Computational Models for Attribute Meaning in Adjectives and Nouns

Matthias Hartung

Computational Linguistics Department Heidelberg University

> September 30, 2011 Arlington, VA

Outline

Introduction

Word Level: Adjective Classification

Phrase Level: Attribute Meaning in Adjective-Noun Phrases Attribute Selection Attribute-based Meaning Representations for Similarity Prediction

Outlook

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Motivation

...

Relevance of Adjectives for Various NLP Tasks:

- ontology learning: attributes, roles, relations
- sentiment analysis: attributes
- coreference resolution: attributes
- information extraction: attributes, paraphrases

information retrieval: paraphrases

Adjective Classification

Initial Classification Scheme: BEO

- We adopt an adjective classification scheme from the literature that reflects the different aspects of adjective semantics we are interested in:
 - ▶ basic adjectives → attributes e.g.: grey donkey
 - ► event-related adjectives → roles, paraphrases e.g.: fast car
 - ▶ object-related adjectives → relations, paraphrases e.g.: economic crisis

(Boleda 2007; Raskin & Nirenburg 1998)

BEO Classification Scheme (1)

Basic Adjectives

Adjective denotes a value of an attribute exhibited by the noun:

- point or interval on a scale
- element in the set of discrete possible values

Examples

- ► red carpet ⇒ COLOR(carpet)=red
- ► oval table ⇒ SHAPE(table)=oval
- ▶ young bird ⇒ AGE(bird)=[?,?]

BEO Classification Scheme (2)

Event-related Adjectives

- there is an event the referent of the noun takes part in
- adjective functions as a modifier of this event

Examples

- ▶ good knife ⇒ knife that cuts well
- fast horse \Rightarrow horse that runs fast
- ► interesting book ⇒ book that is interesting to read

BEO Classification Scheme (3)

Object-related Adjectives

- adjective is morphologically derived from a noun N/ADJ
- ► N/ADJ refers to an entity that acts as a semantic dependent of the head noun N

Examples

- environmental destruction_N
 - \Rightarrow destruction_N [of] the <u>environment_{N/ADJ}</u>
 - ⇒ destruction(e, AGENT: x, PATIENT: environment)

- political debate_N
 - \Rightarrow debate_N [about] <u>politics_{N/ADJ}</u>
 - \Rightarrow debate(e, AGENT: x, TOPIC: politics)

Annotation Study

	BASIC	EVENT	OBJECT
κ	0.368	0.061	0.700

Table: Category-wise κ -values for all annotators

- BEO scheme turns out infeasible; overall agreement: κ = 0.4 (Fleiss 1971)
- separating the OBJECT class is quite feasible
- fundamental ambiguities between BASIC and EVENT class:

- fast car ≡ SPEED(car)=fast
- fast car \equiv car that drives fast

Re-Analysis of the Annotated Data

- BASIC and EVENT adjectives share an important commonality that blurs their distinctness !
- ► Re-analysis: binary classification scheme
 - adjectives denoting properties (BASIC & EVENT)
 - adjectives denoting relations (OBJECT)
- overall agreement after re-analysis: $\kappa = 0.69$

	BASIC+EVENT	OBJECT
κ	0.696	0.701

Table: Category-wise κ -values after re-analysis

Automatic Classification: Features

Group	Feature	Pattern
	as	as JJ as
	comparative-1	JJR NN
I	comparative-2	RBR JJ than
	superlative-1	JJS NN
	superlative-2	the RBS JJ NN
	extremely	an extremely JJ NN
	incredibly	an incredibly JJ NN
II	really	a really JJ NN
11	reasonably	a reasonably JJ NN
	remarkably	a remarkably JJ NN
	very	DT very JJ
	predicative-use	NN (WP WDT)? is was are were RB? JJ
III	static-dynamic-1	NN is was are were being JJ
	static-dynamic-2	be RB? JJ .
IV	one-proform	a/an RB? JJ one
	see-catch-find	see catch find DT NN JJ
V		they saw the sanctuary desolate
		Baudouin's death caught the country unprepared
VI	morph	adjective is morphologically derived from noun
V I		$economic \leftarrow economy$

Classification Results: Our Data

		PROP			REL		
	P	R	F	Р	R	F	Acc
all-feat	0.96	0.99	0.97	0.79	0.61	0.69	0.95
all-grp	0.96	0.99	0.97	0.85	0.61	0.71	0.95
no-morph	0.95	0.96	0.95	0.56	0.50	0.53	0.91
morph-only	0.96	0.78	0.86	0.25	0.67	0.36	0.77
majority	0.90	1.00	0.95	0.00	0.00	0.00	0.90

- high precision for both classes
- recall on the REL class lags behind
- morph-feature is particularly valuable for REL class, but not very precise on its own

Classification Results: WordNet Data

		PROP			REL		
	Р	R	F	Р	R	F	Acc
all-feat	0.85	0.82	0.83	0.70	0.75	0.72	0.79
all-grp	0.91	0.80	0.85	0.71	0.86	0.77	0.82
no-morph	0.87	0.80	0.83	0.69	0.79	0.73	0.79
morph-only	0.80	0.84	0.82	0.69	0.64	0.66	0.77
majority	0.64	1.00	0.53	0.00	0.00	0.00	0.64

- REL class benefits from more balanced training data
- strong performance of morph-only baseline
- best performance due to a combination of morph and other features

Automatic Classification: Most Valuable Features

Group	Feature	Pattern
	as comparative-1	as JJ as JJR NN
I	comparative-2	RBR JJ than
	superlative-1 superlative-2	JJS NN the RBS JJ NN
	extremely	an extremely JJ NN
	incredibly	an incredibly JJ NN
II	really	a really JJ NN
11	reasonably	a reasonably JJ NN
	remarkably	a remarkably JJ NN
	very	DT very JJ
	predicative-use	NN (WP WDT)? is was are were RB? JJ
III	static-dynamic-1	NN is was are were being JJ
	static-dynamic-2	be RB? JJ .
IV	one-proform	a/an RB? JJ one
	see-catch-find	see catch find DT NN JJ
V		they saw the sanctuary desolate
		Baudouin's death caught the country unprepared
VI	morph	adjective is morphologically derived from noun
		$economic \leftarrow economy$

Adjective Classification: Resume

- (automatically) separating property-denoting and relational adjectives is feasible
- largely language-independent feature set; results expected to carry over to different languages
- robust performance even without morphological resources
- classification on the type level; class volatility still acceptable

 open: attribute meaning evoked by a property-denoting adjective in context

Taking Stock...

Introduction

Word Level: Adjective Classification

Phrase Level: Attribute Meaning in Adjective-Noun Phrases Attribute Selection

Attribute-based Meaning Representations for Similarity Prediction

Outlook

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Attribute Selection: Definition and Motivation

Characterizing Attribute Meaning in Adjective-Noun Phrases:

What are the **attributes** of a concept that are highlighted in an adjective-noun phrase ?

- hot debate \rightarrow EMOTIONALITY
- ▶ *hot tea* → TEMPERATURE
- *hot soup* \rightarrow TASTE or TEMPERATURE

Goal:

- model attribute selection as a compositional process in a distributional VSM framework
- two model variants:
 - 1. pattern-based VSM
 - 2. combine dependency-based VSM with LDA topic models

Attribute Selection: Pattern-based VSM

	COLOR	DIRECT.	DURAT.	SHAPE	SIZE	SMELL	SPEED	TASTE	TEMP.	WEIGHT
enormous	1	1	0	1	45	0	4	0	0	21
ball	14	38	2	20	26	0	45	0	0	20
enormous $ imes$ ball	14	38	0	20	1170	0	180	0	0	420
enormous + ball	15	39	2	21	71	0	49	0	0	41

Main Ideas:

- reduce ternary relation ADJ-ATTR-N to binary ones
- vector component values: raw corpus frequencies obtained from lexico-syntactic patterns such as

(A1) ATTR of DT? NN is|was JJ

(N2) DT ATTR of DT? RB? JJ? NN

- ▶ reconstruct ternary relation by vector composition (×, +)
- select most prominent component(s) from composed vector by entropy-based metric

Pattern-based Attribute Selection: Results

		MPC		ESel			
	Р	R	F	P	R	F	
Adj imes N	0.60	0.58	0.59	0.63	0.46	0.54	
Adj + N	0.43	0.55	0.48	0.42	0.51	0.46	
BL-Adj	0.44	0.60	0.50	0.51	0.63	0.57	
BL-N	0.27	0.35	0.31	0.37	0.29	0.32	
BL-P	0.00	0.00	0.00	0.00	0.00	0.00	

Table: Attribute Selection from Composed Adjective-Noun Vectors

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remaining Problems of Pattern-based Approach:

- restriction to 10 manually selected attribute nouns
- rigidity of patterns entails sparsity

Using Topic Models for Attribute Selection

	ATTRIBUTE1	ATTRIBUTE2	ATTRIBUTE3	:		:	ATTRIBUTEn-2	ATTRIBUTE _{$n-1$}	ATTRIBUTEn
enormous	?	?	?	?	?	?	?	?	?
ball	?	?	?	?	?	?	?	?	?
enormous $ imes$ ball	?	?	?	?	?	?	?	?	?
enormous + ball	?	?	?	?	?	?	?	?	?

Goals:

- combine pattern-based VSM with LDA topic modeling (cf. Mitchell & Lapata, 2009)
- challenge: reconcile TMs with categorial prediction task
- raise attribute selection task to large-scale attribute inventory

Using LDA for Lexical Semantics

LDA in Document Modeling (Blei et al., 2003)

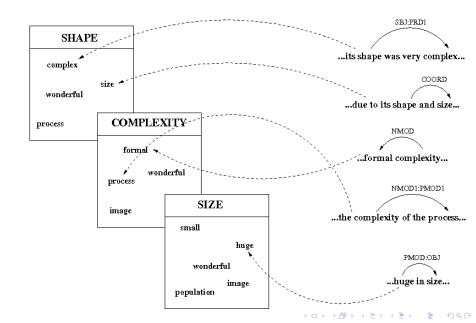
- hidden variable model for document modeling
- decompose collections of documents into *topics* as a more abstract way to capture their *latent semantics* than just BOWs

Porting LDA to Attribute Semantics

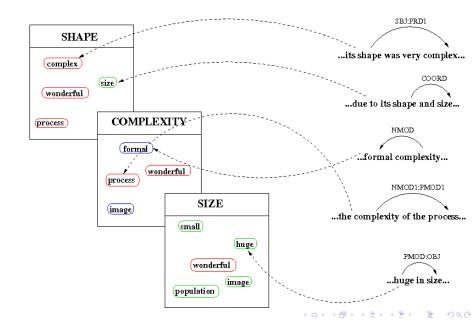
- "How do you modify LDA in order to be predictive for categorial semantic information (here: attributes) ?"
- build pseudo-documents¹ as distributional profiles of attribute meaning
- resulting topics are highly "attribute-specific"

¹cf. Ritter et al. (2010), Ó Séaghdha (2010), Li et al. (2010) $\in \mathbb{R}^{+}$ \cong $\Im \land \mathbb{C}^{+}$

C-LDA: "Pseudo-Documents" for Attribute Modeling



C-LDA: "Pseudo-Documents" for Attribute Modeling



Integrating C-LDA into the VSM Framework

	COLOR	DIRECT.	DURAT.	SHAPE	SIZE	SMELL	SPEED	TASTE	TEMP.	WEIGHT
hot	18	3	1	4	1	14	1	5	174	3
meal	3	5	119	10	11	5	4	103	3	33
hot $ imes$ meal	0.05	0.02	0.12	0.04	0.01	0.07	0.00	0.51	0.52	0.10
hot + meal	21	8	120	14	11	19	5	108	177	36

Table: VSM with C-LDA probabilities (scaled by 10³)

Setting Vector Component Values:

$$v_{\langle w,a
angle}=P(w|a)pprox P(w|d_a)=\sum_t P(w|t)P(t|d_a)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Attribute Selection with C-LDA: Results

		×			+	
	Р	R	F	Р	R	F
C-LDA	0.58	0.65	0.61	0.55	0.66	0.61
DepVSM	0.48	0.58	0.53	0.38	0.65	0.48
PattVSM	0.63	0.46	0.54	0.71	0.35	0.47

Table: Attribute selection over 10 attributes, imes vs. +

- \blacktriangleright C-LDA: highest f-scores and recall over \times and +
- baselines are competitive, but below LDA models
- C-LDA significantly outperforms PattVSM at a high margin (additive setting: +0.14 f-score)

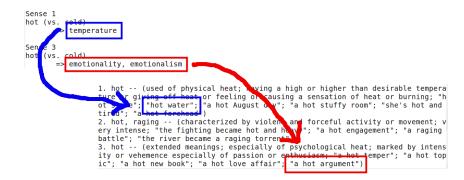
Automatic Construction of Labeled Data from WordNet

Automatic Construction of Labeled Data from WordNet

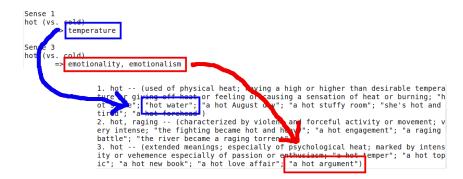
```
Sense 1
hot (vs. cold)
    => temperature
Sense 3
hot (vs. cold)
    => emotionality, emotionalism
```

1. hot -- (used of physical heat; having a high or higher than desirable tempera ture or giving off heat or feeling or causing a sensation of heat or burning; "h ot stove"; "hot water"; "a hot August day"; "a hot stuffy room"; "she's hot and tired"; "a hot forehead) 2. hot, raging -- (characterized by violent and forceful activity or movement; v ery intense; "the fighting became hot and heavy"; "a hot engagement"; "a raging battle"; "the river became a raging torrent") 3. hot -- (extended meanings; especially of psychological heat; marked by intens it', "a hot new book"; "a hot love affair", "a hot argument")

Automatic Construction of Labeled Data from WordNet



Automatic Construction of Labeled Data from WordNet



Resulting Gold Standard:

345 phrases, each labeled with one out of 206 attributes

Large-Scale Attribute Selection: Results

	a	11	property		
	×	+	\times	+	
C-LDA	0.04	0.02	0.18	0.10	
DepVSM	0.02	0.02	0.12	0.07	

Table: Results on Large-Scale Attribute Selection (f-score)

- large-scale attribute selection is extremely difficult; very poor performance on the entire data set
- replication of the experiment on a subset of the data:
 - training attributes limited to 73 property attributes, test set restricted accordingly (113 adjective-noun phrases)
 - C-LDA gains more than +0.10 and significantly outperforms DepVSM in × setting

Large-Scale Attribute Selection: Results

	all		property	
	×	+	×	+
C-LDA	0.04	0.02	0.18	0.10
DepVSM	0.02	0.02	0.12	0.07

Table: Results on Large-Scale Attribute Selection (f-score)

- large-scale attribute selection is extremely difficult; very poor performance on the entire data set
- replication of the experiment on a subset of the data:
 - training attributes limited to 73 property attributes, test set restricted accordingly (113 adjective-noun phrases)
 - C-LDA gains more than +0.10 and significantly outperforms DepVSM in × setting

Large-Scale Attribute Selection: Negative Examples

	prediction	correct
serious book	DIFFICULTY	MIND
blue line	COLOR	UNION
weak president	POSITION	POWER
fluid society	REPUTE	CHANGEABLENESS
short flight	DISTANCE	DURATION
rough bark	TEXTURE	EVENNESS
faint heart	CONSTANCY	COWARDICE

Table: Sample of false predictions of C-LDA $_{\times}$

Error Analysis:

- "near misses": weak president, rough bark, short flight
- idiomatic expressions: blue line, faint heart, fluid society
- debatable WordNet labels: serious book

Large-Scale Attribute Selection: Positive Examples

	prediction	correct
thin layer	THICKNESS	THICKNESS
heavy load	WEIGHT	WEIGHT
shallow water	DEPTH	DEPTH
short holiday	DURATION	DURATION
attractive force	MAGNETISM	MAGNETISM
short hair	LENGTH	LENGTH

Table: Sample of correct predictions of C-LDA $_{\times}$

"Difficult" cases effectively modeled by C-LDA:

- ambiguous, context-dependent adjectives: short holiday vs. short hair vs. short flight
- cases that resist pattern-based modeling, e.g.: thin layer - ?the thickness of the * is thin

Attribute Selection: Resume

- feasible task for a small set of 10 attributes
- pattern-based VSM yields highest precision
- sparsity can be largely mitigated by combination of dependency-based model and LDA
- large-scale attribute selection turns out extremely hard

Taking Stock...

Introduction

Word Level: Adjective Classification

Phrase Level: Attribute Meaning in Adjective-Noun Phrases Attribute Selection Attribute-based Meaning Representations for Similarity Prediction

Outlook

くして 前 ふかく 山下 ふゆう ふしゃ

Attribute-based VSMs for Similarity Prediction

Task:

- predict degree of *similarity* for pairs of adjective-noun phrases
- "common" distributional models: sources of similarity are usually disregarded
- attribute-based distributional meaning representations (AMRs): predict degree of similarity and its source

Example:

elderly lady vs. old woman

- high degree of similarity
- ▶ primary source of similarity: shared feature AGE

Similarity Prediction Experiment: Models and Data

Attribute-specific Model:

 C-LDA: attributes as interpreted dimensions of meaning for adjectives and nouns

Latent Model:

► M&L: 5w+5w context windows, 2000 most frequent context words as dimensions (Mitchell & Lapata, 2010)

Testing Data:

- human similarity judgements for 108 adj-noun phrases collected by Mitchell & Lapata (2010)
- evaluation: measure correlation between model similarity scores and human judgements in terms of Spearman's ρ

Similarity Prediction: Results

		+	×	ADJ-only	N-only
262 attrs	C-LDA	0.19	0.15	0.17	0.11
	M&L	0.21	0.34	0.19	0.27
33 attrs	C-LDA	0.23	0.21	0.27	0.17
	M&L	0.21	0.34	0.19	0.27

- M&L_× performs best in both training scenarios
- C-LDA benefits from confined training data
- individual adjective and noun vectors produced by M&L and C-LDA show diametrically opposed performance

Outlook

improve noun representations by "space travel":

 enrich uninformative noun vectors in attribute space by their nearest neighbors in latent word space

expand and improve large-scale data set:

- semi-automatic acquisition of similar adj-noun phrases evoking the same attribute
- manually determine ambiguous phrases (cf. short flight)
- manually correct debatable labels and "near misses"

cover relational adjectives:

 parallels to SemEval Shared Task on Paraphrasing Noun Compounds (Nakov et al., 2010)