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Lost in Translation

Figure 1: Arrival. https://glyphpress.com/talk/2017/the-journey-is-the-arrival
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Machine Translation

Source x Target y

Training
“ it wasn’t us”

“there is no linear time”

Testing ?
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Machine Translation

Source x Target y

Training
“ it wasn’t us”

“there is no linear time”

Testing “life choice” ↔ “you have to choose life”

Supervised training with a parallel corpus D of sources & targets:
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Automatic evaluation: measure overlap with reference translation(s).
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Neural Machine Translation

Neural Machine Translation (NMT) as seq2seq task with challenges in

1. Deep Learning: Train Encoder-Decoder architectures.
• Structured outputs with long-range dependencies
• Data sparsity and noise
• Linguistic interpretability

2. Reinforcement Learning: Maximize expected reward.
• Large discrete action space
• Underspecified reward functions
• Sparse rewards
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Learning from Humans

Improving NMT with human bandit feedback
• Cheaper than references
• No experts required
• Ideal for interactive usecases
• Fast model adaptation

Challenges

• Humans: biased judgment and variance
• Machine: needs exploration, data-hungry
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Improving MT with Weak Feedback

Learning from simulated…

• Online Bandit Feedback:
• REINFORCE for SMT & NMT (Sokolov et al., 2016; Kreutzer et al., 2017)

• Advantage Actor Critic for NMT (Nguyen et al., 2017; Lam et al., 2018)

• WMT shared task: Amazon product titles (Sokolov et al., 2017)

• Offline Bandit Feedback:
• Counterfactual learning for SMT (Lawrence et al., 2017b,a)

Today: Improve NMT with offline bandit feedback from humans.
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No Success with Explicit User Feedback (Kreutzer et al., 2018a)

/ Learning from 70k eBay user ratings fails due to unreliable ratings.
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Success with Implicit Feedback (Kreutzer et al., 2018a)

Embed the feedback collection into a “back-translation” CLIR task:

query (es)
query

ÐÐÐÐÐ→
translation

query (en) search
ÐÐÐ→ title (en) item

ÐÐÐÐÐ→
translation

title (es)

“candado bicicleta” → “bicycle lock” → “...lock bike” → “...cerradura bicicleta”

⇒ Task-specific reward function: translated words match the query.

, Translation improves significantly!
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Pairwise Preferences to the Rescue?

Does Thurstone (1927)’s law of comparative judgment hold for MT?

Source: “Sie gehen im Geiste durch dieses Haus, in demn Sie wohnen, und
schauen sich an, wie viele Türen da sind.”

NMT1: “They go in the spirit through this house, in the back of them, and
look at how many doors there are.”
NMT2: “You go in the spirit of this house, in demn you live, and look at how
many doors are there.”

Target: “In your mind, you are walking through the house where you live,
and are seeing how many doors there are.”
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Controlled Feedback Collection (Kreutzer et al., 2018a)

vs

Collected feedback from ∼15 bilinguals for 800 translations

1. Reliability: How reliable is each type of feedback?
2. Learnability: How well can we model this feedback?
3. RL: How much can it improve our NMT model?
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Reliability

Inter-rater Intra-rater
Rating Type α Mean α Stdev α

5-point 0.2308 0.4014 0.1907

Pairwise 0.2385 0.5085 0.2096
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Reliability

Inter-rater Intra-rater
Rating Type α Mean α Stdev α

5-point 0.2308
0.4014 0.1907

+ normalization 0.2820
+ rater-variance filtering 0.5059 0.5527 0.0470

Pairwise 0.2385 0.5085 0.2096
+ item-variance filtering 0.3912 0.7264 0.0533

⇒ Pairwise ratings turn out to be more difficult.
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Learnability: Reward Estimators

Model Feedback Spearman’s ρ with -TER

MSE 5-point norm. 0.2193
+ filtering 0.2341

PW Pairwise 0.1310
+ filtering 0.1255

1. Tackle the arguably simpler problem of learning a reward
estimator from human feedback first.

2. Then provide unlimited learned feedback to generalize to
unseen outputs in off-policy RL.
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End-to-End RL: Direct Rewards

Off-Policy Learning (OPL) from Direct Rewards
Improve the target NMT system (θ) with logged rewarded translations
of the deterministic logging system. (Lawrence et al., 2017b)
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• Propensity scores for importance sampling are unavailable

• Reweighting over mini-batch B: p̄θ(y(h)∣x(h)) = pθ(y(h)∣x(h))
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• Only logged translations are reinforced, i.e. no exploration
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End-to-End RL: Estimated Rewards

RL from Estimated Rewards
Reinforce k translation samples for each input with estimated
rewards r̂ψ for an approximation of the expected estimated reward.
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• Similar to minimum risk training for NMT (Shen et al., 2016)

• Softmax temperature τ to control the amount of exploration
• Subtract the running average of rewards from r̂ψ to reduce
gradient variance and estimation bias.
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Results on TED Talk Translations

Model Rewards BLEU METEOR BEER

Baseline - 27.0 30.7 59.48

OPL 5-point norm. 27.5 30.9 59.72

RL 5-point norm. 28.1 31.5 60.21
+ filtering 28.1 31.6 60.29

RL Pairwise 27.8 31.3 59.88

• OPL uses 800 human rewards directly⇒ overfitting
• RL (or MRT) uses unlimited amount of estimated rewards
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Summary: Deep RL from Human Feedback Signals for NMT

1. Experiments with eBay product title translations (Kreutzer et al., 2018a)

• Failed with explicit 5-star user ratings on a large collection of
product title translations — feedback too noisy

• Succeeded with implicit task-based feedback collected in a
cross-lingual search task — well-defined reward function

2. Reliability and Learnability of Human Reinforcement (Kreutzer et al., 2018b)

• Influence of reliability of 5-point ratings and pairwise preferences
• Success with explicit 5-point ratings on a small set of TED talk
translations — controlled feedback collection

Recipe?

• Reduce human biases and difficulties during feedback collection
• Encode human domain knowledge in learned reward estimator
• Use learned reward function as feedback signal in RL
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Thank you!

Questions?

kreutzer@cl.uni-heidelberg.de
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