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Abstract

Lexical semantic vector spaces model the meaning of words by representing the co-
occurrence statistics of words in certain contexts. Words are considered similar if they
occur in similar contexts, so that word similarity can get predicted by comparing their
representation in the semantic vector space.
Two major problems in those vector spaces are their size and their sparsity. Due to the
characteristics of language, semantic vector space models built from large corpora tend
to grow immensely in dimensionality and therefore in size. They capture co-occurrence
information in a sparse way. On the one hand sparse co-occurrence matrices can be repre-
sented and stored more efficiently than dense, completely filled matrices, but on the other
hand they limit the vector space’s ability to make semantic predictions. Dimensionality
reduction techniques aim to solve this problem by reducing the vector spaces’ number of
dimensions.
With this thesis, we introduce a linguistically motivated approach for dimensionality
reduction: We abstract from the meaning of single words to the meaning of derivational
families building on DErivBase [Zeller et al., 2013], a resource for German which groups
words into derivational families. DErivBase allows us to partition the original dimensions
into equivalence classes corresponding to derivational families. The result of this transfor-
mation is a dimensionality-reduced vector space with derivational families representing
the dimensions.
In two experiments (looking at word-based and dependency-based semantic vector spaces,
respectively), we evaluate on two benchmark data sets for two standard tasks, namely
semantic relatedness scoring and synonym detection, with a varying range of transforma-
tion parameters. We analyse the following aspects: dimensionality and sparsity reduction,
size, and quality of semantic relatedness predictions. We compare our approach against
competitors and baselines, including singular value decomposition (SVD) and a dimension
selection approach (top-n).
We find that our novel technique brings about a substantial reduction of dimensions,
and allows highly compact representation and storage of the vector space model. It
performs better on word-based than on dependency-based vector space models, and
better on semantic relatedness than on synonym choice tasks. It is superior to SVD in
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terms of accuracy and superior to top-n in terms of coverage. Nevertheless, we record
losses in accuracy compared to the original model. Our analysis suggests that future
work should attempt to reduce the influence of the noise inherent in large DErivBase
clusters.
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Zusammenfassung

Lexikalische semantische Vektorräume modellieren die Bedeutung von Wörtern, indem sie
die Kookkurrenzstatistiken von Wörten in bestimmten Kontexten repräsentieren. Wörter
sind einander ähnlich, wenn sie in ähnlichen Kontexten auftreten, sodass man Wortähn-
lichkeit über den Vergleich ihrer Repräsentationen im semantischen Vektorraum vorher-
sagen kann.
Diese Vektorräume haben vor allem mit folgenden zwei Problemen zu kämpfen: mit der
Größe und der Spärlichkeit („sparsity“), die eine geringe Dichte in der zugehörigen Matrix
beschreibt. Aufgrund der spezifischen Eigenschaften der natürlichen Sprache und ihrer
Verwendung tendieren semantische Vektorraummodelle, die auf Häufigkeitszählungen
innerhalb großer Korpora basieren, zu einer sehr hohen Anzahl von Dimensionen. Sie
erfassen Kookkurrenzstatistiken auf spärliche Art und Weise. Einerseits ermöglicht das
eine effiziente Repräsentation und Speicherung der Matrizen, andererseits schränken
sie aber auch den Rahmen semantischer Vorhersagen ein. Methoden zur Dimensionsre-
duktion versuchen diese Probleme zu lösen, indem sie die Anzahl der Dimensionen des
Vektorraums verringern.
In dieser Bachelorarbeit stellen wir einen neuen, linguistisch motivierten Ansatz zur
Reduktion von Dimensionen in lexikalischen semantischen Vektorräumen vor: Wir ab-
strahieren von der Bedeutung einzelner Wörter auf die Bedeutung von Wortfamilien,
wozu wir DErivBase [Zeller et al., 2013] nutzen, eine Ressource für die deutsche Sprache,
die Wörter in ihre derivationellen Familien einteilt. Mithilfe von DErivBase partition-
ieren wir die ursprünglichen Dimensionen entsprechend ihrer derviationellen Familien
in Äquivalenzklassen. Das Ergebnis dieser Transformation ist ein dimensionsreduzierter
Vektorraum, dessen Dimensionen von derivationellen Familien repräsentiert werden.
In zwei Experimenten (mit jeweils wortbasierten und syntaktischen Vektorräumen) evaluieren
wir auf zwei Testdatensätzen für zwei Standardaufgaben, nämlich die Bewertung von
semantischer Verwandtheit und die Erkennung von Synonymen. Dabei analysieren wir die
Aspekte Dimensions- und Sparsity-Reduktion, Größe des Vektorraumes, und Qualität von
Vorhersagen zu semantischer Verwandtheit. Wir führen Vergleiche mit Vektorräumen der
gleichen Größe durch, die durch Singulärwertzerlegung (Singular Value Decomposition,
SVD) und die Auswahl der häufigsten Dimensionen (top-n) reduziert wurden.
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Es stellt sich heraus, dass unser Ansatz eine erheblich Reduktion der Anzahl der Di-
mensionen bewirkt und gleichzeitig eine kompakte Repräsentation und Speicherung des
Vektorraummodells erlaubt. Die Transformation erzielt auf dem wort-basierten Raum
bessere Ergebnisse als auf dem syntaktischen. In der Evaluationsaufgabe zur Bestimmung
von semantischer Verwandtheit von Wörtern schneiden die transformierten Modelle
zudem besser ab als in der Synonymauswahl. Sie übertreffen SVD in der Genauigkeit
(„accuracy“) und top-n in der Abdeckung („coverage“). Trotzdem verzeichnen wir Verluste
in der Genauigkeit im Vergleich mit dem ursprünglichen Vektorraum. Deshalb schlagen
wir zur Verbesserung von zukünftigen Experimenten vor, den Einfluss des Rauschens von
großen DErivBase-Cluster zu beschränken.
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1 Introduction

Semantic vector space models are widely used in language technology to capture the
meaning of words, phrases and documents. The crucial hypothesis, which lays the foun-
dation for distributional and statistical semantics, was first expressed by [Harris, 1954]
and then elaborated by many others (e.g. [Deerwester et al., 1990]). Named the distribu-
tional hypothesis, it states that words occurring in similar contexts tend to have similar
meanings. In order to subsume multiple proposed and experimentally supported hypothe-
ses in the field of distributional semantics, [Turney & Pantel, 2010] later formulated the
statistical semantics hypothesis stating that “statistical patterns of human word usage”
[Turney & Pantel, 2010] can be used to examine the meaning of words.
These distributional statistics are obtained by observing co-occurrence frequencies of
targets in predefined contexts [Turney & Pantel, 2010] in natural language corpora. Tar-
gets are represented by vectors in a co-occurrence matrix Mn×m with n targets T =

{t1, t2, t3, ..., tn} and m contexts C = {c1, c2, c3, ..., cm}: The jth value of the ith vector tells
how often the target ti is observed in the context cj. Measuring their vectors’ similarity
in the constructed vector space is hence a way to estimate the distributional similarity
between arbitrary targets. By choosing single words as targets, we can thus obtain a model
to predict semantic similarity between words.
The choice of the context influences the resulting matrix and its reliability to a high extent.
Essentially, the number of distinct contexts, that is the number of dimensions in the co-
occurrence matrix, and the contexts’ complexity have to be considered carefully. In the
field of lexical semantics, where the focus is on the meaning of words, it is common to
use single words or words combined with syntactical information as contexts (word space
models) instead of e.g., documents as in document space models [Deerwester et al., 1990].
Lexical semantic vector space models have successfully been applied to various tasks, such
as synonymy detection [Landauer & Dumais, 1997] (e.g. TOEFL multiple choice tasks),
word sense discrimination [Schütze, 1998], and similarity judgements [McDonald, 2000].
As Zipf’s law [Zipf, 1949] states, there are many infrequent words in natural language
utterances and only a few frequent ones, and each of the infrequent word co-occurs with
many other infrequent words, which increases the number of distinct contexts immensely.
This is why lexical semantic vector spaces tend to have high-dimensional matrices. On
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1 Introduction

the one hand, they heavily rely on the high number of dimensions in order to capture
the characteristics of the underlying corpus adequately. On the other, the high number
of dimensions in turn raises the problem of impaired coverage through sparsity1. As we
introduced in the abstract, sparsity has the positive effect of enabling an efficient storage
and representation for the model, but the influence on the model’s coverage is clearly an
undesirable consequence: Although a model might contain a high number of dimensions
and therefore represent the underlying language source precisely, the model will predict
zero similarities for a high number of word pairs. This is due to the lack of common
co-occurrences for these word pairs.
Dimensionality reduction techniques tackle this problem and aim to reduce the number
of dimensions in the vector space without losing information and accuracy. Truncated
Singular Value Decomposition (SVD), a common technique used for the reduction of
matrices in various fields of applications, performs quite well on semantic vector spaces,
but does not allow an intuitive linguistic interpretation of the reduced dimensions as
co-occurrence contexts.
With this thesis we introduce a novel approach of reducing the dimensions in semantic
vector spaces by transforming them with the help of a derivational resource. It results in
dimensionality-reduced vector spaces with dimensions that can be justified by intuition
and linguistic knowledge. The dimensions are formed by derivational families, that are
clusters of words derived from the same morphological root. Thus the transformed vector
space represents the co-occurrence statistics of words with derivational clusters, assuming
that an abstraction to the core meaning of a group of derivationally-related words is still
precise enough. The resource for the clustering is the German DErivBase resource devel-
oped by [Zeller et al., 2013]. In this thesis we focus on investigating the potential of this
dimensionality reduction technique applied to two types of lexical semantic vector spaces,
word-based and dependency-based spaces.
In the following we first introduce the reader to the basics of semantic vector spaces
and related work on this field in chapter 2, then establish the theoretical principles and
methods of our approach in chapter 3, and subsequently conduct some experiments in
chapter 4 including an application of word-based and dependency-based models to the
tasks of semantic relatedness scoring and synonym detection. The experimental results
will be evaluated, discussed, and explained in chapter 5 with regard to the reduction’s
efficiency, the transformed models’ size and their semantic reliability. Finally we conclude

1 The term “sparsity” describes the fraction of zero values in a matrix: if this is low, a matrix is regarded as
“sparse”, the opposite is a “dense” matrix.
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1 Introduction

in chapter 6 with an estimation of its applicability in the field of distributional semantics
and suggestions for further research.
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2 Related Work

In this section, we provide detailed background information about the aspects that were
mentioned in the introduction. First, the development and the methods of semantic vector
spaces in the field of lexical semantics are further elaborated, since they lay the foundations
for our work. Subsequently, we explain the principles of truncated SVD in detail, and then
present DErivBase, the resource that our approach for dimension reduction is based on.

2.1 Semantic Vector Spaces in Lexical Semantics

Formally, a semantic vector space is defined as a quadruple of 〈A, B, S, M〉 [Lowe, 2001],
where A is a lexical association function, B is a set of basis elements representing the
dimensions, S a similarity measure, and M a transformation that maps one space onto
another1. In the following we describe how a semantic vector space is constructed, and at
which construction steps these elements of the vector space are relevant.

1. Linguistic pre-processing:
As explained in the introduction, semantic vector spaces serve the purpose of cap-
turing the distributional statistics of language. These statistics need to be extracted
from a corpus, a collection of spoken or written text. This usually includes various
linguistic pre-processing steps, such as tokenization2, normalization3, and annota-
tion, for instance with Part-of-Speech (POS) tags, dependency paths or word senses.
The output of the linguistic pre-processing are word tokens or types, potentially

1 There are several definitions described in literature: For instance, [Padó & Lapata, 2007] define a semantic
vector space as a tuple with eight elements in order to find an adequate definition that optimally suits
both word-based and dependency-based spaces. Our focus is not on the parametrization and creation of
semantic vector spaces, but on the usage. This is why we adhere to a simpler definition that is sufficient
for our purposes.

2 Tokenization: split the text into single-word tokens
3 Normalization: normalize the text to word types, e.g., by a stemmer reducing tokens to their word stems
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2 Related Work

extended by annotations.

2. Recording co-occurrence events:
The linguistically processed texts are further processed mathematically. First, co-
occurrence events are recorded in a matrix with a vector for targets T and contexts
C as dimensions. It must be defined which parts of the linguistic environment are
considered as relevant context to each target. The relevant contexts are collected in
B, the set of basis elements for the vector space. The definition of contexts and the
subsequent categorization of semantic vector spaces is particularized later in this
section.

3. Weighting:
In order to normalize the frequencies (more frequent words should not gener-
ally be more similar), a lexical association or weighting function A is applied
to the matrix. Often-used weighting functions are Pointwise Mutual Informa-
tion (PMI, [Fano, 1961, Church & Hanks, 1990] and Local Mutual Information (LMI,
[Evert, 2005]). They are based on single and joint probabilities, computed from the
co-occurrence frequencies f (t, c) of a target t ∈ T with a context c ∈ C. f (∗, ∗) is the
marginal frequency, i.e., the sum of all values in the co-occurrence matrix. f (∗, c) is
the marginal frequency for each column (“How often does a context occur with any
target?”), and f (t, ∗) the marginal frequency for each row (“How often does a target
occur in any context?”).

PMI(t,c) ≡ log p(c|t)
p(c) = log p(t,c)

p(t) p(c)

LMI(t,c) ≡ p(t, c) log p(t,c)
p(t) p(c)

where p(t, c) = f (t,c)
f (∗,∗) , p(t) = f (t,∗)

f (∗,∗) , and p(c) = f (∗,c)
f (∗,∗)

4. Transformation:
The weighted matrix may also get transformed (defined by M) by external smooth-
ing methods which usually aim to increase the coverage for given tasks (section 2.3
presents a smoothing technique using DErivBase).
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5. Measuring Similarity:
The weighted and smoothed co-occurrence matrix can now be used to assess word
similarity. For two given target words P and Q, the similarity score is calculated
by applying a distance or similarity measure S to their according vectors p and q
in the multi-dimensional space. The most popular similarity measure is the cosine,
which produces scores between -1 and 1, -1 expressing minimal semantic related-
ness, 1 accordingly the maximal relatedness. From their similarity score we can
thus tell how semantically similar the targets P and Q are. Note that the cosine pre-
dicts a similarity of zero if there is no common context that both targets co-occur with.

simcos =
p·q
‖p‖‖q‖ =

∑n
i=1 pi×qi√

∑n
i=1(pi)

2×
√

∑n
i=1(qi)

2

The semantic similarity that we analyse is the attributional similarity: We measure the
correspondence of the targets’ properties or attributes, which are defined by the vector
space’s contexts. The definition of the contexts is thus crucial to the nature of the similarity
estimates that we obtain.
By intuition we understand the context of a word as its neighbouring words.
[Salton et al., 1975] coined the term of “bag of words” that describes a method to capture
these neighbouring words. It is defined as a multiset, a set that allows duplicates. The bag
of words for each target is constructed by collecting the words that occur around the target
word in a certain context window. A window of ±5 for instance means that we consider
the five words before the target and the five words after the target. Usually, function words
and very frequent and therefore uninformative words are filtered out. Vector space models
that use this bag-of-words representation are referred to as word-based models.
Word-based models are simple to construct as they do rely on the mere counting of words.
However, the drawback is that they do not contain any information about the linguistic
structure that connects the target and the context words. It might for example be important
to make a distinction in the concept of two words if one of them only occurs in subject
position of the verb “eat”, and the other as direct object. The “eater”, for instance a horse,
and the “eaten”, for instance an apple, would otherwise get assigned a very high similarity,
even though they represent distinct concepts (an animal and a fruit, respectively). This
example illustrates that the use of unstructured context information leads to a rather coarse
representation of semantic relatedness.
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[Padó & Lapata, 2007] therefore introduced another category of semantic vector spaces
that makes use of syntactic dependency information between the targets and their context
words. They are referred to as “dependency-based” vector space models. Contexts can be
defined as pairs of syntactic dependency links and context words. For instance, “Horse”
and “apple” in this representation would only get assigned a minor similarity, as the
former often co-occurs with the context “subj-eat” and the latter with “obj-eat”. This more
structured notion of context allows a finer-grained and deeper estimation of the semantic
similarity between words.
[Baroni & Lenci, 2010] developed the Distributional Memory (DM), a framework for distri-
butional semantics that represents distributional information not in the form of a traditional
multidimensional vector space, but in a three-dimensional tensor. The tensor contains
weighted word-link-word triples, where links are dependency links that connect both
words. The weights for the triples are LMI-weighted corpus counts (“How often does
each word-link-word combination occur in a given corpus?”). The tensor representation
allows a more flexible application compared to traditional vector spaces: Instead of con-
structing one vector space for each purpose, several vector spaces can be derived through
matricization from the same single tensor. One can for example build a word by word-link
vector space, where targets are words and dimensions are pairs of links and words, but
also a word by word (i.e., word-based) vector space, or a word-word by link vector space.
Depending on their type, the resulting vector spaces model thus model different aspects
of distributional semantics, e.g., word similarity (word by word-link or word by word
spaces) or semantic relations (word-word by link space).
[Padó & Utt, 2012] implemented DM for German and constructed DM.de through parallel
induction from English to German with words, links and weights extracted from the
SdeWaC corpus (see 4.1.1 for more details about SdeWaC). We use vector spaces built
from DM.de in our experiments, where the dependency links essentially influence the
transformation. Therefore we take a closer look at the characteristics of the dependency
links used in DM.de. The links include unlexicalized syntactic patterns like “subj-tr”, “iobj”,
or “verb”, and lexicalized patterns, like “n1 prep n2” or “n1 verb n2”, where n1 and n2

represent the words that occur in the specific syntactic dependency. From a sentence like
e.g., “Der Taxifahrer parkt das Auto im Halteverbot”, the following triples are collected:
“Taxifahrer, subj-tr, parken”, “parken, in, Halteverbot”, “Auto, obj, parken”, “Taxifahrer,
parken, Auto”. Also inverse links, marked with “-1”, are processed accordingly: “parken,
subj-tr-1, Taxifahrer”, “Halteverbot, in-1, parken”, “parken, obj-1, Auto”, “Auto, parken-1,
Taxifahrer”.
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2.2 Dimension Reduction with SVD

We explained in the introduction that semantic vector spaces, especially dependency-based
vector spaces for their higher number of distinct contexts, are prone to the problem of
sparsity. Truncated SVD (see e.g. [Cline & Dhillon, 2006]) is a dimension reduction tech-
nique that was applied to semantics4 by [Deerwester et al., 1990] in their Latent Semantic
Analysis (LSA), inspired by Latent Semantic Indexing (LSI) that is used in the field of
information retrieval [Hofmann, 1999]. LSA discovers latent meaning components of the
original matrix that form the new dimensions. This is achieved by applying truncated
SVD on a word-context (e.g. paragraphs) matrix. SVD performs a matrix factorization
by decomposing the original matrix into its singular values and right- and left-singular
vectors. By selecting the top k eigenvalues (=truncating the matrix) and recomposing a
matrix from it, it subsequently approximates the original matrix in a lower dimensional
space: The original matrix An×m is decomposed into the product of the three matrices U,
Σ, and VT.

A U Σ VT
= x x

m

n

m

n

n

n

n

k k

k k

nk

Figure 2.1: Truncated Singular Value Decomposition: The original matrix An×m is

approximated in a lower-dimensional (here: k-dimensional) space by the product of

the truncated matrices U, Σ and VT.

U contains derived left-singular vectors, VT contains right-singular vectors. In both matri-
ces all vectors are linear independent. Σ is a square diagonal matrix (non-zero values only

4 SVD is a highly interdisciplinary used method for dimension reduction and particularly established in
signal processing and pattern recognition.
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in the cells along the diagonal) with sorted (descending) singular values. They represent
the amount of variance in the original matrix that is captured by each dimension. By
selecting the top k dimensions (highlighted in grey in figure 2.1) we ignore the least n-k
singular values and linked left-singular and right-singular vectors. From these dimensions
a matrix with lower dimensionality An×k is constructed by the product of the three trun-
cated matrices.
The most variant dimensions are selected since they bear the highest degree of relevant
information, i.e., they contribute best to a meaningful representation of words in the
semantic vector space. [Deerwester et al., 1990] found that LSA performed on a synonym
tests equally well as the average of sample students which allowed them to draw parallels
to human learning.

2.3 DErivBase: Construction and Application

Our dimension reduction technique is based on derivational information. This informa-
tion is extracted from DErivBase, a derivational resource for German. As introduction to
DErivBase, we will first report how it was built and then present one approach that uses
DErivBase for smoothing of semantic vector spaces.

The motivation behind DErivBase was to build a high-coverage derivational knowledge
for German, a morphologically rich language. [Zeller et al., 2013] proposed a rule-based
framework for inducing derivational families and applied it to create the German resource
DErivBase.
Surface-based derivation rules for nouns, adjectives and verbs were defined with the help
of linguistic textbooks. A rule might for example describe how the noun “Tag” (“day”)
is adjectivized to “täglich” (“daily”). The rules were applied to lemmas extracted from a
POS-tagged version of SdeWaC ([Faaß & Eckart, 2013], see 4.1.1 for more details) to induce
derivational families, each family containing all lemmas that were derived from an input
lemma. Each pair of lemmas in a family is thus connected by a derivational rule path of a
certain length.
For example the input lemma “Gespenst_Nn” (“ghost”) was adjectivized to “gespenst-
isch_A” and “gespenstig_A” by suffixation (DErivBase rules “dNA05” and “dNA02”).

9
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“Gespenstische_N” was furthermore formed by nominalization through suffixation (rule
“dAN01”) of the adjective, such that the whole derivational family for the input lemma
“Gespenst_Nn” is: “Gespenstische_N Gespenst_Nn gespenstisch_A gespenstig_A”.
[Zeller et al., 2013] provide their resource in two different formats: “DErivBase-v1.4.1-
families.txt”, where all families are listed as clusters, and “DErivBase-v1.4.1-rulePaths.txt”,
where each two lemmas are connected with their derivational rule path. Also the deriva-
tional rules, such as “dNA01”, are listed and explained. The current version 1.4.15 covers
280,336 lemmas which are grouped into 17,314 non-singleton families and 210,899 single-
ton families. In a quantitative evaluation against manual annotations, the current version
achieves a precision of 85%, and a recall of 91%.

Derivationally related words are assumed to generally show a high degree of semantic
relatedness. They share the same morphological root, for the above example this would be
“gespenst”, which is the foundation of their individual meaning. To the basis meaning of
“gespenst” describing a ghost, the derived words add some word-class specific meaning.
The adjectives “gespenstig” and “gespenstisch” for instance describe the essence of being
a ghost or the attributes of a ghost.
Derivational relatedness was therefore employed in several semantic applications as in
question answering [Jacquemin, 2010] and textual entailment [Szpektor & Dagan, 2008].
[Padó et al., 2013] furthermore used the derivational information from DErivBase for
smoothing semantic vector spaces, in order to increase the coverage of sparse dependency-
based vector spaces. In a given vector space, the vector for the target “Gespenst_Nn” might
for instance be quite dense, whereas the vector for “gespenstig_A” might be rather sparse
due to its infrequent use in the underlying corpus. Since those two targets are semantically
closely related, their vectors should be similar, too. Derivational smoothing makes use
from this connection and re-calculates the vectors for words under the influence of the vec-
tors representing derivationally related words. [Padó et al., 2013] therefore implemented
and evaluated several manners of operationalizing this idea. On the semantic similarity
prediction task (see 4.1.4.2 for details about the task), they achieved an improvement in
correlation with manual annotations, and coverage (nearly 7% and 50%, respectively).
On a synonym choice task (see 4.1.4.3 for details about the task) derivational smoothing
increased the coverage by 7% but impaired the accuracy slightly.

5 For details about version-dependent changes refer to http://www.cl.uni-heidelberg.de/~zeller/

res/derivbase/derivbase_doc.txt.
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Consequently, their work has demonstrated that derivational knowledge can be used to im-
prove the coverage of semantic similarity estimates in syntactic vector spaces.

11



3 Methods for Dimensionality
Reduction with DErivBase

The motivation for this work is similar to the approach of [Padó et al., 2013] to perform
derivational smoothing: We tackle the issue of sparsity in semantic vector space models by
profiting from derivational information.
However, our approach does not fall into the category of smoothing, since it addresses
the general characteristics of the vector space as a whole. Smoothing addresses the vec-
tor space’s targets and aims to back-off for single poorly-covered items. Dimensionality
reduction techniques directly affect the origin of sparseness: the number of dimensions.
They can be applied before actually filling the vector space’s matrix with co-occurrence
counts, whilst smoothing works on a ready-made vector space with a filled matrix and
uses already computed vectors. Hence, both smoothing and transformation can potentially
be combined and are not mutually exclusive.
Our vector space transformation is based on the fact that derivationally related words tend
to show a high degree of semantic similarity. This allows us to generalize over derivational
families and reduce the meaning of words to the elements of meaning that all family
members share. Specific characteristics are not important for the group of words, e.g.,
the information about their word classes. Nonetheless, the abstraction should not lead to
overgeneralization that could result from removing essentially distinctive properties of
the words’ co-occurrence statistics.
Another advantage of our DErivBase transformation is that the dimensions itself remain
intuitively understandable, which is not the case for SVD-transformed dimensions re-
presenting latent dimensions. In addition to that, it is less costly and less mathematically
complex than SVD and related mechanisms in the case of extremely large matrices.

In the following sections we provide formal definitions for the vector space transformation
with DErivBase. Since dimensions are differently defined in word-based and dependency-
based models, distinctions between their transformations are required. First we will
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address the transformation of word-based vector spaces and then continue with the
transformation of dependency-based spaces.

3.1 Transformation of Word-based Vector Spaces

We start with a given word-based vector space Vw with target words T = {t1, t2, t3, ..., tn}
and basis elements (or dimensions, also words) W = {w1, w2, w3, ..., wm} and a deriva-
tional resource DR containing derivational clusters D = {d1, d2, d3, ..., dp}.
A DErivBase transformation partitions the original dimensions W into equivalence classes.
Formally, we define a DErivBase transformation as a function dt that assigns each dimen-
sion w ∈ W an equivalence class w′ ∈ W ′. It features a transformation condition and a
transformation scheme. The transformation condition defines how the new dimensions
W ′ are formed, and the transformation scheme defines how the co-occurrence weights
for the new dimensions W ′ are computed. We combine these two parameters to clearly
name and distinguish between several transformations, add-words for instance stands for
a DErivBase transformation that uses the words condition and add scheme. In the follow-
ing we define several transformation conditions and schemes for word-based vector spaces.

words: dtw : w 7→ P(w)

such that dtw(w) =

{v | v ∈ d } if ∃d ∈ D : w ∈ d

{w} else

The words transformation condition is characterized by: w ∈ d and v ∈ d, which indicates
that both original dimensions w and v must be found in the same family to be assigned
the same equivalence class.
We name the new dimensions after their source, such that a new dimension representing a
derivational family is labelled with the derivational families index in the DErivBase data
set, and a dimension that was not affected by the transformation (the “else”-case) keeps its
label. Given for instance the dimensions W = { f fahren, Fahrer, Straße, Motor, motorisiert,
Radweg}, the words-transformation creates the set of new dimensions W ′ = {18, Straße,
886, Radweg}, as DErivBase family no. 18 contains both “fahren” and “Fahrer”, and no.
886 contains “Motor” and “motorisiert”.

13
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The new dimensions are represented by sets of words, and their meaning somehow needs
to get composed from the meaning of the single words. We propose three transformation
schemes for this purpose:

• add: The co-occurrence weight for the target t with new context w′ is the sum of all
co-occurrence weights for the target t with all contexts w, where dtw(w) = w′.
Adding up co-occurrence weights implies that we understand the meaning of a
cluster as the sum of the meanings of its components, such that the cluster holds all
characteristics of its components.

• multiply: The co-occurrence weight for the target t with new context w′ is the product
of all co-occurrence weights for the target t with all contexts w, where dtw(w) = w′.
When we multiply weights to produce the weight for the whole cluster, we create
a cluster that is represented by the features that all of its components share, since
multiplication with a zero component weight leads to a zero target weight.

• avg: The co-occurrence weight for the target t with new context w′ is the arith-
metic mean of all co-occurrence weights for the target t with all contexts w, where
dtw(w) = w′.
By averaging the components’ weights in the cluster we understand the cluster’s
meaning as an average of the components’ meaning, such that the cluster still holds
all their characteristics, but not as strongly as each single component.

The effects of the above transformation schemes are illustrated in the example vector spaces
in tables 3.1 to 3.7 and the resulting similarity scores (cosine similarity). The vector space
referred to as “plain” describes the vector space before the transformation. Changes due
to the transformation scheme are marked in bold. In the lists of similarity predictions, the
highest values within each list are marked: The word pairs obtaining the highest semantic
similarity score are predicted to be most semantically similar.

Table 3.1: Plain: co-occurrence frequency vector space
fahren Fahrer Straße Motor motorisiert Radweg

Auto 20 1 5 4 0 1
Bus 2 13 5 1 9 0
Fahrrad 14 5 8 0 1 8
Fußgänger 1 0 17 0 0 2
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Table 3.2: Plain: similarity predictions
lemma1 lemma2 simcos
Auto Bus .23
Bus Fahrrad .45
Fahrrad Fußgänger .52
Auto Fahrrad .85
Bus Fußgänger .30
Auto Fußgänger .30

Table 3.3: Add-words-transformed vector space
18 Straße 886 Radweg

Auto 21 5 4 1
Bus 15 5 10 0
Fahrrad 19 8 1 8
Fußgänger 1 17 0 2

Table 3.4: Add-words: similarity predictions
lemma1 lemma2 simcos
Auto Bus .87
Bus Fahrrad .73
Fahrrad Fußgänger .30
Auto Fahrrad .85
Bus Fußgänger .21
Auto Fußgänger .20

Table 3.5: Multiply-words-transformed vector space
18 Straße 886 Radweg

Auto 20 5 0 1
Bus 26 5 9 0
Fahrrad 70 8 0 8
Fußgänger 0 17 0 2

Table 3.6: Multiply-words: similarity predictions
lemma1 lemma2 simcos
Auto Bus .90
Bus Fahrrad .92
Fahrrad Fußgänger .09
Auto Fahrrad .96
Bus Fußgänger .12
Auto Fußgänger .17

Table 3.7: Avg-words-transformed vector space
18 Straße 886 Radweg

Auto 10.5 5 2 1
Bus 7.5 5 5 0
Fahrrad 9.5 8 0.5 8
Fußgänger 0.5 17 0 2

Table 3.8: Avg-words: similarity predictions
lemma1 lemma2 simcos
Auto Bus .77
Bus Fahrrad .59
Fahrrad Fußgänger .39
Auto Fahrrad .69
Bus Fußgänger .32
Auto Fußgänger .30

We need to take into account that both transformation condition and scheme influence
both coverage and accuracy of the transformed vector space’s performance:
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The transformation condition controls the extent of the dimensionality reduction and
thereby the number of dimensions in the transformed vector space. A high number of
dimensions generally increases the risk of higher sparsity and a consequently lower cover-
age. But a low number of dimensions increases the risk of overgeneralization resulting in
lower accuracy. The transformation scheme affects the accuracy by defining the magnitude
of the co-occurrence weights, but also the coverage when producing zero values.
Therefore it is not a trivial task to find the optimal combination of transformation condition
and scheme and the best trade-off between coverage and accuracy for a given application
or task.

3.2 Transformation of Dependency-based Vector Spaces

Given a dependency-based vector space Vd with target words T = {t1, t2, t3, ..., tn} and
basis elements, here pairs of words w ∈W and dependency links l ∈ L, and a derivational
resource DR containing derivational clusters D = {d1, d2, d3, ..., dp}, we have more options
to define transformation conditions than for a word-based vector space.
The transformation with the words condition is defined analogously to the word-based
transformation described above (section 3.1) with slight changes due to the dimensions’
〈word, link〉-pair structure:

words:

dtd1 : (LxW) 7→ P(LxW)

such that dtd1(〈l, w〉) =

{〈l′, v〉 | v ∈ d } if ∃d ∈ D : w ∈ d

{〈l′, w〉} else

This transformation is well-suited for word-based models, but when applying it to
dependency-models we are forced to ignore the dependency links completely. In or-
der to integrate this information into our transformed vector space, we define another two

16



3 Methods for Dimensionality Reduction with DErivBase

transformations:

wordlinks:

dtd2 : (LxW) 7→ P(LxW)

such that dtd2(〈l, w〉) =

{〈l′, v〉 | v ∈ d ∧ l′ = l} if ∃d ∈ D : w ∈ d

{〈l′, w〉} else

wordsimlinks:

dtd3 : (LxW) 7→ P(LxW)

such that dtd3(〈l, w〉) =

{〈l′, v〉 | v ∈ d ∧ l′ ∈ s(l)} if ∃d ∈ D : w ∈ d

{〈l′, w〉} else

where s defines “similar” link types s : L 7→ P(L)

such that s(l) =

{"obj", "iobj"} if l = "obj" ∨ l = "iobj"

{l} else

It is rather difficult to define which types of links can be considered as similar in dtd3 and
definitively needs further exploration, but we decide to follow a conservative approach,
only defining “obj” and “iobj” to be similar.
We expect words to behave similar in dependency-based models and word-based models,
as its effect can be understood as a reduction of the dependency-based vector space to
its word-based contents. This will allow a comparison between both models, though
constructed differently, but will make the dependency-based model lose the information
about syntactic relations. So we expect to find a potential drop in accuracy, but a high
coverage, as the transformation will reduce the numbers of dimensions drastically.
Wordlinks, by contrast, is expected to behave in a converse manner: Since all syntactic
information is kept, but the transformation’s impact on the dimensionality is not that
strong, we estimate the accuracy to be higher than for words, and the coverage to be lower.
Wordsimlinks can be regarded as trade-off between both: It is assumed to provide an
increased accuracy compared to words, since the dependency information is not completely
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ignored, but we expect it to have a slightly higher coverage than wordlinks, as it abstracts
over a smaller number of link types.
Given for instance the dimensions W={〈 subj-1, fahren〉 , 〈iobj, Fahrer〉 , 〈obj, Fahrer〉 , 〈auf,
Straße〉 , 〈iobj, Motor〉 , 〈Fahrzeug-1, motorisiert〉 , 〈auf, Radweg〉}1, the words-transformation
creates the set of new dimensions W ′words = {18, Straße, 886, Radweg}, the same as for
the word-based model (see 3.1). Wordlinks leaves the dimensions unchanged as there
are no dimensions that occur in the same derivational family and have the same link.
Wordsimlinks creates the dimensions W ′wordsimlinks = {〈subj-1, fahren〉 , 〈{obj, iobj}, Fahrer〉
, 〈auf, Straße〉 , 〈iobj, Motor〉 , 〈Fahrzeug-1, motorisiert〉 , 〈auf, Radweg〉}, hence reduces the
number of dimensions by one by aggregating “〈iobj, Fahrer〉” and “〈obj, Fahrer〉” as we
defined “iobj” and “obj” as similar.
The transformations themselves are computed just as described for the word-based model
(see 3.1). We change the multiply transformation scheme slightly, such that only non-zero
weights contribute to the weight for a new dimension. This modification was made
because we found in experiment 1 that multiply models suffer from their high number of
zero values.

1 In the notation for dependency links, we use “-1” to represent inverse links (see section 2.1)
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In this chapter we report on experiments with first word-based, and then dependency-
based vector space models.
For each transformed model, we subsequently characterize the effects caused by the
transformation, evaluate the new models on two semantic tasks, and finally present and
summarize the results.

4.1 Experiment 1: Word-based Vector Spaces

4.1.1 Data

For our experiments with word-based vector spaces, we use a word-by-word co-occurrence
matrix extracted from the SdeWaC corpus. SdeWaC [Faaß & Eckart, 2013] contains a large
collection of sentences from websites from the .de top-level domain 1. The corpus was
lemmatised, POS-tagged with TreeTagger [Schmid, 1994] and dependency-parsed with
the MST Parser [McDonald et al., 2006]2 including a MATE-Backup [Bohnet, 2010] for un-
known lemmas. The 10,000 most frequent lemmas form the dimensions of the vector space,
and all lemmas with a frequency over three form the target words, resulting in a matrix of
the size 280,266×10,000. Hereinafter it is referred to as plain.
A context window of ±5 words within a sentence was used when extracting the co-
occurrence counts. From the frequency counts we additionally constructed a matrix
weighted with Positive PMI since this weighting function is considered to perform well in
combination with the cosine similarity measure especially in word-context matrices, as
examined by [Bullinaria & Levy, 2007]. Positive PMI (PPMI) is the same as PMI, but all
negative values are set to zero. Altogether we obtain two vector spaces, each having a
differently weighted matrix but identical dimensions and targets.
The matrix with frequency counts is 96.22% sparse, i.e., 96.22% of the contained values are
zero. Even more sparse is the PPMI weighted matrix with 97.24% zeros.

1 Available at http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/sdewac.html
2 Available at http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html
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For the transformation of the two vector spaces we use the collection of derivational fami-
lies of DErivBase version 1.4.13 without the information about derivational rules.

4.1.2 Transformation

The transformed vector spaces have new basis elements, which are the same for all trans-
formation schemes, and new weights, which depend on the transformation scheme. The
targets remain unchanged.
In case of the word-based vector spaces we applied the three transformation schemes add,
multiply and avg (see 3.1 for definitions) to the frequency-based and to the PPMI weighted
matrix. Since PPMI works with marginal probabilities, we applied the transformation
schemes add and avg before and multiply after the computation of PPMI values to the
frequency-count matrix.
In word-based vector spaces no syntactic information is accessible, so the only transforma-
tion condition that can be used here is words.

4.1.3 Baselines

We compare our novel approach of dimension reduction to common and well-established
approaches. The simplest and least costly way of dimension reduction is the technique
to only consider the top n dimensions of a given matrix. The top n dimensions are the n
most frequent dimensions (or the ones with the highest marginal sum of LMI weights,
see [Padó & Lapata, 2007]). By selecting them, it is ensured that they produce a low
number of zeros in the co-occurrence matrix, because they have the maximal number of
co-occurrences with the given targets. Although this approach seems attractive for its
simplicity, it is in fact not very sophisticated, as it discards information, that is the co-
occurrence information from the least (d-n) dimensions (if d is the number of dimensions).
Truncated Singular Value Decomposition (see e.g. [Cline & Dhillon, 2006]), by contrast,
clearly avoids to discard any information and instead tries to approximate the original
matrix and the inherent components as closely as possible. This is the reason why using
(truncated) SVD for dimension reduction in distributional semantic vector spaces is a

3 Available at http://www.cl.uni-heidelberg.de/~zeller/res/derivbase/
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common and well-proven procedure, as described in section 2.2.
We compare the characteristics of dimensionality-reduced vector spaces and their per-
formance on semantic evaluation tasks in order to identify strong and weak points of
our novel approach and to help to estimate in which cases it is can be used preferably to
truncated SVD or top-n selection for dimension reduction.
For a fair comparison, all three reduction techniques should reduce the given vector space
to the same size, such that n of top-n is equal to the number of dimensions in the DErivBase-
transformed vector space and the parameter k in truncated SVD. For readability reasons
the models transformed with these techniques are referred to as top-n and SVD.4

The following section reports on the methods and results of a quantitative and qualitative
comparison with the two baselines.

4.1.4 Evaluation

4.1.4.1 Sparsity and Dimension Reduction

Table 4.1 documents the impact of DErivBase transformations and the baseline transfor-
mations on the matrix. For our research purpose it is important to consider not only the
transformed matrices’ size, but also their sparsity, as it allows inferences about the models’
coverage. Furthermore it is interesting to consider the absolute number of non-zero values,
as it allows to estimate the models’ efficiency in storage. A low number of non-zero values
indicates that the information captured by the model is storable in a very compact manner,
whereas a high number indicates the opposite.

The DErivBase transformation causes a reduction of dimensions by over a half. All the
co-occurrence information is now captured in approximately one third of the number
of non-zero values of the original matrix. In comparison to the baseline models, the
DErivBase-transformed models provide the most compact representation.
The original model with frequency counts is 96.22% sparse, PPMI weights raise the sparsity
to 97.24%. We generally observe that PPMI weighted matrices are sparser than according
matrices with raw frequency weights, which is due to the inherent characteristics of the
PPMI measure: Zeros that already occurred in the frequency matrix stay zeros in the

4 SVD was computed with MATLAB’s (version 8.3) built-in function svd(X).
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Frequencies PPMI Weights
Model Dimensions Sparsity Non-zero values Sparsity Non-zero values
plain 10,000 96.22% 105,844,861 97.24% 77,422,002
words add 5,291 95.16% 71,771,750 96.05% 58,574,053

multiply 5,291 99.17% 12,307,965 99.37% 9,342,191
avg 5,291 95.16% 71,771,750 96.05% 58,574,053

SVD 5,291 0.00% 1,482,887,406 0.02% 1,453,229,658
top-n 5,291 94.44% 82,448,540 96.04% 82,411,138

Table 4.1: Dimensionality, sparsity reduction, and non-zero values of word-based
models

PPMI weighted matrix, since the joint probability is zero in these cases. Additional zeros
originate from those cases where the joint probability of a context and a target is smaller
than the product of their individual probabilities, such that the log of the quotient, which
is <1, turns <0 and is set to zero in PPMI. Joint probabilities generally tend to get extremely
small in vector spaces with high sparsity.
For both weighting schemes, add and avg reduce the models’ sparsity by approximately 1%.
Multiply by contrast increases the sparsity up to over 99%, due to the fact that a product is
zero as soon as one factor is zero. Here the factors are co-occurrence counts for a target and
a word from a certain derivational family. If only one member of the derivational family is
assigned a zero co-occurrence count, the count for the whole derivational family in the
transformed matrix is also zero. For add and avg, zero counts are easily “repaired” and a
target only needs to co-occur with one member of a derivational family to get assigned a
non-zero count for the whole derivational family.
Note that the SVD baseline does not permit a perfectly proper comparison here, as it
was performed on a matrix containing only the targets needed for our evaluation tasks
due to computational efficiency reasons. Nevertheless, the zero percent sparsity of the
SVD-transformed model is striking. Assuming an equal distribution of zeros over the
targets, a projected sparsity to the numbers of all targets would still not exceed 5% in both
models. A detailed analysis and explanation is provided in the discussion in chapter 5.
The top-n reduction technique does not reduce the sparsity to such a high extent as SVD
does, but the reduction is still remarkably higher than the ones caused by the DErivBase
transformations. This effect is easily explained, as selecting the dimensions with the high-
est marginal frequencies (or PPMI weights) decreases the likelihood that these dimensions
are filled with zero values.
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4.1.4.2 Word Similarity

Lexical semantic vector spaces are most widely applied for indicating semantic similarity
between words, by measuring the similarity of the corresponding vectors.
For German, the Gur350 dataset [Gurevych, 2005]5 is well-suited for evaluating the ability
of a vector space to model word similarity. The data set is a collection of 350 German
word pairs with a human annotated 6 discrete relatedness score between 0 (meaning fully
unrelated) and 4 (fully related) and the standard deviation of the annotated scores. The
pairs cover all types of semantic relatedness, also across word classes. The following lines
are extracted from the data set and each contain a word pair, their annotated similarity
score and the standard deviation.

leben Tod 3.25 1.38873015

Linguistik Wissenschaft 3.5 0.534522484

Studium studieren 4 0

viel schreiben 0.375 0.51754917

By evaluating our models on this data set, we aim to detect how well the DErivBase-
transformed models, in comparison to the SVD and top-n baseline models, are able to
retain and predict semantic relatedness.
For this task we measure the Pearson correlation of the models’ predicted similarity scores
with the human gold annotation for each word pair. Pearson’s r is a correlation coefficient
that measures linear correlation or dependence between two variables, giving values in
the (inclusive) interval between +1 and -1 (+1 stands for fully positive correlation, -1 for
fully negative correlation). In our case we compute the Pearson correlation r for the pairs
(Xi,Yi) where Xi is the gold annotation score for the ith pair in the data set, and Yi is the

5 Available at www.ukp.tu-darmstadt.de/fileadmin/user_upload/Group_UKP/data/datasets.zip
6 Eight annotators, inter-annotator agreement: 0.69
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model’s cosine similarity score for the same pair, as follows:

r = ∑n
i=1(Xi − X̄)(Yi − Ȳ)√

∑n
i=1(Xi − X̄)2

√
∑n

i=1(Yi − Ȳ)2

with sample means X̄ =
1
n

n

∑
i=1

Xi and Ȳ =
1
n

n

∑
i=1

Yi (4.1)

Coverage is measured by the proportion of word pairs that is assigned a similarity score
> 0 by the examined model, as zero scores imply that the model is not able to make a
prediction for this pair.

For our word-based setting with three transformed models, the plain model and the two
baselines, we observe the results listed in table 4.2. The highest figures each are marked in
bold.

Model Pearson’s r Coverage
plain .656 .840
words add .660 .840

multiply .630 .840
avg .663 .840

SVD .661 .840
top-n .666 .840

Table 4.2: Correlation and coverage of word-based models for the word similarity
task

The plain model obtains a correlation of 0.656. All other models maintain the plain
model’s coverage, and simultaneously manage to increase the correlation (except for the
multiply-words-transformed model). Of the DErivBase-transformed models, the avg-
words-transformation causes the strongest rise in correlation up till 0.663.
SVD scores minimally lower (-0.002) than the avg-words-transformed model, but top-n
yields best overall results with a correlation coefficient of 0.666.
According to the method of measuring significance introduced by [Fisher, 1925], none of
the transformed vector space produces significantly different similarity scores for the word
similarity task at p = 0.05 compared to the plain model.
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4.1.4.3 Synonym Choice

The second semantic evaluation task deals with synonyms. Synonymy is a specific type
of semantic similarity: if two words are maximally similar, they are synonyms to each
other. In a way, the ability of predicting synonymy is already tested in the word similarity
task in the preceding section, since synonymy is included in the data set’s various types
of semantic relatedness. However, it is not only important for applications in natural
language processing to correctly predict a degree of similarity for a isolated pair of words,
but also to properly classify and rank the similarity of several word pairs in relation. For
example, a semantic model should not only detect that house and garage are quite related
and similar, but also that villa and house are even more similar in their semantics.
For English, this ability is often evaluated on the TOEFL synonym choice task
[Landauer & Dumais, 1997]. In the same manner, we use the German equivalent, the
“Reader’s Digest Word Choice Problems for German”7 [Wallace & Wallace, 2005]. The data
set contains 984 tasks, with one target and four candidates each, for instance:

Flora

a) kleines Insekt

b) Tierreich

c) Pflanzenwelt

d) Blütenpracht

The task is to select the synonym for a given target from the four possible candidates (here
candidate c)). Many tasks involve phrases instead of single words as targets and answer
candidates. There are two alternative ways of evaluating a system’s performance on the
tasks introduced by [Mohammad et al., 2007]:

1. Alpha: The system only processes tasks, if the scores for all four candidates are
greater than zero, assuming that the system is not able to make a proper prediction
with a solid base of information if not all four answers are covered.

7 Available at
http://www.ukp.tu-darmstadt.de/fileadmin/user_upload/Group_UKP/data/

germanWordChoiceProblems.txt
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2. Beta: The system processes a task as soon as one of the candidates’ score is greater
than zero, assuming that a single score greater than zero provides already enough
information to make a choice between the candidates.

To put it in other words, the alpha version allows merely safe decisions with a high thresh-
old of information needed to support the chosen candidate, whereas the beta version
already goes with “riskier” decisions based on less information to enable a wider coverage.
Coverage is measured as the proportion of tasks that gets processed (depending on alpha
or beta version). Each correctly answered task contributes to a score for each system (+1),
where ties give partial scores: A 4-way tie contributes one quarter to the score (+.25), a
3-way tie one third to the score (+.3), a 2-way tie one half (+.5). On the basis of this score,
the accuracy is calculated (=score/covered). Thus, the accuracy represents the share of
the covered tasks that are answered correctly, that is when the correct answer of the four
possible answers is chosen.
As synonyms are characterized by maximal semantic similarity and we can assess semantic
similarity in semantic vector spaces by vector similarity, we can detect synonyms from a
range of pairs by choosing the pair with maximal vector similarity. Like that, we try to
identify the correct candidate for a given target from the word choice data set by choosing
the candidate that has the highest target-candidate similarity score.
It is somewhat problematic that candidates and targets occur as phrases of multiple words,
for our model is not designed for assessing the similarity of phrases. Following the
approach of [Padó & Utt, 2012], we solve this problem by systematically choosing the
maximal similarity score from all the words contained in the phrases.

The plain model, the transformed models, and the baselines yield the results documented
in Table 4.3.

Alpha evaluation: The plain model achieves a score of 252, resulting an accuracy of 70% and
a coverage of 36.6%. Our best DErivBase transformations manage to increase the score and
the number of covered tasks by one each, raising accuracy and coverage by approximately
0.1%. add and avg score equally well, whereas multiply performs significantly worse. SVD
loses two points of the score whilst covering the same number of tasks, so in comparison
with the plain model, it suffers a slight loss in accuracy. The top-n baseline has the lowest
accuracy and coverage of all models (except multiply).
It is worth noticing that our add-words-transformed model performs best in accuracy, even
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Alpha Beta
Model Score Covered Acc. Cov. Score Covered Acc. Cov.
plain 252 360 .700 .366 379 587 .646 .597
words add 253 361 .701 .367 344 587 .635 .597

multiply 170 281 .605 .286 320 572 .559 .581
avg 253 361 .701 .367 375 587 .639 .597

SVD 250 360 .694 .366 368 587 .627 .597
top-n 246 358 .687 .364 366 587 .624 .597

Table 4.3: Accuracy (Acc.) and coverage (Cov.) of word-based models on the word
choice task

better than the double-sized plain model.
Beta evaluation: As expected the number of items and scores are generally higher in the
beta evaluation than in the alpha version. Simultaneously, the accuracy for all models
is lower, as it makes “riskier” predictions than before (see 4.1.4.3). The plain model
covers 59.7% of all tasks, with an accuracy of 64.6%. The add-words- transformed model’s
accuracy is now, in contrast to the alpha evaluation, lower (-1.7%) than the plain model’s
accuracy. The multiply performs even worse. Now it is avg to perform best of all DErivBase-
transformed models, but it fails in improving the plain models accuracy decreasing it by
1.1% to 63.9%. Still it scores better than both SVD and top-n baseline models, which achieve
an accuracy of 62.7% and 62.4% respectively.
Again, a significance test revealed that none of the transformed vector space produces
significantly different similarity scores for the synonym choice task at p = 0.05 compared
to the plain model.

To summarize the experiments for the word-based vector spaces: The DErivBase transfor-
mation reduces the plain vector space’s dimensionality by almost half, yet the observed
reduction in sparsity is only marginal. However, the DErivBase-transformed models stand
out for their compact storage of co-occurrence information.
For the word similarity task, the correlation is found to be highest for the top-n baseline,
but still the avg/add-transformation models performs better than plain. For the syn-
onym choice task (alpha evaluation), the DErivBase-transformed models actually perform
best.
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4.2 Experiment 2: Dependency-based Vector Spaces

4.2.1 Data

For the dependency-based vector space, we use a matricization of DM.de [Padó & Utt, 2012]8,
the German equivalent of the Distributional Memory proposed by [Baroni & Lenci, 2010]
(see section 2.1).
From the DM.de tensor, we build a word-〈link,word〉matrix with lemmas and their POS-
tags as targets and pairs of dependency links and words as dimensions. To increase the
readability of this section, we call lemmas with their POS-tag “words”. The resulting
matrix has 3.5M targets and 16M dimensions. As we only need a limited number of targets
in our evaluation tasks, we cut our matrix down to these specific target words, such that
the size is reduced to 7,946×5,766,661. This matrix, in the following called plain, is 99.96%
sparse.
In a preliminary experiment, we found the best performance when using the top 50k-200k
dimensions and will therefore use a 50k dimension matrix, hereinafter referred to as top50k,
as our starting point (compare tables A.1 and A.2 for the results of a test series with varying
dimensionality). The matrix was built by selecting the 50k word-link-pairs with the highest
marginal sum of LMI scores in the DM.de tensor during the matricization. The reduction
of dimensions by roughly 99% involve only a tiny reduction of sparsity to 98.95%.
The higher a co-occurrence matrix’s dimensionality, the more prone to sparsity the
matrix is. With a large number of dimensions, we expect dimensionality reduction
to have an even greater effect on the vector space as it had on our word-based mod-
els.

4.2.2 Transformation

The same variation of transformation schemes as in experiment 1 are used for the dependency-
based approach: add, multiply, and avg. In contrast to the word-based transformation
experiments, a wider range of transformation conditions is accessible: words, wordlinks,
and wordsimlinks (see 3.2 for definitions and examples).

8 Available at http://www.ims.uni-stuttgart.de/forschung/ressourcen/lexika/dmde.html
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4.2.3 Baselines

We simply use the same baseline techniques for dimension reduction as for the word-based
experiments: truncated SVD with k equal to the numbers of the DErivBase-transformed
vector space and top-n with n equal to k.
Note that we need distinct baselines for each transformation condition we inspect, since
they produce differently-sized vector spaces.

4.2.4 Evaluation

4.2.4.1 Sparsity and Dimension Reduction

A list of the transformed models and their dimensionality, sparsity and number of non-zero
values is presented in table 4.4.

Model Dimensions Sparsity Non-zero values
plain 5M 99.96% 14,634,613
top50k 50k 98.95% 3,685,608
words add/multiply/avg 16,316 98.41% 1,823,167
SVD 16,316 0.00% 0
top-n 16,316 98.05% 2,157,467
wordlinks add/multiply/avg 39,569 98.85% 3,188,866
SVD 39,569 0.00% 0
top-n 39,569 98.80% 3,325,995
wordsimlinks add/multiply/avg 38,738 98.85% 3,136,376
SVD 38,738 0.00% 0
top-n 38,738 98.80% 3,293,472

Table 4.4: Dimensionality, sparsity reduction, and non-zero values of dependency-
based models

The top50k model’s dimensionality was reduced to a third by the words transformation and
to c. 80% by wordlinks and wordsimlinks. As we observed in the word-based experiment,
the DErivBase-transformed models represent the data in a most compact form.
The plain model has an extremely high sparsity of 99.96%. This figure indicates that barely
14,6M values in the full 7946x5766661 matrix are not zero. Selecting the top 50k dimensions,
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thereby reducing it to 1% of the plain vector space’s size, produces a matrix which is still
98.95% sparse. The reduction of 1% is explained by the fact that those selected 50k dimen-
sions have the highest marginal LMI weights in the vector space, thus the probability to
produce zero values is minimized.
Of all DErivBase-transformed models, the words-transformations cause the highest re-
duction of both dimensions (by over 67%) and sparsity (by 0.5%) from the original 50k
vector space. As the wordlinks and the wordsimlinks transformations conditions induce a
more selective clustering of dimensions, their dimensionality and sparsity reduction is
lower. Each distinct transformation scheme results in an equal sparsity and dimensionality
for all three conditions, since a modification was applied to the multiply variant for the
dependency-based transformation (see 3.2).
The differences in sparsity reduction between the DErivBase-transformed models and
the two baseline models is the same as observed for the word-based experiments (see
4.1.4.1): The top-n transformation reduces the sparsity more strongly than all DErivBase
transformations do, but SVD reduces it even more, by extinguishing all zero values.

4.2.4.2 Word Similarity

Just as in experiment 1, we evaluate our dependency-based models’ ability to represent
word similarity and word relatedness on the Gur350 data set.
The Pearson correlation coefficient and coverage for all syntactic-based models are listed
in table 4.5.

The plain model’s coverage of 87.7% is higher than word-based model’s, whereas the
correlation coefficient is only 0.386, which is far lower. Top50k improves the correlation,
but slightly impairs the coverage.
We observe that the add-transformation scheme performs always best compared to the other
transformation schemes. Combined with the words condition, its correlation coefficient
is 0.001 higher than the plain model’s whilst having a far higher coverage. Interestingly,
its overall performance is ranked between the baseline models SVD and top-n: It tops the
SVD baseline by 0.006 concerning the correlation, but stays lower concerning the coverage.
Nevertheless it has a higher coverage than top-n, but a lower correlation. The top-n baseline
model has clearly the highest correlation of all models.
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Model Pearson’s ρ Coverage
plain .386 .877
top50k .403 .863
words add .387 .929

multiply .144 .929
avg .244 .929

SVD .381 .931
top-n .410 .860
wordlinks add .403 .869

multiply .199 .869
avg .344 .869

SVD .400 .940
top-n .404 .863
wordsimlinks add .402 .871

multiply .184 .871
avg .339 .871

SVD .395 .931
top-n .404 .862

Table 4.5: Correlation and coverage of dependency-based models for the word simi-
larity task
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Combining the add-scheme with the wordlinks transformation condition, similar tenden-
cies emerge: add-wordlinks has the same correlation as the original top50k model, but still
performs slightly better in terms of coverage. At the same time, it still has a slightly lower
correlation than the top-n baseline model and lower coverage than the SVD model, but
higher correlation than SVD and higher coverage than top-n reversely.
The wordsimlinks results are ranged in between the results forwords and wordlinks, since
the transformation itself can be seen as a compromise between these two transformation
conditions. The wordsimlinks conditions for the transformation takes the links into account,
but is not as strict as wordlinks, because it does not differentiate between the links “obj”
and “iobj” (see 3.2).
To sum up these results, we found that the add-wordlinks transformation yielded the best
correlation of the transformation models, and add-words the best coverage. The SVD base-
lines model the best overall coverage and the top-n baselines the best overall accuracy.
As in the word-based experiment, none of the transformed vector spaces produces signifi-
cantly different similarity scores for the word similarity task at p = 0.05 compared to the
plain model.

4.2.4.3 Synonym Choice

For the synonym choice task we proceed in the same way as in experiment 1. The results
are listed in table 4.6.

Alpha evaluation:
The plain model scores 226, with 409 tasks covered. With those results it achieves a higher
coverage but a lower accuracy than the word-based plain model. Top50k yields a slightly
higher accuracy of 58.3% and lower coverage of 41.2%. None of the other models achieves
an equally high accuracy.
Across all DErivBase transformation schemes, add works best again: Add-words increases
the coverage up till 49.2%, yet losing some accuracy, since the growth of the numbers of
covered tasks is much larger than the improvement of the score. Add-wordlinks by contrast
has a higher accuracy, but a lower coverage. This observation is consistent with the results
from the semantic similarity task in section 4.2.4.2. Also, SVD again manages to increase
the coverage best. Although the top-n baseline model scores lower and covers less items
than most other models its accuracy is one of the highest.
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alpha beta
Model Score Covered Acc. Cov. Score Covered Acc. Cov.
plain 226 409 .553 .416 438 831 .527 .845
top50k 236 405 .583 .412 433 820 .528 .833
words add 255 484 .527 .492 424 873 .486 .887

multiply 211 484 .436 .492 347 873 .397 .887
avg 213 484 .440 .492 357 873 .409 .887

SVD 297 544 .546 .553 450 906 .497 .921
top-n 224 402 .557 .409 413 815 .507 .828
wordlinks add 241 426 .566 .433 422 830 .508 .843

multiply 199 426 .467 .433 353 830 .425 .843
avg 217 426 .509 .433 390 830 .470 .843

SVD 302 549 .550 .558 448 906 .494 .921
top-n 235 404 .582 .411 432 819 .527 .832
wordsimlinks add 239 429 .557 .436 419 832 .504 .846

multiply 193 429 .450 .436 338 832 .406 .846
avg 214 429 .499 .436 386 832 .464 .846

SVD 299 549 .545 .558 454 904 .502 .919
top-n 235 494 .476 .502 433 819 .529 .832

Table 4.6: Accuracy (Acc.) and coverage (Cov.) of dependency-based models on the
word choice task

33



4 Experiments

When examining the results for the other DErivBase transformation conditions, we recog-
nize that choosing the wordlinks or wordsimlinks transformations instead of words improves
the accuracy and deteriorates the coverage: Using wordlinks results in a higher accuracy
than the SVD models’, but lower than top-ns’, and the coverage is lower than the SVD
models’ coverage, but higher than the top-ns’. Wordsimlinks’ accuracy is increased such that
it performs better than the two baselines in terms of accuracy but not in terms of coverage.
Beta evaluation:
The comparison of alpha and beta evaluation methods corresponds to the comparison we
made in experiment 1: The accuracy is generally lower, whilst the coverage is generally
higher. The plain model now covers 831 of the 984 pairs and scores 438, top50k covers
831 and scores 433. Once again, the add-transformed models perform best across all DE-
rivBase transformation schemes. The add-words-transformed vector space’s accuracy is
approximately 8% lower than the top50k model’s, but the coverage roughly 5% higher. In
contrast to the alpha evaluation, also the score is lower. Again, we observe that SVD’s
strength is the coverage, whereas it is the accuracy for the top-n baseline. If we use other
transformation conditions instead of words, we slightly increase the accuracy but decrease
the coverage.
To sum up our word choice evaluation, the top-n model’s accuracy and the SVD model’s
coverage are hard to outscore. Nonetheless, our add-words model almost reaches the
highest coverage and add-wordlinks’s accuracy is not far behind.
Again, none of the transformed models produces significantly different similarity scores
for the synonym choice tasks at p = 0.05 compared to the plain model.

The tendency we observe across both evaluation tasks is that the original model’s coverage
is easy to increase, whereas the accuracy or correlation is already quite high. The model
that manages to increase the coverage best in most cases is the SVD model, whereas it is
top-n that increases the accuracy or correlation best. The DErivBase-transformed models
usually come off somewhere in between. The strength of the word-transformation is found
to be the coverage, the wordlinks’ strength is the accuracy. It is the add transformation
scheme that works best with the LMI weights.
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5.1 Word-based vs. Dependency-based Models

Word-based and dependency-based semantic vector space models have different character-
istics: word-based spaces are rather small, usually less sparse and in our case already have
a comparably high coverage. Dependency-based spaces, in contrast, usually are much
larger and more sparse, but achieve high accuracy because of their fine-grained definition
of contexts. We discuss tendencies emerged during the evaluation jointly, and in this
manner find advantages and disadvantages of the dimension reduction with DErivBase.
First, we examine the differences in the performance on our evaluation tasks between the
two plain models, in order to subsequently assess the performance of the transformed
models. In both evaluation tasks, we examine the models’ ability to predict lexical se-
mantic similarity or relatedness, both between two words (“How similar are words x and
y?”) and word pairs (“Are x and y more related than y and z?”). Coverage is measured
similarly in both tasks, and it expresses the extent to which the model is able to make
predictions. Accuracy measures the quality of this prediction in the synonym selection
task. Likewise, the correlation for the word similarity task expresses the quality of the
model’s prediction, which allows it to be also interpreted as a measure of accuracy. So for
the further discussion, we include the correlation measure for the word similarity task
when we speak of “accuracy”.
We observe that the coverage of the synonym choice task is relatively low across all models.
Only 594 (of 984) target words (i.e., the words that the synonyms have to be selected for)
are found in the word-based plain model’s targets, of which 587 tasks are covered (i.e.,
predictions >0 are made for at least one candidate in beta evaluation version, see Table 4.3).
This low coverage can be explained by the fact that the synonym choice tasks contains
many special, rarely-used words or loan words, for example “julklapp”, describing a
Swedish Christmas-present tradition. This is why not all of these particular words can
be found in the word-based vector spaces targets. The dependency-based plain model
does not struggle at this point and covers 939 of the task’s target words, since it contains
a larger number of targets (3.5M) than the word-based model. But it makes predictions
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for only 831 tasks (see Table 4.6). 108 tasks get lost because all of their target-candidate
pairs are assigned the similarity score of zero. Here it is clearly the sparsity, i.e., too many
zero values in the target vectors, that impairs the coverage. The potential of increasing the
coverage by dimension reduction is hence much larger for the dependency-based vector
space.
Analysing the alpha evaluation method, it is striking that the dependency-based model
achieves an accuracy of a similar magnitude as the word-based model. Although con-
taining more information in a larger co-occurrence matrix, the dependency-based model
is thus not able to make a more accurate (“safe”) prediction of synonyms. For the beta
method, the coverage of the dependency-based model is much higher, but the accuracy
is even lower than the one achieved by the word-based model. This indicates that the
dependency-based model makes many “risky” predictions which are not qualitatively
good.
For the word similarity task, the coverage of both plain models is almost equal. Again, the
word-based plain model’s coverage is due to the relatively low number of targets, whereas
the dependency-based plain model struggles with a high number of zero similarity scores.
The correlation of the dependency-based plain model with the human annotated scores is
considerably lower than the word-based model’s. This demonstrates that the increased
number of dimensions and a finer-grained specification of contexts do not help to predict
semantic similarity here, caused by the high number of zero values in the highly sparse
co-occurrence matrix.
In summary, we found empirical evidence that the performance on the semantic similarity
tasks of the dependency-based plain model is much more affected by sparsity than the
word-based model. The dependency-based model does therefore not profit from its lin-
guistically richer and deeper way of representing word meaning. This finding is important
to take into account for the following analysis of the transformed models.
When comparing the word-based plain models with the transformed models in terms
of their performance on the Gur350 data set, we see that an improvement in coverage
is simply not feasible, because it is merely dependent of the number of targets covered
which does not change throughout our transformations. However, all transformed models
manage to increase the accuracy here. For the synonym choice task, small improvements of
the coverage by the DErivBase transformations are noticeable. The DErivBase-transformed
models add-words and avg-words also cause a slight rise in accuracy. To sum up, reducing
the word-based model’s dimensionality does generally not influence the coverage, but
leads to a slightly impaired or improved accuracy, depending on task and transformation
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method. This is due to the fact that the plain model’s coverage is already high and that the
influences of sparsity are only minor.
Next we take a look at the dimension reduction’s influence on the dependency-based
models. When comparing the results for the word similarity task, it is striking that only the
top-n model could improve the accuracy. However, the coverage is improved by all models
except top-n. For the synonym choice task, none of the models improves the accuracy, but
top-n comes closest. Yet it is not able to increase the coverage, which all other models are.
Furthermore it is worth mentioning that SVD always achieves the best coverage.
In contrast to the effects on the word-based model, reducing the dimensionality of the
dependency-based space generally leads to a considerably increased coverage, but an
only marginally improved accuracy. This observation can be explained by the fact that
the dependency-based plain model’s high accuracy, based on the fine-grained distinctions
between dimensions, cannot be optimized any further by dimension reduction techniques,
for they do not refine the dimensions, but instead coarsen them. However, they do reduce
the sparsity’s comparably high influence on the dependency-based model by reducing the
percentage of zero values in the matrix. This is indicated by the increased coverage.

5.2 DErivBase Transformation in Comparison

Now that we contrasted the difference in the dimension reduction’s influence on both
types of vector spaces, we focus on contrasting the differences between the dimension
reduction techniques.
As stated above, top-n performs exceptionally well in improving the accuracy, in particular
when predicting semantic relatedness. By contrast, it is SVD’s strength to improve the
coverage, in particular when detecting synonyms. Recalling its functionality (see sec-
tion 2.2) we are able to explain this observation: The truncated SVD matrix approximates
the original matrix and the inherent dependencies, but in a lower-dimensional space.
Because of the approximation, the transformed matrix does not contain zero values any
more, but values very close to zero. This effect is illustrated by the histograms in Figure A.3
in the appendix that show the distribution of similarity scores for the word pairs of the
word similarity task. One can clearly see how the SVD model approximates the top50k’s
distribution closest. Although the zero values in the matrix and thereby zero similarity
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scores were removed, those similarities mainly remain <0.1. This is how SVD solves the
issue of sparsity, but the disadvantage of a fully-filled matrix is the vast storage space it
takes. Our approach however, produces much more efficiently storable matrices which
are still sparse but contain the information from the plain model in a more compressed
manner.
When comparing the similarity scores for the semantic relatedness task (see Figure A.3),
the dimension reduction with DErivBase (here we examine the add-words setting), makes
the overall biggest change to the distribution, as it reduces the number of similarity scores
<0.1 drastically and simultaneously increases the number of similarity scores >0.1. The
scatter plots for the same tasks (see Figure A.5) additionally underline this change: Even if
the correlation is not directly visible, we still distinguish a slight rise in the similarity scores
and a reduction of zeros. On the one hand, a diminished number of zero-similarity scores
is really good for a gain in coverage, but on the other, a general rise in all similarity scores
impairs the accuracy, at least in the dependency-based vector space. In the word-based
vector space, these effects are reduced by the PPMI weighting after the transformation
with raw frequencies (see Figure A.4) which normalizes the raised values.
In contrast to the two baseline transformations, top-n and SVD, the DErivBase transfor-
mation does not show one-sided strengths. Top-n and SVD tend to have a favourable
effect either on the accuracy or the coverage, respectively. Our DErivBase transformation
performs somewhere in between: By tendency its coverage is better than top-n’s, and its
accuracy is better than SVD’s.
We observe that the avg scheme works best for word-based models and the add scheme for
dependency-based. A possible explanation is that the cell values in the dependency-based
model’s matrix are generally so small, that the highest growth of the values caused by add
helps best. This is not needed for the word-based model, where the values are not that
small (and neither the similarity scores, see histograms) and an averaging, more subtle
change is sufficient. The multiply scheme is outperformed in all tasks, because it makes the
similarity scores too extreme, due to the characteristics of multiplication.
The different transformation conditions in fact show the characteristics that we expected
(see section 3.2) with words having the highest coverage and lowest accuracy among the
DErivBase models, wordlinks having the least coverage and highest accuracy, and wordsim-
links ranged between them.
Concerning the word-based models, avg-words is in fact a good alternative to plain with
half the number of dimensions and an equal or better performance on semantic similarity
tasks. For the dependency-based model the DErivBase-transformation is not strongly
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recommended because it impairs the accuracy1. Using a DErivBase-transformed model in-
stead of plain in an application, would mean that one had to exchange higher coverage for
lower accuracy, which is not really attractive. Also, we notice that the transformation with
DErivBase achieves generally better results in the semantic relatedness task than in the
synonym choice. Interestingly this effect was also observed by [Padó et al., 2013] in their
experiments with derivational smoothing. The synonym choice tends to require a finer-
grained differentiation of similarity scores, which the DErivBase-transformed models are
less able to represent. Thus our transformation is rather recommended to use in an appli-
cation which resembles more the semantic relatedness prediction than the synonym choice.

5.3 Future Work

From the results in Table 4.5 we learn that it is essential to use the information about
dependency links for an at least maintained accuracy, so transformation conditions like
wordsimlinks and wordlinks are preferable, even though their coverage is low compared to
the baselines. This indicates that we need to find another way to refine our transformation
condition, such that we achieve both at least a maintained accuracy and a further increased
coverage.
One approach is to further elaborate the way how we use DErivBase to form the new
dimensions. When analyzing the synonym choice results, we find it striking that particu-
larly the newly-covered tasks (i.e., the tasks that were not processed by top50k, but by the
DErivBase-transformed models) are answered incorrectly by add-words. We observe that
the larger a derivational family, the more often it is involved in these tasks and decreases
the accuracy. This correlation is not as strong for the involvement in correctly answered
tasks (see Figure A.7). To get an impression of the characteristics of a large cluster, we take
a closer look at the DErivBase family no. 4 (see Figure A.6 in the Appendix).
It is obvious that clusters of this size contain more noise than smaller ones. The example
cluster contains words with both the morphological roots “recht” and “richt”. In some
cases, they might be derivationally related, but “unrichtig” (“incorrect”) is clearly not

1 Here we have to take into account that DErivBase could not work under the same conditions as the
word-based models concerning the vector space weights, as we observed that PPMI weighting of the
frequencies after the transformation works best. Now simply calculating (building sums of probabilities)
does mathematically not make a proper sense.
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strongly related to “Unterricht” (“lessons”), neither to “entrechtete” (“disenfranchised”).
Here, the cluster fails at capturing the disambiguity of the root “richt” and the distinction
to the root “recht”. Using clusters of this size and quality for the DErivBase transformation
clearly leads to overgeneralization and therefore to a loss in accuracy. For a more prudent
use of DErivBase we propose to make use of the additional information that DErivBase
authors [Zeller et al., 2013] provide. In another format of the resource (“DErivBase-v1.4-
rulePaths.txt”) they list the derivational rule paths that connect each two lemmas of a
derivational family. A confidence score, expressing the degree of derivational relatedness
of a pair of lemmas, is easily calculated by the multiplicative inverse of the rule path’s
length. On the basis of this confidence score we could then define another transformation
condition that only admits two dimensions to be integrated into the same new dimension
if the confidence score of their derivation is larger than a certain threshold2. Alternatively,
one could exclude all derivation paths produced by certain derivational rules which were
proven to be unreliable or produce inaccurate clusters. For instance, the exclusion of rule
“dVV12.1” could have improved the above example cluster as it connected the two roots
“recht” and “richt”: “berechtigen_Ven dVV12.1> berichtigen_Ven”.
If the coverage of a link-sensitive model with one of these more prudent DErivBase
transformations suffers from a resulting low coverage, one could then proceed to define
equivalence classes of links, like we did for wordsimlinks, to achieve a higher degree of
abstraction over link types and balance accuracy and coverage. Also, one could addi-
tionally apply smoothing techniques like derivational smoothing ([Padó et al., 2013]) to
low-accuracy models.

2 One would then have to deal with words occurring in more than one new dimension, which does not
allow us to use the concept of equivalence classes.
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With this thesis, we introduced a new approach to dimension reduction in semantic vector
spaces that uses derivational information. We formally defined the DErivBase-based trans-
formation methods, applied them to two different types of semantic vector space models,
word-based and dependency-based, and evaluated them on two semantic tasks. After
all, we found that our DErivBase transformation succeeds in keeping up with common
dimension reduction techniques like truncated SVD. In our word-based vector space, it
achieves the highest accuracy, and in the dependency-based it particularly improves the
coverage. It does not completely eliminate the negative effects of sparsity, but represents
information in a more compact form by abstracting from word forms to word families,
thereby reducing the vector space’s size by over a half. Its matrices are more efficient to
store than both SVD-reduced and top-n reduced matrices. At the same time, it outperforms
the former’s accuracy and the latter’s coverage.
It definitively stands out with its low computational complexity and linguistically sound
justification. Practically, it does not require a ready-built co-occurrence matrix, but can
directly be integrated during construction. It is easily parametrized and highly adaptable
to individual needs, since its performance is controlled by the choice of transformation
condition and scheme.
In the previous chapter we suggested a refined use of DErivBase families in future work to
avoid an impaired performance due to noise in very large families that cause overgeneral-
ization. We have demonstrated that the approach of dimensionality reduction in semantic
vector spaces using derivational information is definitively worth further consideration
and examination.
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Figure A.1: Gur350 results for top-n with varying n in dependency-based vector space:
Pearson’s r and Coverage in dependency of n
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Figure A.2: Synonym choice results for top-n with varying n in dependency-based
vector space: Accuracy and Coverage in dependency of n

42



A Appendix

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

top50k top-n 
(16316)

SVD add-words

add-
wordlinks

add-
wordsimlinks

Figure A.3: Similarity score histogram for dependency-based models on Gur350 data
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Figure A.4: Scatter plots for word-based models’ (PPMI weighted) similarity scores
on Gur350 data set. Annotated scores on the x-axis, predictions on the y-axis.
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Figure A.5: Scatter plots for dependency-based models’ (LMI weighted) similarity
scores on Gur350 data set. Annotated scores on the x-axis, predictions on the y-axis.
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Figure A.6: DErivBase family no. 4
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Figure A.7: The involvement of clusters in correct (light grey) and incorrect (dark grey,
transformed into negative figures) in the synonym choice task for the dependency-
based model, in dependency of their size. Cluster size on the x-axis, frequency of
involvement (i.e. the cluster was amongst common dimensions for the predicted
word pair) on the y-axis.
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