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Abstract

We present an architecture for the integra-
tion of shallow and deep NLP components
which is aimed at flexible combination
of different language technologies for a
range of practical current and future appli-
cations. In particular, we describe the inte-
gration of a high-level HPSG parsing sys-
tem with different high-performance shal-
low components, ranging from named en-
tity recognition to chunk parsing and shal-
low clause recognition. The NLP com-
ponents enrich a representation of natu-
ral language text with layers of new XML
meta-information using a single shared
data structure, called the text chart. We de-
scribe details of the integration methods,
and show how information extraction and
language checking applications for real-
world German text benefit from a deep
grammatical analysis.

Introduction

gies to the maximum, often ignoring certain com-
plex issues, e.g. those which are typically well han-
dled by deep NLP systems. Up to now, deep natural
language processing (DNLP) has not played a sig-
nificant role in the area of industrial NLP applica-
tions, since this technology often suffers from insuf-
ficient robustness and throughput, when confronted
with large quantities of unrestricted text.

Current information extractions (IE) systems
therefore do not attempt an exhaustive DNLP analy-
sis of all aspects of a text, but rather try to analyse or
“understand” only those text passages that contain
relevant information, thereby warranting speed and
robustness wrt. unrestricted NL text. What exactly
counts as relevant is explicitly defined by means
of highly detailed domain-specific lexical entries
and/or rules, which perform the required mappings
from NL utterances to corresponding domain knowl-
edge. However, this “fine-tuning” wrt. a particular
application appears to be the major obstacle when
adapting a given shallow |IE system to another do-
main or when dealing with the extraction of com-
plex “scenario-based” relational structures. In fact,
(Appelt and Israel, 1997) have shown that the cur-
rent IE technology seems to have an upper perfor-

Over the last ten years or so, the trend in applicatiomnance level of less than 60% in such cases. It seems
oriented natural language processing (e.g., in theasonable to assume that if a more accurate analy-
area of term, information, and answer extractiongis of structural linguistic relationships could be pro-
has been to argue that for many purposes, shallovided (e.g., grammatical functions, referential rela-
natural language processing (SNLP) of texts cationships), this barrier might be overcome. Actually,
provide sufficient information for highly accuratethe growing market needs in the wide area of intel-
and useful tasks to be carried out. Since the emdigent information management systems seem to re-
gence of shallow techniques and the proof of theijuest such a break-through.

utility, the focus has been to exploit these technolo- In this paper we will argue that the quality of cur-



rent SNLP-based applications can be improved by application

integrating DNLP on demand in a focussed manner, input an

and we will present a system that combines the fine- WHAM specification | result
grained anaysis provided by HPSG parsing with g —

high-performance SNLP system into a generic and Shallow M

flexible NLP architecture. < | XML
) ) $ m
1.1 Integration Scenarios annot generic OOP
. . ternal
Owing to the fact that deep and shallow technologies pema component
are complementary in nature, integration is a non- multi interface

trivial task: while SNLP shows its strength in the
areas of efficiency and robustness, these aspects
problematic for DNLP systems. On the other hand
DNLP can deliver highly precise and fine-grained
linguistic analyses. The challenge for integration is
to combine these two paradigms according to their

virtues. )
Probably the most straightforward way to inte2 Architecture

grate the two is an architecture in which shallow anghe \WwHITEBOARD architecture defines a platform
deep components run in parallel, using the results @hat integrates the different NLP components by en-
DNLP, whenever available. While this kind of aP-riching an input document througML annota-
proach is certainly feasible for a real-time applicatjions XML is used as a uniform way of represent-
tion such as Verbmobil, it is not ideal for processingng and keeping all results of the various processing
large quantities of text: due to the difference in Prozomponents and to support a transparent software
cessing speed, shallow and deep NLP soon run ofrastructure for LT-based applications. It is known
of sync. To compensate, one can imagine two posshat interesting linguistic information —especially
ble remedies: either to optimize for precision, or fofynen considering DNLP— cannot efficiently be
speed. The drawback of the former strategy is th@agpresented within the basic XML markup frame-
the overall speed will equal the speed of the slowyork (“typed parentheses structure”), e.g., linguistic
est component, whereas in case of the latter, DNLshenomena like coreferences, ambiguous readings,
will almost always time out, such that overall preci-3ng discontinuous constituents. TielI TEBOARD
sion will hardly be distinguishable from a shallow-chitecture employs a distributed multi-level repre-
only system. What is thus called for is an integratedsentation of different annotations. Instead of trans-
flexible architecture where components can play #ting all complex structures into one XML docu-
their strengths. Partial analyses from SNLP can b@ent, they are stored in different annotation layers
used to identify relevant candidates for the focusse@,ossimy non-XML, e.g. feature structures). Hyper-
use of DNLP, based on task or domain-specific critginks and “span” information together support effi-
ria. Furthermore, such an integrated approach opepgnt access between layers. Linguistic information
up the possibility to address the issue of robustneg$ common interest (e.g. constituent structure ex-
by using shallow analyses (e.g., term recognitionyacted from HPSG feature structures) is available in
to increase the coverage of the deep parser, thereRxi format with hyperlinks to full feature struc-
avoiding a duplication of efforts. Likewise, integra-yre representations externally stored in correspond-
tion at the phrasal level can be used to guide thﬁg data files.
deep parser towards the most likely syntactic anal- Fig. 1 gives an overview of the architecture of
ysis, leading, as it is hoped, to a considerable speeie wHiTEBOARD Annotation Machine (WHAM).
up. Applications feed the WHAM with input texts and

a specification describing the components and con-

layer
chart
internal repr.

)
v

Figure 1: ThewHITEBOARD architecture.



figuration options requested. The core WHAM enary detection, chunk and subclause recognition,
gine has an XML markup storage (external “offline”see (Piskorski and Neumann, 2000; Neumann and
representation), and an internal “online” multi-levelPiskorski, 2002) for details. SPPC is capable of pro-
annotation chart (index-sequential access). Folloveessing vast amounts of textual data robustly and ef-
ing the trichotomy of NLP data representation modficiently (ca. 30,000 words per second in standard
els in (Cunningham et al., 1997), the XML markupPC environment). We will briefly describe the SPPC
contains additive information, while the multi-level components which are currently integrated with the
chart contains positional and abstraction-based igeep components.
formation, e.g., feature structures representing NLP Each token identified by a tokenizer as a poten-
entities in a uniform, linguistically motivated form. tial word form is morphologically analyzed. For

Applications and the integrated components a@ach token, its lexical information (list of valid read-
cess the WHAM results through an object-orientedhgs including stem, part-of-speech and inflection
programming (OOP) interface which is designednformation) is computed using a fullform lexicon
as general as possible in order to abstract fromf about 700,000 entries that has been compiled out
component-specific details (but preserving shallofrom a stem lexicon of about 120,000 lemmas. Af-
and deep paradigms). The interfaces of the actter morphological processing, POS disambiguation
ally integrated components form subclasses of thweilles are applied which compute a preferred read-
generic interface. New components can be inténg for each token, while the deep components can
grated by implementing this interface and specifyindpack off to all readings. NE recognition is based on
DTDs and/or transformation rules for the chart.  simple pattern matching techniques. Proper names

The OOP interface consists of iterators that walkorganizations, persons, locations), temporal expres-
through the different annotation levels (e.g., tokesions and quantities can be recognized with an av-
spans, sentences), reference and seek operators trafge precision of almost 96% and recall of 85%.
allow to switch to corresponding annotations on &urthermore, a NE—specific reference resolution is
different level (e.g., give all tokens of the currentperformed through the use of a dynamic lexicon
sentence, or move to next named entity startingshich stores abbreviated variants of previously rec-
from a given token position), and accessor metlegnized named entities. Finally, the system splits
ods that return the linguistic information containedhe text into sentences by applying only few, but
in the chart. Similarily, general methods supporhighly accurate contextual rules for filtering implau-
navigating the type system and feature structures eible punctuation signs. These rules benefit directly
the DNLP components. The resulting output of thédrom NE recognition which already performs re-
WHAM can be accessed via the OOP interface or agricted punctuation disambiguation.
XML markup.

The WHAM interface operations are not only _
used to implement NLP component-based applicd"€ HPSG Grammar is based on a large-scale
tions, but also for the integration of deep and shallogrammar for German (Miiller, 1999), which was

2.1.2 Deep NL component

processing components itself. further developed in thevyERBMOBIL project for
translation of spoken language (Miller and Kasper,

2.1 Components 2000). AfterverBMOBIL the grammar was adapted

2.1.1 Shallow NL component to the requirements of the LKB/PET system (Copes-

Shallow analysis is performed by SPPC, a rulet_ake, 1999), and to written text, i.e., extended with

based system which consists of a cascade Bpnstrucf[ions like free relative clguses that were ir-

weighted finite—state components responsible f(gplevant In the‘/ERBMOB_"L scenano_. i

performing subsequent steps of the linguistic anal- '€ grammar consists of a rich hierarchy of

ysis, including: fine-grained tokenization, Iexico-5’069_ lexical and phrasal types. The_ core grammar

morphological analysis, part-of-speech fiItering,Contalns 23 rule schema‘Fa, ’ SP?C'a' verb move-
ent rules, and 17 domain specific rules. All rule

named entity (NE) recognition, sentence bound™ ) i )
schemata are unary or binary branching. The lexicon



contains 38,549 stem entries, from which more thafound in the HPSG lexicon, we automatically create
70% were semi-automatically acquired from the ana default entry, based on the part—of-speech of the
notatedNEGRA corpus (Brants et al., 1999). preferred reading. This increases robustness, while
The grammar parses full sentences, but also othavoiding increase in ambiguity.
kinds of maximal projections. In cases where no ful
analysis of the input can be provided, analyses ?nars for the whole range of NE expressions etc. is
fragments are handed over to subsequent modules; ™ . )
. . L a tedious and not very promising task. They typi-
Such fragments consist of maximal projections of :
single words. caIIy.vary across text sorts and domains, and woulld
require modularized subgrammars that can be easily
The HPSG analysis system currently integrated exchanged without interfering with the general core.
in the WHITEBOARD system is PET (Callmeier, This can only be realized by using a type interface
2000). Initially, PET was built to experiment where a class of named entities is encoded by a gen-
with different techniques and strategies to processral HPSG type which expands to a feature structure
unification-based grammars. The resulting sysised in parsing. We exploit such a type interface for
tem provides efficient implementations of the bestoupling shallow and deep processing. The classes
known techniques for unification and parsing. of named entities delivered by shallow processing
As an experimental system, the original desigare mapped to HPSG types. However, some fine-
lacked open interfaces for flexible integration withtuning is required whenever deep and shallow pro-
external components. For instance, in the beginningessing differ in the amount of input material they
of the WHITEBOARD project the system only ac- assign to a named entity.
cepted fullform lexica and string input. In collabora- An alternative strategy is used for complex syn-
tion with Ulrich Callmeier the system was extendedtactic phrases containing NEs, e.g., PPs describ-
Instead of single word input, input items can nowing time spans etc. It is based on ideas from
be complex, overlapping and ambiguous, i.e. esseBxplanation—based Learning (EBL, see (Tadepalli
tially word graphs. We added dynamic creation ofind Natarajan, 1996)) for natural language analy-
atomic type symbols, e.g., to be able to add arbitrarsis, where analysis trees are retrieved on the basis
symbols to feature structures. With these enhancef the surface string. In our case, the part-of-speech
ments, it is possible to build flexible interfaces tosequence of NEs recognised by shallow analysis is
external components like morphology, tokenizationysed to retrieve pre-built feature structures. These

amed Entity Recognition Writing HPSG gram-

named entity recognition, etc. structures are produced by extracting NEs from a
) corpus and processing them directly by the deep
3 Integration component. If a correct analysis is delivered, the

Morphology and POS The coupling between the lexical parts of the analysis, which are specific for
morphology delivered by SPPC and the input needd® Input item, are deleted. 'We obtain a sceletal
for the German HPSG was easily established. TH¥lysis which is underspecified with respect to the
morphological classes of German are mapped onf®NCrete input items. The part-of-speech sequence
HPSG types which expand to small feature struc?' the original input forms the access key for this
tures representing the morphological information itructure. In the application phase, the underspeci-

a compact way. A mapping to the output of sppdied feature structure is retrieved and the empty slots

was automatically created by identifying the correfor the input items are filled on the basis of the con-

sponding output classes. crete input. , o

Currently, POS tagging is used in two ways. First, The advantage _of this approach lies in the more
lexicon entries that are marked as preferred by iHelaborate semantlcs_ of the_ r_esultmg featurg struc-
shallow component are assigned higher priority thafiires for DNLP, while avoiding the necessity of
the rest. Thus, the probability of finding the cor-2dding each and every single name to the HPSG lex-
rect reading early should increase without excludingon- Instead, good coverage and high precision can
any reading. Second, if for an input item no entry i$€ achieved using prototypical entries.



Lexical Semantics When first applying the origi- |'ength ;g‘éer' ‘;?;‘Cprlete LP | LR ] 0CB | <2CB
nal VERBMOBIL HPSG grammar to business news—z5—o5 g0 | 934 929 | 621 | 969
articles, the result was that 78.49% of the miss~40 | 99.8 | 78.6 9241 92.2| 90.7 | 98.5

ing lexical items were nouns (ignoring NES). INTraining: 16,000 NEGRA sentences
the integrated system, unknown nouns and NEs ca®sting: 1,058 NEGRA sentences
be recognized by SPPC, which determines morpho-
syntactic information. It is essential for the deep sys-
tem to associate nouns with their semantic sorts botével of phrasal syntax by guiding the deep syntac-
for semantics construction, and for providing setic parser towards a partial pre-partitioning of com-
mantically based selectional restrictions to help corplex sentences provided by shallow analysis sys-
straining the search space during deep parsing. Gégms. This strategy can reduce the search space, and
maNet (Hamp and Feldweg, 1997) is a large lexicatnhance parsing efficiency of DNLP.

database, where words are associated with POS inf hastic Tonological Parsing The traditional
formation and semantic sorts, whichareorganizedﬁOC astic Topological Farsing the traditiona

a fine-grained hierarchy. The HPSG lexicon, on th‘gyntactic model otopological fieldsdivides basic

other hand, is comparatively small and has a mo'%aéjses |tn]E_o Ig'St';Clt[ fl_izl(jjs:bso—callqu:e-, mlddlte-
coarse-grained semantic classification. and post-neids delimited by verbal or senten-

To provide the missing sort information when re-t'al markers. This topological model of German

covering unknown noun entries via SPPC, a maIC5:_Iause structure is underspecified or partial as to

ping from the GermaNet semantic classification tgon—sentential constituent boundaries, but provides

the HPSG semantic classification (Siegel et al? linguistically well-motivated, and theory-neutral

2001) is applied which has been automatically atgl?acr_o?tructlérefo.r C,Omrilﬁx tsentlengesl. Du;z Ito its
quired. The training material for this learning pro-'r1guIS IC underpinning the topological model pro-
des a pre-partitioning of complex sentences that is

cess are those words that are both annotated with é’% high tible with d tactic struct
mantic sorts in the HPSG lexicon and with synsetgI Ighly compaltible with deep syntactic structures
nd (i) maximally effective to increase parsing ef-

of GermaNet. The learning algorithm computes g . At th i ialit di
mapping relevance measure for associating semaft oS- e same time (iil) partiality regarding

tic concepts in GermaNet with semantic sorts in th[{le gonstltuency of non-sentential material ensures
HPSG lexicon. For evaluation, we examined a COII- e important aspects of robustness, coverage, and

pus of 4664 nouns extracted from business nempsr?ceésms efnc(ljelr:my. K. 2002 -

that were not contained in the HPSG lexicon. 231 _n( eckerand Franx, 2 ) We preseruioapus-

of these were known in GermaNet, where they ar riven stochastic tgpologlcal par seor German,

assigned 2811 senses. With the learned mappir%a,sed on a topological restructuring of the NEGRA
3

the GermaNet senses were automatically mapped rpus (Brants et al., 1999). For topological tree-

HPSG semantic sorts. The evaluation of the ma;?—ank conversion we build on methods and results
ping accuracy yields promising results: In 76.520A" (Frank, 2001). The stochastic topological parser

of the cases the computed sort with the highest reollows the probabilistic model of non-lexicalised

evance probability was correct. In the remainindDCFGS (Charniak, 1996). Due to abstraction from

20.70% of the cases, the correct sort was among gfrgnstituency dgmsmns at t.he sub-sentential Ievgl,
first three sorts. and the essentially POS-driven nature of topologi-

cal structure, this rather simple probabilistic model
3.1 Integration on Phrasal Level yields surprisingly high figures of accuracy and cov-

In the previous paragraphs we described strategi§9€ (See Fig.2 and (Becker and Frank, 2002) for

for integration of shallow and deep processing wher@10re detail), while context-free parsing guarantees

the focus is on improving DNLP in the domain of€fficient processing. _
lexical and sub-phrasal coverage. The next step is to elaborate a (partial) map-

We can conceive of more advanced strategies f@in9 Of shallow topological and deep syntactic struc-
the integration of shallow and deep analysis at thi!'eS that is maximally effective for preference-gui-

Figure 2: Stochastic topological parsing: results



Topological Structure:

CL-V2
VF-TOPIC LK-FIN MF RK-t
NN WFIN  ADV NN PREP NN VVFIN
[cL—v2 [vr—Topic Peter]l Lx—rin IBt] [pmF gerne Wirstchen mit Kartoffelsalat] rk—: -]]
Peter eats happily sausages with potato salad

Deep Syntactic Structure:

eter] @m] erne b p [vp Wirstchen pp mit [xp Kartoffelsalat]]]@]]]]]

Mapping:
CL-V2 — CP, VF-TOPIC— XP, LK-FIN — V, (LK-FIN MF RK-t) — C’, (MF RK-t) — VP, RK-t — V-t

Figure 3: Matching topological and deep syntactic struegur

ded deep syntactic analysis, and thus, efficiency inorder to evaluate the integrated system we processed
provements in deep syntactic processing. Such2®,568 sentences from the corpus without further ex-
mapping is illustrated for a verb-second clause itension of the HPSG lexicon (see table 4, third col-
Fig.3, where matching constituents of topologicalmn).

and deep-syntactic phrase structure are indicated by

circled nodes. With this mapping defined for all sen- Deep | Integrated
tence types, we can proceed to the technical aspecté Sentences 20,568
of integration into thewHITEBOARD architecture | avg. sentence length 16.83
and XML text chart, as well as preference-driven avg. lexical ambiguity 2.38 1.98
HPSG analysis in the PET system. avg. # analyses 16.19 18.53

) analysed sentences | 2,569 | 4,546
4 Experiments lexical coverage 28.6%| 71.4%
An evaluation has been started using the NEGRpaoVverall coverage 12.5% | 22.1%

corpus, which contains about 20,000 newspaper sen-
tences. The main objectives are to evaluate the syn-

tactic coverage of the German HPSG on NEWSPAPEr p 0t 10% of the sentences that were success-
text and the benefits of integrating deep and Shallo‘ﬂﬁlly parsed by deep analysis only could not be

ana_lly3|_s._ The sente_nces of t_he_corpus were useddarsed by the integrated system, and the number of
thelrdqugma_l form without stripping, e.g. IOaremhe'analyses per sentence dropped from 16.2% to 8.6%,
sized insertions. _which indicates a problem in the morphology inter-

we _extlelz ndefd theb HPS% O(;gxmon Sseorggface of the integrated system. We expect better over-
automatically - from —about 10, fo 35, all results once this problem is removed.

stems, which roughly corresponds to 350,000 full
forms. Then, we checked the lexical coveragg Applications

of the deep system on the whole corpus, which _ _
resulted in 28.6% of the sentences being fu”ySmce typed feature structures (TFS) in Whiteboard

lexically analyzed. The corresponding experiment€Veé as both a representation and an interchange

with the integrated system yielded an improvedomat, we developed a Java package (JTFS) that

lexical coverage of 71.4%, due to the techniquelnPlements the data structures, together with the

described in section 3. This increase is not achievdtcessary operations. These include a lazy-copying

by manual extension, but only through Syner(‘:]);mlfle_r, a_subsumptlon and equivalence test, degp

between the deep and shallow components. copying, iterators, etc. JTFS supports a dynamic
To test the syntactic coverage, we processed tﬁgnstructlop of type_d feature ;tructures, which isim-

subset of the corpus that was fully covered lexicallf@rtant for information extraction.

(5878 sentences) with deep analysis only. The re-

sults are shown in table 4 in the second column. In

Figure 4: Evaluation of German HPSG



5.1 Information Extraction “ According to Peter Miscke, Dietmar Hopp

Information extraction in Whiteboard benefits both ~ Was afked to take over the development
from the integration of the shallow and deep analy- ~ S€Ctor:

S'hs results and froT their processing metlh oolts. We We employ typed feature structures (TFS) as our
chose management Successiars our :application modelling language for the definition of scenario

domain. Two sets of template filling rules are
, o template types and template element types. There-
defined: pattern-based and unification-based rul P yp P yp

) re, the template filling results from shallow and
The pattern-based rules work directly on the OUtpuéeep analysis can be uniformly encoded in TFS. As a
delivered by the shallow analysis, for example,

side effect, we can easily adapt JTFS unification for
(1) Nachfolger voriz]person_name — the template merging task, by interperting the par-
[per son_out [1]]. tially filled templates from deep and shallow anal-
ysis as constraints. E.g., to extract the relevant in-
formation from the above sentence, the following
unification-based rule can be applied:

This rule matches expressions likéachfolger
von Helmut Koh[successor of) which contains two
string tokendNachfolgerandvonfollowed by a per-

son name, and fills the slot per son_out with the PERSONIN
recognized person nantéelmut Kohl The pattern- DIVISION i

based grammar yields good results by recognition RS Z(R;EETemehme”
of local relationships as in (1). The unification- THEME®

based rules are applied to the deep analysis re-

sults. Given the fine-grained syntactic and semar.2 Language checking
tic analysis of the HPSG grammar and its robustA
ness (through SNLP integration), we decided to us

the semantic representation (MRS, see (Copesta Eage checking. Due to the scarce distribution of

_et al., 2001)) as additional _mput for IE. The reasoll e errors (Becker et al., to appear), there is a high
is that MRSs express precise relationships betwe%npriori probability for false alarms. As the num-

the cgunlf[s in parpcular, "c]j co(;wstrlljctlor;lg LnVOIV'ggber of false alarms decides on user-acceptance, pre-
(combinations of) free word order, long distance €Cision is of utmost importance and cannot easily

pendencies, control and raising, or passive, Wh'cE'e traded for recall. Current controlled language

are very difficult, if not impossible, to recognize forChecking systems for German, such as MULTILINT

a pattern-based grammar. E.g., the short sentengg, . /\\vw.iai.uni-sb.de/en/multien.html) or FLAG

(2) illustrates a combination of free word order, con http://flag.dfki.de), build exclusively on SNLP:
trol, and passive. The subject of the passive ver hile checking of' local errors (e.g. NP-internal

wurde gebeteris located in the middle field and is agreement, prepositional case) can be performed

at Et;)e sar:e tm;e dthe Sﬂg;g of thle |_nf|n|t|ve Verl%1uite reliably by such a system, error types involv-
ZutibernehmenA deep ( ) analysis can r€C90%hg non-local dependencies, or access to grammati-

nize the dependencies quite easily, whereas a patt functions are much harder to detect. The use of

based grammar cannot determ|r_1e, €.9., for whi NLP in this area is confronted with several system-
verbPeter Misckeor Dietmar Hoppis the subject. ;¢ problems: first, formal grammars are not always
(2) Peter Miscke following was Dietmar Hopp available, e.g., in the case of controlled languages;
asked, the developmesector to takeover. second, erroneous sentences lie outside the language
defined by the competence grammar, and third, due

nother area where DNLP can support existing
allow-only tools is grammar and controlled lan-

Peter Miscke h distributi .
Entwicklungsabteilung zu to_t e sparse distri utlo_n 0 errors, a DNLP system

. will spend most of the time parsing perfectly well-
zufolge wurde Dietmar Hopp : !
N formed sentences. Using an integrated approach, a
tbernehmen.

shallow checker can be used to cheaply identify ini-

ebeten, die . ) . .
9 tial error candidates, while false alarms can be elim-



inated based on the richer annotations provided ky. Charniak. 1996. Tree-bank Grammars.AAAI-96.
the deep parser. Proceedings of the 13th AAAdages 1031-1036. MIT
Press.

6 Discussion A. Copestake, A. Lascarides, and D. Flickinger. 2001.

. . An algebra for semantic construction in constraint-
In this paper we reported on an implemented sys based grammars. IRroceedings of the 39th Annual

tem calledwHITEBOARD which integrates differ-  peeting of the Association for Computational Linguis-
ent shallow components with a HPSG—based deeptics (ACL 2001)Toulouse, France.
system. The integration is realized through th% Copestake 1999 The (new) LKB system
metaphor of textual annotation. To best of our 'ftp;//BVWW-CS]i,stanford.edfmaclnewdoc.pdf. ’ .
knowledge, this is the first implemented system _ _
which integrates high-performance shallow proces$l- Cunningham, K. Humphreys, R. Gaizauskas, and
ing with an advanced deep HPSG—based anal SiSY. Wilks. 1997. Software Infrastructure for Natu-

9 i P ) YISl Language Processing. Rroceedings of the Fifth
system. There exists only very little other work that  ANLP. March.
considers integration of shallow and deep NLP usin

. Frank. 2001. Treebank Conversion. Converting

an XML—-based architecture, most notably (Grov the NEGRA Corpus to an LTAG Grammar. Rro-

and Lascarides, _20_01)' However, their integraf[ion ceedings of the EUROLAN Workshop on Multi-layer
efforts are largly limited to the level of POS tag in-  Corpus-based Analysipages 29-43, lasi, Romania.

formation. )
C. Grover and A. Lascarides. 2001. XML-based data

preparation for robust deep parsing.Hroceedings of
the 39th ACl.pages 252-259, Toulouse, France.

This work was Support.e(.j by a researc_h gran_t frorg_ Hamp and H. Feldweg. 1997. Germanet - a lexical-

the German Federal MInIStI’y Of Educat|0n, SC|ence, semantic net for german. Proceedings of ACL work-

Research and Technology (BMBF) to the DFKI shop Automatic Information Extraction and Building

project WHITEBOARD, FKZ: 01 IW 002. Special  Of Lexical Semantic Resources for NLP Applications

thanks to Ulrich Callmesier for his technical support ™“adrid.

concerning the integration of PET. S. Miller and W. Kasper. 2000. HPSG analysis of
German. In W. Wahlster, editoverbmobil: Founda-
tions of Speech-to-Speech TranslafiArtificial Intel-
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