Automatic Classification

A Semi-supervised Type-based Classification of Adjectives: Distinguishing Properties and Relations

Matthias Hartung Anette Frank

Computational Linguistics Department Heidelberg University

LREC 2010, Valletta

Motivation: Using Adjectives for Ontology Learning (1)

1. Learning Ontological Knowledge from Adjectives:

Annotation Experiment

- attributes
 - $grey\ donkey \equiv COLOR(donkey) = grey$
- roles, i.e. "founded" attributes (cf. Guarino, 1992) $fast car \equiv SPEED(car) = fast$
- relations *economic crisis* \equiv AFFECT(crisis, economy)

Different types of adjectives require different ontological representations!

Motivation: Using Adjectives for Ontology Learning (2)

Annotation Experiment

2. Using Adjectives for Clustering Nouns into Concepts:

Clustering Features (pattern-based):

- attribute nouns: the ATTR of the NOUN
- adjectives denoting properties of the noun: the ADJ NOUN

Results:

- best results by combination of attribute and adjective features
- problem: attributive position is too unrestrictive for identifying property-denoting adjectives

(Almuhareb, 2006)

Adjective Classification for Ontology Learning

- **Hypothesis:** Classification is a prerequisite for ontology learning from adjectives.
- We adopt an adjective classification scheme from the literature that reflects the ontological information we are interested in:
 - - e.g.: grey donkey
 - roles = event-related adjectives
 - e.g.: fast car
 - relations ≡ object-related adjectives
 - e.g.: economic crisis

(Boleda 2007; Raskin & Nirenburg 1998)

Overview

Background & Motivation

- Background & Motivation
- 2 Annotation Experiment
 - Initial Classification Scheme: BEO
 - Task Description
 - First Results
 - Results after Re-Analysis
- 3 Automatic Classification
 - Methodology
 - Experimental Settings
 - Evaluation Results
- Conclusions

Basic Adjectives

- adjective denotes a value of an attribute exhibited by the noun
- values are either discrete or predications over a range of several values (depending on the concept being modified)

Annotation Experiment

Examples

- red carpet ⇒ COLOR(carpet)=red
- oval table ⇒ SHAPE(table)=oval
- young bird \Rightarrow AGE(bird)=[?,?]

BEO Classification Scheme (2)

Event-related Adjectives

- there is an event the referent of the noun takes part in
- adjective functions as a modifier of this event

Examples

Background & Motivation

- good knife ⇒ knife that cuts well
- fast horse ⇒ horse that runs fast
- interesting book ⇒ book that is interesting to read

BEO Classification Scheme (3)

Object-related Adjectives

- adjective is morphologically derived from a noun N/ADJ
- N/ADJ refers to an entity that acts as a semantic dependent of the head noun N

Examples

- environmental destruction_N
 - \Rightarrow destruction_N [of] the environment_{N/ADJ}
 - ⇒ destruction(e, AGENT: x, PATIENT: environment)
- political debate_N
 - \Rightarrow debate_N [about] politics_{N/ADJ}
 - ⇒ debate(e, AGENT: x, TOPIC: politics)

Annotation Study: Task Description and Methodology

Annotation Experiment

Data Set

- list of 200 high-frequency adjectives from the British National Corpus
- random extraction of five example sentences from the written part of the BNC for each of the 200 adjectives

Methodology

- three annotators
- task: label each of the 1000 items with BASIC, EVENT, OBJECT or IMPOSSIBLE
- instructions: short description of the classes plus examples

BEO Classification: Fundamental Ambiguities

Annotation Experiment

BASIC vs. EVENT

- fast horse
 - BASIC reading: SPEED(horse)=fast
 - EVENT reading: horse that runs fast
- good knife
 - BASIC reading: QUALITY(knife)=good
 - EVENT reading: knife that cuts well

Additional Instructions: Differentiation Patterns

If one of the following patterns holds for an ambiguous item, this indicates a property that is **founded** on an EVENT:

- ENT's property of being ADJ is due to ENT's ability to EVENT.
- If ENT was unable to EVENT, it would not be an ADJ ENT.

Category-wise Annotator Agreement

	BASIC	EVENT	OBJECT
κ	0.368	0.061	0.700

Table: Category-wise κ -values for all annotators

- overall agreement: $\kappa = 0.4$ (Fleiss 1971)
- separating the OBJECT class is quite feasible
- Can poor overall agreement be traced back to the ambiguities between BASIC and EVENT class?

Cases of Disagreement

	BASIC	EVENT	OBJECT
2:1 agreement	283	21	66
3:0 agreement	486	5	62

Table: Cases of Agreement vs. Disagreement

	1 voter				
		BASIC	EVENT	OBJECT	
2 voters	BASIC	_	172	16	
2 voters	EVENT	18	_	1	
	OBJECT	54	10	_	

Table: Distribution of Disagreement Cases over Classes

- People have substantial difficulties in distinguishing BASIC from EVENT adjectives!
- Re-analysis: binary classification scheme

Annotation Experiment

- adjectives denoting properties (BASIC & EVENT)
- adjectives denoting relations (OBJECT)
- ullet overall agreement after re-analysis: $\kappa=0.69$

	BASIC+EVENT	OBJECT		
κ	0.696	0.701		

Table: Category-wise κ -values for all annotators (after re-analysis)

Overview

Background & Motivation

- - Initial Classification Scheme: BEO
 - Task Description
 - First Results
 - Results after Re-Analysis
- Automatic Classification
 - Methodology
 - Experimental Settings
 - Evaluation Results

Methodology

- task: automatically classify adjectives according to their denotation: properties (ATTR) vs. relations (REL)
- features: set of lexico-syntactic patterns capturing systematic differences of these adjective classes in certain grammatical constructions
- overcome feature sparsity:
 - classification on the type level
 - semi-supervised approach: acquire enough training material on the type level by heuristic annotation projection

Automatic Classification

Features for Classification

Background & Motivation

Group	Feature	Pattern
	as	as JJ as
I	comparative-1	JJR NN
	comparative-2	RBR JJ than
	superlative-1	JJS NN
	superlative-2	the RBS JJ NN
	extremely	an extremely JJ NN
	incredibly	an incredibly JJ NN
II	really	a really JJ NN
11	reasonably	a reasonably JJ NN
	remarkably	a remarkably JJ NN
	very	DT very JJ
	predicative-use	NN (WP WDT)? is was are were RB? JJ
III	static-dynamic-1	NN is was are were being JJ
	static-dynamic-2	be RB? JJ .
IV	one-proform	a/an RB? JJ one
	see-catch-find	see catch find DT NN JJ
V		they saw the sanctuary desolate
		Baudouin's death caught the country unprepared
VI morph adjective is morphologically		adjective is morphologically derived from noun
A T		$economic \leftarrow economy$

Table: Set of features used for classification

Experimental Settings

Data Set

Background & Motivation

- manually annotated seed data (A_s): 164 property-denoting, 18 relational adjective types
- heuristic annotation projection:
 - extract 5.000 sentences per type from ukWaC corpus (A_{acq})
 - for every adjective **token** in A_{acq} : project unanimous class label from the corresponding type in As

Evaluation

- several feature configurations:
 - all-feat: all features individually
 - all-grp: all features, collapsed into groups
 - no-morph: all features individually, without morph feature
- 10-fold cross validation
- baseline: label all instances with majority class (ATTR)

Experimental Results

Background & Motivation

		ATTR			REL		
	Р	R	F	Р	R	F	Acc
all-feat	0.96	0.99	0.97	0.79	0.61	0.69	0.95
all-grp	0.96	0.99	0.97	0.85	0.61	0.71	0.95
no-morph	0.95	0.96	0.95	0.56	0.50	0.53	0.91
Baseline	0.90	1.00	0.95	0.00	0.00	0.00	0.90

Table: Precision, recall and accuracy scores for Boosted Learner (10-fold cross-validation)

- high precision for both classes
- recall on the REL class lags behind
- morph-feature is highly valuable for REL class
- boosting benefits from collapsing sparse features into groups

Automatic Classification

Selective Evaluation of Class Volatility

Background & Motivation

Туре	ATTR	REL	IMPOSS
	Tokens	Tokens	Tokens
beautiful (ATTR)	50	0	0
black (ATTR)	35	7	8
bright (ATTR)	45	1	4
heavy (ATTR)	42	0	8
new (ATTR)	50	0	0
civil (REL)	0	49	1
commercial (ATTR)	5	44	1
cultural (REL)	2	48	0
environmental (REL)	0	48	2
financial (REL)	0	46	4

Table: Volatility of prototypical class members

- average class volatility on the token level: 8.6%
- rough estimate of the error introduced by raising the classification task to the type level

Conclusions

Background & Motivation

Prospects of adjective classification for ontology learning:

- attribute/role distinction on the basis of adjectives alone is difficult even for human judges
- property-denoting and relational adjectives can be automatically distinguished at high precision for both classes
 - even with small and skewed training data
 - even in the absence of a morphological lexicon (see paper)

What else?

- classification on the type level is justified by tolerable degree of class volatility
- shallow feature set should be easily applicable to specialized domains and adaptable to different languages

Thank you for your attention!
Any questions?