(A,B) immediate precedence A–B
lex(A,LA,Lex) lexical node A with category label LA

Derived tree predicates (A,B,.. node identifiers)

dom(A,B) immediate dominance
dom x(A,C) dominance
prec x(A,C) precedence
first d(A,X) X first daughter of A
last d(A,Y) Y last daughter of A
c label(A,CA) CA functional label of A
. . . possibly more . . .

where:
dom(A,B) :- arc(A, ,B,).
dom x(A,C) :- dom(A,C) ∨ (dom(A,B) ∧ dom x(B,C)).
prec x(A,C) :- prec(A,C) ∨ (prec(A,B) ∧ prec x(B,C)).

We then define parameterised tree transformation rules, using predicates (both basic and derived) of
the tree description language. The rules apply to partial tree configurations, and rewrite (part of) the tree
predicates, to derive a new set, and thus a new tree description. The new tree description is then reconverted
to a standard tree representation. Tree transformation rules are of the form ID :: CD >> TD where ID
is a rule identifier, CD a constraining tree description and TD a set of transformation operations.

Transformation rules are best explained by way of example. The following transformation rule identifies
np vp sequences preceded by marker, preposition or prepositional phrase daughters (subord marker)
in fa, fn or relcl constituents (sub cl), and “lowers” the np vp sequence below a newly created sent
node within the original fa, fn or relcl constituent:

sub_cl :: sub_cl(A,CA),

arc(A,CA,B,CB), subord_marker(A,CA,CB), prec(B,C),
arc(A,CA,C,"np"), prec_x(C,D),
arc(A,CA,D,"vp"), last_d(A,Y)

>> new_dtr(A,N,"sent"),
lower_subtree(A,C,Y,N,"sent").

fa:A

marker:B np:C vp:D
⇒

fa:A

marker:B sent:N

np:C vp:D

We developed a set of 13 transformation rules. Together these transformation rules effect a total of
110 transformation events, compared to 143 manual transformations, with the manual transformation events
being a near superset of the automatic transformation events (one of the automatic transformation events is
not in the manual transformation events):

AP100c,m AP100c,a

of transf. ev. 143 110

RuleType # of transf. ev.
sub cl 23
fn to sbar 3
fn to sent 26
existential 3
inv sent 18
surrounding commas1 11
surrounding commas2 1
xtraposed mods 2
detp gen 8
adv num detp 8
unary sent np 1
pre conj conj 1
flat coord 5

We evaluate grammar Gc,a extracted from the automatically corrected treebank fragment AP100c,a

against the grammar Gc,m extracted from the manually corrected treebank fragment AP100c,m in terms of
standard labelled bracketing (LB), labelled precision(LP) and labelled recall (LR) measures from parsing.
Compared to the generalised treebank fragment AP100c, both manual and automatic correction introduce
more structure, manual correction more so than automatic correction:

LB
AP100c 1318
AP100c,m 1422
AP100c,a 1389

Labelled precision measures how many of the labelled bracketings in the automatically corrected tree-
bank fragment are correct as defined by the manual correction. Labelled recall measures how many of the
correct target labelled bracketings as defined by manual correction are generated by automatic correction:

labelled precision labelled recall
AP100c,a 97.8 % 95.6 %

A more phenomenon oriented precision and recall measure is shown by the following figures, where we
evaluate precision and recall of transformation events (rather than (labelled) bracketing divergences between
manual and automatic corrections reflected in the LP and LR results in the table above). Here, 1 out of 110
automatic transformation events is not in the set of manual transformations; 34 manual transformation events
are missed.

phenomenon oriented precision recall
AP100c,a 99 % 76 %

8 Regular Expression Based Compaction

Grammars Gc,m and Gc,a look very much like flat, compiled out versions of LFG-82 style grammars [Ka-
plan and Bresnan,82]. These early LFG grammars allow regular expressions such as Kleene star “*” and
optionality “(..)” in rule RHSs such as the following (here we only show the CFG part):

vp -> v (np) (np) (vp) (sent) pp*

Regular expressions in rule RHSs allow a compact representation of a multitude of CFG rules and this
can greatly aid perspicuity for manual and automatic feature-structure annotation tasks. In our previous
work we developed regular expression based feature-structure annotation principles designed to match large
numbers of CFG rules extracted from treebank resources. In an inversion of this idea we could try to compact
a treebank grammar using regular expressions in rule RHSs. Because of space limitations here we can only
outline the basic ideas. We hope to report on this elsewhere. In our work to date we have explored two
methodologies: the first is based on finite-state technology (FST) and automatic conversion into a Finite
State Automaton (FSA); the second on manual conversion.

The basic idea in FST based automatic conversion is simple: for a given rule LHS, collect all RHSs
attested in the grammar.

LHS > RHS1
LHS > RHS2
.. ..

LHS > RHSn

Each RHS constitutes a (trivial) regular expression. For a given LHS union all RHSs into a “disjunctive”
regular expression:

[RHS1 | RHS2 | .. | RHSn]

Use FST tools to convert the regular expression into an automaton. Apply minimisation to the resulting
automaton. Convert back to a regular expression. Automatic conversion along these lines (especially of
large numbers of rule RHSs) does not always result in “readable” regular expressions. In fact it can be
useful to manually split large sets of rule RHSs into “natural” classes prior to automatic conversion.

Manual conversion is based on the following idea. Suppose that a treebank attests the following rules:

np > det n0
np > n0 pp

these can be “compacted” into

np > (det) n0 (pp)

Note that the compaction is linguistically well motivated but that the language defined by the regular
expression in the compaction is not the same as the language defined by the attested rule RHSs:

(det) n0 (pp) =/= det n0 | n0 pp

In fact, the compaction covers two unattested possibilities:

(det) n0 (pp) = det n0 | n0 pp | n0 | det n0 pp

We conducted a manual experiment which compacted Gc,m into 20 rules with regular RHSs. We used
our regular expression interpreter to verify that for each LHS in the grammar, the language defined by the
regular expression based rule RHSs properly includes the language defined by the RHSs attested in the
original grammar.

9 Xbar-based Annotation

In our final experiment we transform the first 50 parse-annotated sentences of the generalised and manually
corrected version AP100c,m of the treebank fragment into a “vanilla flavour” Xbar encoding AP50c,m,x.
Our choice of Xbar design principles is pragmatic and similar to other (computational) grammars in the
literature: [Pollard and Sag, 94], [Butt et al,99]. It does not constitute deep syntactic theorising! Our design
principles are:

1. three projection levels: X0, X1 and XP

2. X1 only present when required (as in adjunction)

3. complements are taken at X0 in one go (this means that we will have a number of flat non-binary
branching rules)

4. adjuncts are taken at X1 recursively

5. only X2 (maximal projection) can act as complement/adjunct

6. no ε-productions

Principle 1 is pretty uncontroversial. Principle 2 (minimal representations: X1 only when needed) will
have interesting consequences for the number of CFG rules extracted from the Xbar encoding. Principle
3 aids in functional annotation of subcategorisable grammatical functions (OBJ, OBJ2, XCOMP, COMP,
. . .). Principles 4 and 5 are again fairly standard assumptions. Principle 4 has interesting consequences
for probabilistic versions of CFGs extracted from such encodings. Finally, principle 6 is a reflection of the
“surfacy” nature of the CFG component in LFG based grammar architectures.

Taken together principles 1 – 6 constitute fairly “mild” Xbar assumptions. Nevertheless, they are lin-
guistic idealisations which motivate some of our “systematic” vanilla flavour Xbar violations:

1. inside NP we allow for N0 as modifier of N1 and as a direct modifier daughter of NP (i.e. we do not
always introduce N1 in N0 modifier configurations)

2. because of Xbar principle 3 we need to allow adjuncts between complements at X0

3. we keep some (traditional) treebank categories such as SENT, VP, TGP . . .

4. we do not provide Xbar accounts of coordination and punctuation

Xbar violation 1 is to account for our treatment of nominal compounds. Violation 2 (of principles 3 and
4) is motivated by the data, i.e. adjuncts occurring between complements. Violation 3 is less a violation
than a partial commitment to Xbar-based generalisations. Violation 4 is again a pragmatic decision.

We illustrate both our Xbar design principles and violations with two examples. The first is a recoding
of the initial NP from the first sentence in the treebank fragment:

np

�
�

�
�

�
�

��

H
H

H
H

H
H

HH

detp

�
�

�

H
H

H

np
�

�
H

H

n0

alvis

n1

n0

rogers

pnct

gen-sym

n1

�
�

�
�

�

H
H

H
H

H

n1

�
�
�

H
H

H

n0

18-foot

n1
�� HH

n0

jump

n1

n0

shot

pp

�
�

�

H
H

H

p

with

np

�
�

�

H
H

H

detp

det

one

n1

�
��

H
HH

n1

n0

second

tgp

v0

remaining

The second is a complex relative clause:

relcl

�
�

��

H
H

HH

np

ndet

which

vp

�
�

��

H
H

HH

v0

had

vp

�
�

��

H
H

HH

v0

been

vp

�
�

�

H
H

H

v0

designed

infp

�
�
�

H
H

H

to

to

vp

�
�

��

H
H

HH

v0

be

np

�
�

�
�

H
H

H
H

detp

det

the

n1

�
�

�

H
H

H

n1
�� HH

num

last

n1

n0

shot

pp

�
��

H
HH

p

of

np
�
�

H
H

detp

det

the

n1

n0

game

Note that both trees are exclusively binary branching and that together with a few additional assumptions
each local subtree identifies head, modifier and complement relations. The additional assumptions include,
for example, that in general for English NPs the head projection follows the right branch (given our treatment
of nominal compounds this does not follow from the vanilla flavour Xbar encoding). These additional as-
sumptions together with our Xbar design principles and violations should guide automatic feature-structure
annotations to a much greater extent than the original flat treebank grammar design.

In order to evaluate the Xbar recoding, we extract grammar Gc,m,x from fragment AP50c,m,x. We will
give a few general observations on the extracted grammar. Compared to our other grammars the Xbar-based

grammar features shorter rule RHSs, fewer rule types but substantially more rule tokens (local trees of depth
one) per tree. In the table below we list the number of rule types extracted against increasing corpus size for
the generalised and manually corrected fragment AP100c,m and the Xbar based AP50c,m,x:

sentence # rules AP50c,m,x # rules AP100c,m difference difference %
05 47 37 +10 +27.03
10 66 56 +10 +17.86
15 78 78 0 0
20 94 102 - 8 -7.84
25 102 122 -20 -16.39
30 114 135 -21 -15.56
35 133 159 -26 -16.35
40 144 174 -30 -17.24
45 151 184 -33 -17.93
50 161 201 -40 -19.90

As expected, grammar Gc,m,x extracted from AP50c,m,x grows more slowly than grammar Gc,m ex-
tracted from AP100c,m. Xbar grammars features fewer, more general rules than flat treebank grammars
with unabated rule accession rates. However, the effect is less pronounced than could be expected. The
reasons for this are that

• according to our Xbar principle 3 which states that X1 is only featured if required, we get duplication
of complementation rules at XP and X1 level depending on the presence or absence of modifiers:

vp -> v0 np v1 -> v0 np
vp -> v0 np np v1 -> v0 np np

Ironically, more parsimonious parse trees yield a larger rule base.

• the fragments considered are too small to see the full effects of Xbar vs. treebank based rule accession
rates.

In all our extracted grammars, the NP fragment constitutes the most varied and complicated subsection
and thus poses the most difficult section for automatic feature-structure annotation. We isolate the NP
section from Gc,m,x and manually annotate it with feature-structure information to create a gold-standard
against which to evaluate automatic annotation. We then develop regular expression based feature-structure
annotation principles and automatically apply them to an unannotated version of the NP fragment from
Gc,m,x. We then compare the results of automatic annotation against the gold standard in terms of precision
and recall results.

As most of the CFG rules extracted from AP50c,m,x are unary or binary branching (the only exceptions
are rules accounting for coordination, punctuation and complementation), most of the regular expressions
in the annotation principles are simple unions or contain underspecified category symbols:

n1:A > n1:B [adjp:C|advp:C|pp:C|recl:C|tgp:C|vp:C]
@ [A=B, A:adjn $ C]

v1:A > v1:B __:C
@ [A=B, A:adjn $ C]

The first annotation principle enumerates the possible n1 post-modifiers in the grammar. The reason
we cannot underspecify the modifier category symbol (as in the second v1 annotation principle) is that the
grammar extracted allows for binary branching

n1 > n1 n1

rules where the head projection follows the right branch. In general, annotation principles for Gc,m,x

are no longer underspecified (with the exception of principles dealing with the non-binary branching com-
plementation, coordination and punctuation rules) as there is no need to determine subsequences in flat rule
RHS for proper annotation as was the case for flat treebank rules. Automatic annotation should thus be much
simpler. The precision and recall results for the NP fragment of Gc,m,x and Gc,m (for the first 50 sentences)
support this expectation:

precision recall
Gc,m 93 % 94.4 %
Gc,m,x 100 % 100 %

10 Conclusions and Further Work

We have presented a number of experiments that move a flat treebank grammar fragment in stages to a
vanilla flavour Xbar encoding. We have evaluated the resulting grammars with respect to how they perform
in automatic feature-structure annotation tasks. Some of our experiments involved manual recoding of
treebank resources. Manual recoding is extremely time consuming and error prone. We have investigated
to what extent treebank grooming can be automated and have developed, applied and evaluated automatic
treebank conversion procedures. We have sketched regular expression based compaction of rule RHSs
extracted from treebank grammars. We hope to be able to expand on this in further work.

The results of our final Xbar encoding can be summarised as follows: vanilla flavour Xbar coding can
be scaled but is extremely time and resource intensive. It provides a smaller, cleaner, and more general rule
base which makes it easy to spot inconsistencies in the treebank (simply extract the grammar and search for
odd rules). Xbar-based trees support (and in fact drive) automatic feature-structure annotation, a result that
tallies well with work in theoretical linguistics [Bresnan,01]. Xbar-based trees require fewer and less partial
automatic feature-structure annotation principles. However, Xbar design principles force subtle and time
consuming scope/attachment decisions and currently do not support a notion of underspecification. This
seriously limits its application in large scale treebanking tasks. Small and general rule bases are bought
at the price of multiplying (often exploding) analysis possibilities with ensuing load under parsing and
generation. What is more, Xbar-based rule sets are ill suited to probabilistic approaches to parsing (and
generation) for at least the following two reasons:

First, Xbar-based CFG trees involve large numbers of rule tokens. Under standard PCFG assumptions,
the probability contributed by each such rule token introduces an independence assumption into the compu-
tation of the probability of the tree and thus weakens the probability model.

Second, the standard Xbar assumption that pre- and post-modification (adjuncts) revolves around a
recursive X1 level means that PCFG versions of such grammars in principle cannot distinguish high and low
attachment possibilities in the presence of both a pre- and a post-modifier at a local X1 configuration

xp

x1
�

�
H

H

pre

..

x1
�� HH

x1

x0

..

post

...

xp

x1
�

�
H

H

x1
�� HH

pre

..

x1

x0

..

post

...

as the product of the individual rule probabilities involved in both trees are exactly the same.

Bibliography

(Bresnan,01) Joan Bresnan, Lexical Functional Syntax, Blackwell Publishers, Oxford, 2001.

(Butt et al,99) Miriam Butt, T.H. King and F. Second, A grammar writer’s cookbook, Stanford, Calif. :
CSLI Publications, 1999.

(Charniak,93) Eugene Charniak, Statistical language learning, Cambridge, Mass : MIT Press, 1993.

(Frank,01) Anette Frank, Treebank Conversion. Converting the NEGRA Treebank to an LTAG Grammar,
in: Proceedings of the Workshop on Multi-layer Corpus-based Analysis, Iasi, Romania, 2001, pp.
29–43.

(Frank,00) Anette Frank, Automatic F-Structure Annotation of Treebank Trees, in M. Butt and T.H.King
(Eds.), Proceedings of the LFG00 Conference, 2000, University of California, Berkeley, CSLI Online
Publications, Stanford, CA, 2000, pp. 139-159,
http://www-csli.stanford.edu/publications/

(Frank et al,01) Anette Frank, Louisa Sadler, Josef van Genabith und Andy Way, From Treebank Resources
to LFG F-Structures. Automatic F-Structure Annotation of Treebank Trees and CFGs extracted from
Treebanks, to appear in: Abeille, A. (ed): Treebanks. Building and using syntactically annotated
corpora, Kluwer Academic Publishers, The Netherlands, to appear, 23 pp.

(Hepple and van Genabith,00) Mark Hepple and Josef van Genabith, Experiments in Structure-Preserving
Grammar Compaction, 1st Meeting on Speech Technology Transfer, Universidad de Sevilla and Uni-
versidad de Granada, Seville, Spain, Nov. 6th - 10th, 2000.

(Kaplan and Bresnan,82) Ron Kaplan and Joan Bresnan, Lexical-Functional Grammar: a Formal System
for Grammatical Representation, in Bresnan, Joan (ed.), The Mental representation of grammatical
relations, Cambridge, Mass : MIT Press, 1982.

(Krotov et al,98) Krotov, A., M. Hepple, R.Gauzauskas and Y. Wilks, Compacting the Penn Treebank
Grammar, in Proceedings of COLING/ACL’98, Montreal, Canada, pp.699-703

(Leech and Garside,91) Leech, G. and R. Garside, Running a Grammar Factory: on the Compilation of
Parsed Corpora or Treebanks, Mouton de Gruyter, Berlin, 1991, pp. 15-32.

(Pollard and Sag,94) Pollard, Carl and Sag, Ivan. Head-driven phrase structure grammar, Stanford : Center
for the Study of Language and Information; Chicago; Univer, 1994

(Sadler, van Genabith, Way,00) Sadler,L., J. van Genabith and A. Way, Automatic F-Structure Annotation
from the AP Treebank, in M. Butt and T.H.King (Eds.), Proceedings of the LFG00 Conference,
2000, University of California, Berkeley, CSLI ONline Publications, Stanford, CA, http://www-
csli.stanford.edu/publications/

(van Genabith, Sadler and Way,99) Josef van Genabith, Louisa Sadler and Andy Way, Structure Preserving
CF-PSG Compaction, LFG and Treebanks, Journees ATALA, Corpus annotes pour la syntaxe, Actes,
(Proceedings ATALA Workshop - Treebanks), l’Universite Paris 7, France, 18-19 Juin 1999, pp.107-
114, also http://talana.linguist.jussieu.fr/treebanks99/

