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Abstract

This thesis presents a deep neural network for word-level machine translation quality estimation.
The model extends the feedforward multi-layer architecture by [Collobert et al., 2011] to learning
continuous space representations for bilingual contexts from scratch. By means of stochastic
gradient descent and backpropagation of errors, the model is trained for binary classification
of translated words, given only the source sentence and the machine translation. We enhance
this model with alignments, and unsupervised pre-training of word representations allows for
leveraging large monolingual corpora for supervised quality estimation training. Evaluating it on
the data provided by the Workshop on Statistical Machine Translation 2014 and 2015, the model
yields competitive results across languages and datasets. A linear combination of the deep model
and a shallow linear model trained on baseline features further improves over both individual
models. Furthermore, the bilingual word representations learnt during supervised training for

quality estimation prove useful for other cross-lingual tasks.
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Zusammenfassung

Diese Masterarbeit stellt ein Modell fiir die Einschatzung der Qualitat maschineller Ubersetzungen
("Quality Estimation") auf der Wortebene vor, das auf einem kiinstlichen neuronalen Netz basiert.
Dieses Modell erweitert das "Multi-Layer Perceptron" von [Collobert et al., 2011}, um aus bilin-
gualen Kontexten geeignete Vektorreprasentationen zu lernen. Als Eingabe erhalt das Modell den
Satz in der Quellsprache und die maschinelle Ubersetzung. Mithilfe des Gradientenabstiegsver-
fahrens und der Rickpropagierung von Fehlern in der binaren Klassifikation wird das Modell
trainiert. Das Modell profitiert auBerdem von Wortalignierungen und uniiberwacht trainierten
Wortreprasentationen, die es erlauben, umfangreiche einsprachige Korpora fiir das tiberwachte
Training der Quality Estimation auszunutzen. Angewandt auf die Daten, die im Rahmen der
Workshops on Statistical Machine Translation 2014 und 2015 bereitgestellt werden, erzielt das
Modell sprach- und dateniibergreifend sehr gute Ergebnisse. Eine lineare Kombination dieses nicht-
linearen Klassifizierers mit einem linearen Klassifizierer, der auf Standard-Features trainiert wird,
fihrt zu einer Systemkombination, die bessere Vorhersagen erlaubt als beide einzelnen Modelle.
Dariiber hinaus stellen wir fest, dass die gelernten bilingualen Wortreprasentationen fiir weitere

sprachibergreifende Aufgaben sinnvoll eingesetzt werden konnen.
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1 Introduction

How good is machine translation? — While there is probably no universal answer to this question,
it is crucially important to anyone who uses machine translated texts. Whether it its used to
translate scientific publications, translate product descriptions or websites — the user needs to
know how reliable these automatic translations are, how severe translation errors are, and whether

they need further post-editing.

When developing a machine translation (MT) system, evaluation metrics are based on the
comparison to human reference translations, answering the question "How close is machine
translation to human translation?". In contrast, quality estimation (QE) is the task to evaluate
machine translations without human reference translations and without knowledge about the MT
system that generated it.

QE can be assessed on various levels of granularity. At sentence-level, a QE system could e.g. rank
the translation quality on a scale from 0 to 5, on word-level it could e.g. tell for each word whether
it was well translated or which types of errors are prevelant. With this information, human or
automatic post-editing can be done in a more efficient way, since correct parts of the text can be

skipped and post-editing can focus on the relevant, incorrect parts.

This work presents a quality estimation system built on a deep neural network, as a bilingual
extension of the framework proposed by [Collobert et al., 2011] that addresses various natural
language processing (NLP) classification tasks. One of the main advantages of such deep models
is that they allow learning "from scratch"”, i.e. from raw input like words or letters, replacing
task-specific feature engineering. Winning the official Workshop of Statistical Machine Translation
(WMT) 2015 QE task, our deep learning QE system in combination with a baseline system was

proven sucessful for QE on word-level.

The remainder of this thesis is organized as follows. First we address quality estimation as a
machine learning task and present recent approaches. Section [3| then gives a rough overview over
methods for deep machine learning for NLP. Both the task (QE) and the method (deep machine
learning) are united in Section [4] where the novel approach of this thesis is presented in detail.
Experiments on WMT data and an inspection of the learned parameters facilitate an evaluation of

this approach in Section 5] Subsequently, the discussion in Section [f] identifies general problems
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of the QE task and critically examines the presented approach. A summary and ideas for further
work conclude this thesis with Section [7]

Note that the proposed models were already published in [Kreutzer et al., 2015] within the WMT15
evaluation. This thesis further elaborates the motivation, provides precise model definitions, com-

pares to other approaches, and presents additional experiments.



2 Quality Estimation

2.1 The Task and its Challenges

From SMT to QE: Measuring Translation Quality

As sketched in the introduction, the task of quality estimation evolved from the insuffiency of
machine translation quality. Statistical machine translation systems have significantly improved
over the last decade [Graham et al., 2014]. When developing and comparing SMT systems, their
performance is most prominently evaluated by means of the BLEU score [Papineni et al., 2002].
The BLEU score is a corpus-based metric that measures how precisely the translation matches one
or more human reference translations. Most widely used as a sentence-based machine translation
evaluation metric is METEOR [Banerjee & Lavie, 2005] that extends the capabilities of BLEU
by synonym matching and stemming. Both BLEU and METEOR have been evaluated against
human judgment, and finding appropriate metrics is still subject to active research (e.g. in the
WMT metrics shared task). What characterizes all these evaluation metrics is the strategy to
evaluate a machine translation in terms of differences to a human reference translation. The
judgment of translation quality is therefore highly dependent on the characteristics of the reference
and the technique for comparison. ldeally, more than one reference translation exists for each
sentence in the parallel training data, since translation is never a task with only one correct
solution. References can be diverse and are costly to obtain for large corpora. But they are the
essence to good SMT if considered as a supervised task.

The idea behind quality estimation, however, is to part judgment on translation quality from the
comparison with reference translations. It is assumed that the indicators for translation quality are
immanent in the source and target text. One motivation is that humans can judge on translation
quality without being offered a reference translation [Temnikova et al., 2015]. This judgment is
naturally oriented towards errors, i.e. instead of first manually translating the full sentence and
then comparing it to the reference, judgment is rather led by the question “How many and which
errors with which severity are contained in the translation?". [Specia et al., 2010] demonstrate
that the correlation with human annotations for post-edit effort is higher for sentence-based QE
scores predicted by a SVM regression model than BLEU and METEOR scores on English to
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Danish and Spanish translations. These findings support the idea that QE predictions can come

closer to human judgment than comparisons to references.

Metrics for QE

As mentioned in Section [I] the development of methods for QE is mainly driven by the annual
QE task of the WMT, where labeled training and test data are provided for supervised learning.
Therefore, the task of QE has most prominently been understood as a supervised task for machine
learning. Starting with sentence-level QE in 2012's WMT, QE was extended to word (WMT13)
and paragraph level (WMT15). There are two variations of the tasks: scoring and ranking. Scoring
aims to predict correct quality scores or labels, whereas ranking avoids these explicit scores and
aims to find a ranking of multiple translations according to their quality.

For each level, several scoring techniques and gold label sets with varying granularities were de-
veloped, as summarized in Table[I] On the paragraph level only METEOR has been used for scoring.

On the sentence level three different types of metrics have been considered:

e Human Targeted Error Rate (HTER) [Snover et al., 2006] that measures the edit-distance
between the machine translation and a human post-edition (WMT14.1.2, WMT15.1)

e Scores for perceived post edit effort in a range from 1 to 3 (WMT14.1.1)
e The amount of required post-editing time in milliseconds (WMT14.1.3)

On the word level both scores based on post-editing and labels based on human-designed categories

were developed:
e Edit-action as labels: good/delete/substitute (WMT13)
e Scores for perceived post-edit effort on a likert scale from 1 to 5 (WMT12)

e The 20 Multidimensional Quality Metrics (MQM) [Uszkoreit & Lommel, 2013| core er-
ror categories: Terminology, Mistranslation, Omission, Addition, Untranslated, Accuracy,
Style/Register, Capitalization, Spelling, Punctuation, Typography, Morphology (Word Form),
Part of Speech, Agreement, Word Order, Function Words, Tense/Aspect/Mood, Grammar,
Unintelligible, Fluency, or OK (WMT14 multi-class)

e The MQM level-1 metrics: good/accuracy/fluency (WMT14)

e Binary labels: OK/BAD
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Paragraph Level ‘ Sentence Level ‘ Word Level

Distance to a post-edition | METEOR

HTER HTER
Post-edit effort perceived PE effort [1,3] | perceived PE effort [1,5]
PE time in ms
good/delete /substitute
Quality labels core MQM
Level-1 MQM
OK/BAD

Table 1: WMT QE scores for three levels of granularity

The choice of gold labels or scores for quality estimation is associated with the perspectives on
quality estimation as a task. Predicting e.g. post-editing times emphasizes the goal to make post-
editing more efficient, whereas predicting MQM categories expresses the objective to statistically
capture the linguistic characteristics of machine translation errors. It is notable that the sentence-
and phrase-level WMT evaluations appear to constitute a understanding of quality oriented towards
post-editions (“How much edits are needed for this translation to turn it into a good translation?"),
whereas word-level evaluations furthermore consider the notion of intrinsic translation quality (“Is

this a good translation? Which parts are bad?").

This work focuses on word-level QE, since it is the finest-grained task, and document- and sentence-
level QE might be understood as a composition of word-level QE. However, this has not been
empirically explored or validated, at least [Specia et al., 2015|] found that using word-level oracle
labels improves the prediction on sentence-level, whereas there was no significant improvement over
the baseline when using sentence-level predictions for document-level prediction. Also, [de Souza
et al., 2014] used binary predictions as features for finer-grained predictions successfully in the
WMT14 evaluation. But so far, the tasks have mostly been treated independently, which is also

due to their different evaluation metrics as explained above.

Besides the application for post-editing sketched in the introduction, QE can be applied for the

following purposes:

e re-rank translation candidates of an SMT decoder or in spoken language translation [Ng
et al., 2015]

e select the best translation among options from multiple machine translation systems [Shah
& Specia, 2014]
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e filter pairs of sentences from a weakly-parallel corpus that are most likely to be translations

and use them for SMT training
e inform readers of the target language to which extent they can rely on a translation

e help decide whether a given translation is good enough for publishing as is [Soricut &
Echihabi, 2010]

e for post-editing: highlighting words and phrases that need revision [Bach et al., 2011]

e for computer-aided translation (CAT): present binary scores to guide the post-editor to
either post-edit or re-translate [Turchi et al., 2015|

Although these application are reasonable in principle, only some of them have already proven to
be realizable in real-world scenarios. [Turchi et al., 2015] found small but statistically evidence
that QE labels can actually lead to productivity gains, but only under specific conditions. As [Bojar
et al., 2014] conclude, it remains questionable whether current QE systems are already precise
enough to be employed in these practical settings. So for now the primary goal is to improve QE
techniques such that they will be one day good enough to measurably improve SMT systems,
post-editing and CAT. The fact that most of the WMT14 submissions for the word-level task did
not beat a trivial baseline might seem striking, so the next paragraph explains the challenges of
word-level QE in detail.

Why is QE challenging?

There are several reasons that make QE a challenging task:

1. The predictions are MT-system independent, i.e. the MT system that created the translations
is treated as a black box. Although one could train a QE model for one specific MT system to
adapt the model to the typical errors of this very system, QE aims to generalize over specific
MT systems to be useful for system comparison. Also, this is an elementary difference

between the goals of quality estimation and SMT confidence estimation [Ueffing et al.,
2003].

2. Like MT, it is a bilingual task, so it requires machine accessible knowledge about the source
language, the target language, and the interaction of both. The way to bring together these
bits of information is challenging, as well as finding appropriate representations for this

knowledge as such.
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3. The datasets to train QE models on are rather small, since manual annotation is costly.
For multi-label error classification sparsity issues occur, as e.g. in the WMT14 evaluation,

where the number of samples for some of the MQM core category is very low.

4. The datasets are skewed, so usually there are more samples for correct translations than for
incorrect ones. This shows that SMT is at a stage where most of its output can be relied

on, but corrections are still needed.

The first two challenges originate from the task itself, whereas the two latter challenges result
from the way QE was so far realized as a supervised classification task in WMT. When designing
a QE system, one has to take these challenges into account. This requires a careful selection of
features and a suitable of machine learning classifier. Therefore, the next section will explore how
the task of word-level QE has been addressed so far, before finally introducing our novel approach

for a deep learning QE classifier.

2.2 Recent Approaches

Most commonly, word-level QE has been comprehended as a standard classification task, where
instances are single target words, and labels depend on the chosen granularity. This is why
common evaluation metrics like recall, precision, F-measure, and accuracy seem reasonable. These
have been used in the WMT QE task, so a comparison can be made with respect to these metrics.
As in other word tagging tasks (like e.g. word-level sentiment classification), the primary focus
in recent work has been on the creation and selection of suitable features, whereas the range
of classifiers applied is comparatively low (prevalently Support Vector Machines (SVM) and
Conditional Random Fields (CRF)). A roughly categorized overview of common word-level QE
feature sets is presented in Table 2] The variety of these features is high: They range from
simple textual features like the target word with its context, over features that require linguistic
information like part-of-speech (POS) tags, to complex features like semantic similarity or resource-
based features like language models. Some of them are designed to capture the characteristics
of the target (e.g. target language model), while others aim to capture the association between
source and target (e.g. pseudo-references). Naturally, the effectiveness of these features is
dependent on the language pair, the domain of the translations, the the granularity of the labels,
and the choice of classifier and evaluation metric. Although we cannot make global jugdments on
their effectiveness (see [Shah et al., 2013] for a detailed investigation), we have the impression

that in particular language model probabilities, alignment information and pseudo-reference
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Category Feature Set Reference

Lexical information lexical categories (stopword, NE, proper name, [Luong et al., 2014]
numerical)
word lexicons [de Souza et al., 2014]
POS tag [de Souza et al., 2014|

Fluency target language model probability [Wisniewski et al., 2014]
POS tag language model [Hokamp et al., 2014
stopword language model [Hokamp et al., 2014

Semantics semantic similarity [Hokamp et al., 2014]
target polysemy count [Luong et al., 2014]

Surface word length, location, prefix, suffix, form, con- [Bicici & Way, 2014
text

Syntax constituent label [Luong et al., 2014]
depth in parse tree [Luong et al., 2014]

Error error grammar parsing [Hokamp et al., 2014]
probability that a training word is BAD [Wisniewski et al., 2014]

MT pseudo-references [Wisniewski et al, 2014

confusion networks descriptors computed over
translation hypotheses

word posterior probabilities extracted from n-
best lists

Sanchez & Forcada, 2015]
|[de Souza et al., 2014|

[de Souza et al., 2014]

Table 2: Common feature sets for word-level QE

features are most popularly used, probably because they were proven essential for SMTE]. The
open-source QE framework QUEST [Specia et al., 2013], that was also used for baseline feature

extraction in WMT, provides a set of currently 111 different black-box features for word-level

QE.

Concerning the problem of the skewed training data, [Shang et al., 2015] present two strategies
to re-balance the datasets: One approach is to introduce sub-labels for OK, another is to
delete completely correct sentences from training set and replace them with duplicated sentences
that have a high BAD ratio.
reduce the dataset to sentences that have a high proportion of BAD words. However, both

[Shah et al, 2015b] pursue a similar filtering approach and

approaches do not present a universal solution of how to exploit all labeled data in their original

form.

1 Pseudo-references are not used in SMT in the exact same way as for QE. But the principle is the same: SMT
models with the goal to maximize BLEU are trained to match references; QE models are trained with the
information where the translation already matches the references.
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After having familiarized the reader with the task of QE, we now continue with an introduction to

deep learning of neural networks in the field of NLP.

3.1 Deep Neural Networks for NLP

Overcoming feature engineering with representation learning

Raw input to machine learning (ML) models needs to be transformed to vectors in feature spaces
that represent their most discriminative characteristics. In the field of NLP, the raw input typically
consists of segments of linguistic utterances, e.g. characters, words, paragraphs, sentences, or
documents. Typical feature sets in NLP include lexical features, syntactic features, and semantic
features. The mapping from raw input to feature representations is the core of many ML problems
and immense efforts have been spent to find suitable feature representations to best capture
the input characteristics for the given task. As illustrated in the previous section, the room for
possible features for QE is large due to the bilingual setting of the task. Designing this mapping
appropriate for a certain task is commonly understood under the term “feature engineering”. Once
having defined a set of features for a particular task, the next challenge is to combine or weigh
them in a most effective way, which typically involves techniques for feature selection or expansion.
Furthermore, sparsity issues can occur, e.g. when a feature is not observed often enough to
reliably contribute knowledge to the classifier. Often, large feature representations are mapped to
lower-dimensional spaces (e.g. via Singular Value Decomposition (SVD) or Principal Component
Analysis (PCA)) to facilitate efficient storage and computations. Depending on the task, the
domain and the classifier, certain feature representations and techniques might be more suitable
than others, so there is no set of globally best features and hence no globally best strategy to
map the linguistic input to vectors. Deep learning presents an elegant solution to avoid manual
feature engineering and instead learn a suitable mapping jointly with the ML task.

[Deng, 2014] compares several prevalent definitions of Deep Learning (DL), and extract two

essential aspects: (1) DL is a machine learning technique for models with multiple layers of



3 Deep Learning for NLP

non-linear information processing, which (2) implement learning of abstract feature representations
at successively higher layers. Models for DL are designed with multiple ML layers (“deep
architecture”), to capture factors of variation in the input at several layers of abstraction (“deep
representation”). Amongst the wide array of deep learning architectures (see [Bengio, 2009] for
a survey), we will exclusively consider feed-forward neural networks (NN) with multiple hidden
layers and inspect how they can be applied to a NLP task like QE. How deep architectures can
learn deep representations is addressed in Section [3.2]

The success of DL for NLP

The idea of replacing feature engineering by learning deep representations led to great improvements
in various NLP tasks in the last decade. In the context of SMT, the most prominent example
are language models, where neural network language models [Bengio et al., 2013, |Schwenk,
2007, Bengio et al., 2006| consistently outperform the traditional approaches. Similar progress
was made with translation models [Son et al., 2012, |Devlin et al., 2014, Sundermeyer et al., 2014].
For a comprehensive overview over the history of neural networks and deep learning we refer the
reader to Schmidhuber’s overview on DL in NN [Schmidhuber, 2015]. Since this work focuses on
the application to QE, we only highlight some stations of the development of DL for NN that
paved the way for the application to NLP tasks.

The origin of NN for unsupervised and supervised machine learning goes back to the development
of artificial neural networks in the 1960s, where the motivation was to model signal processing in
the brain (most prominently by [Rosenblatt, 1985] introducing the Perceptron as a model for a
single neuron; the first multi-layer perceptron (MLP) was developed in 1965 by [lvakhnenko &
Lapa, 1966]. [Rumelhart et al., 1986] presented a first solution for efficient training of NN via error
backpropagation. In the late 1980s, mostly NN with few hidden layers were trained, and [Hornik
et al., 1989] found that a NN with a single layer of a sufficient number of units can approximate
any multivariate continuous function with arbitrary accuracy. However, applications of deep NN
did not yield extraordinary successes until the early 2000s. Problems with gradient descent training
were identified: the vanishing or exploding gradients problem [Hochreiter, 1991, |Hochreiter,
1998|, and how to lead the learning towards good local optima for the non-convex optimization
problem [Bengio et al., 1994]. With new architectures like the Long Term Short Memory (LTSM)
[Hochreiter & Schmidhuber, 1997] and the introduction of layer-wise unsupervised pre-training
[Ranzato et al., 2007] solutions to these problems were found and allowed more effective training

of NN. Furthermore, faster machines and larger data volumes had a positive effect on the success

10
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of DL techniques. An instance of the successful introduction of DL for various NLP word-level
classification problems is examined in detail in Section [3.3]
The essential benefits of DL that recent development in NLP relies on can be summarized as

follows:

e Techniques for DL allow to learn representations of the input data dispensing with manual

time- and cost-consuming feature engineering.

e Multi-layer architectures represent the input information on several successive levels of

abstraction.

e Non-linear activation of representation units allow a high complexity for representing

relationships in the input data.

e DL benefits from massive amounts of unlabeled data when used for unsupervised pre-

training.

e |t offers effective methods for training using the backpropagation algorithm in supervised

settings.

3.2 Learning Distributed Word Representations

Unsupervised word embeddings for supervised tasks

In the previous sections we explained that one of the main benefits of deep learning for NLP is
that it offers a technique to avoid manual feature engineering. In the field of NLP, great attention
was given to recent research on learning distributed word representations (also referred to as word
embeddings).

The simplest way to represent a word as a vector is by one-hot encoding: All values in the vector are
0, except for one, which is at the index of the word within a finite vocabulary. The dimensionality
of this vector hence equals the size of the vocabulary. More sophisticated approaches learn word
representations by clustering or from co-occurrence matrices that captures statistics about the word
occurring in different contexts [Turney & Pantel, 2010, [Sahlgren, 2006]. Clustering approaches
produce one-hot representations over a smaller vocabulary, whereas distributional approaches
yield sparse vectors over a large number of contexts. These high-dimensional representations can

be projected into a low-dimensional space via techniques for dimensionality reduction like SVD

11
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or PCA, but these are computationally expensive and complicate incorporating new words into
the representation vector space. Therefore, representation learning aims to directly train dense
low-dimensional representations.

Since labeled data is sparse, and semi-supervised approaches require specific types of models and
training regime [Turian et al., 2010], unsupervised training of word representations from large
amounts of unlabeled data is most attractive. If trained independently from any supervised task,
they can be shared among researchers and application scenarios. [Turian et al., 2010] demonstrate
that various unsupervised word representations can improve state-of-the-art supervised systems for
NLP tasks like chunking and named entity recognition when integrated as word features. Although
the idea of globally useful word representations is appealing, they also found that different kinds
of word representations are suitable for different tasks. [Weston et al., 2008] take a different
approach, where unsupervised word embeddings are trained jointly with a supervised task and
improve the model's accuracy of the supervised task. Our QE from scratch approach builds

on this finding and learns bilingual word embeddings as auxiliary task to the supervised task of

QE.

Word embeddings trained with NN

Several strategies have been developed to use neural networks for training word embeddings. Typi-

cally, they constitute the basis for neural network language models (NNLM):

e [Bengio et al., 2003| introduce a neural probabilistic language model that learns word
embeddings on a NN architecture of two hidden layers: one shared word feature layer and an
ordinary linear layer with a non-linear activation function. During training, the log-likelihood

of the next word given previous words and their embeddings is maximized.

e [Collobert & Weston, 2008 present a neural language model that is very similar to the
model by [Bengio et al., 2003], but non-probabilistic. It is trained to discriminate n-grams
present in the training corpus from corrupted n-grams while learning shared word embeddings.
Their NN architecture is identical to the architecture that they use for training SENNA, a
multi-purpose NLP-tagger [Collobert et al., 2011] (see Section [3.3)).

e [Mikolov et al., 2013b] and [Mikolov et al., 2013a| introduce two models, commonly known
as word2vec: a continuous bag of words (CBOW) and a continuous skip-gram model. The
NN architecture is similar to [Bengio et al., 2003|'s feed forward NNLM, but misses the
non-linear layer (for efficiency reasons). In the CBOW model, the current word is predicted

12



3 Deep Learning for NLP

based on context, and in the skip-gram model the context words are predicted instead (see
[Goldberg & Levy, 2014] for an explanation of the details). Both models are trained with a
negative sampling technique that maximizes the likelihood of observed words and contexts
in a training corpus and the likelihood that randomly sampled contexts are unobserved with
the current word. [Levy & Goldberg, 2014] show that the skip-gram negative sampling
model implicitly factorizes a word-context positive pointwise mutual information weighted
matrix, shifted by some constant, which connects these models back to the count-based
models by [Turney & Pantel, 2010].

Multilingual word embeddings

With parallel and comparable corpora available, the described approaches can easily be extended
to learning representation for words in bi- or multilingual contexts. We follow the categorization
scheme proposed by [Luong et al., 2015| distinguishing between monolingual adaption, bilingual

mapping, and bilingual training schemes.

e Monolingual adaption: [Zou et al., 2013| learn bilingual embeddings with an objective
like [Collobert & Weston, 2008] but extended by bilingual constraints. The idea is that
starting from English embeddings, Chinese embeddings can be inferred from unsupervised
alignment information. They use the trained embeddings to form a semantic similarity

feature for phrase-based machine translation from Chinese to English.

e Bilingual mapping: [Mikolov et al., 2013c| assume a linear relationship between languages
and the corresponding word representations. They train a linear transformation matrix to
map monolingual word2vec embeddings from one language to the other. The trained model
yields high translation accuracy on English to Czech and vice-versa and English to Spanish.
They suggest that this method can be used to correct dictionary errors in translations.
[Klementiev et al., 2012] train a probabilistic neural language model similar to [Bengio
et al., 2003] with a multitask learning approach: Words are considered as tasks and their
relatedness inferred from alignment statistics is used as regularization term. The trained
word embeddings are not shared across languages, although being jointly induced and
aligned.

In contrast to the above described approaches, [Hermann & Blunsom, 2014] do not rely

on word alignments, but build their model on sentence-aligned parallel corpora. The idea
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3 Deep Learning for NLP

is that sentence-parallel texts share common information on the sentence level, not nec-
essarily on the word level. Hence, representations of sentences and documents can be
mapped cross-lingually as a composition of word embeddings. Their model is evaluated on
two cross-lingual document classification (CLDC) tasks on eleven languages and outper-
forms the [Klementiev et al., 2012] word embeddings on the CLDC taks for English and
German. For monolingual document classification, they outperform the SENNA embeddings.

Bilingual training: [Wolf et al., 2014] refrain from the idea of a guaranteed linear
transformation between embeddings of different languages. Their model jointly learns
skip-gram embeddings for both languages without an explicit transformation but through
word alignments.

[Gouws et al., 2014] enhance the model by [Klementiev et al., 2012] by introducing a
cross-lingual objective that is not based on prior computed word alignments, but only on
the alignments of sentences in a parallel corpus.

[Luong et al., 2015] focus on training bilingual word embeddings in such a way that they
can be useful for both monolingual and bilingual NLP tasks. They train a bilingual skipgram
model (BiSkip) with negative sampling on a joint objective with monolingual and bilingual
constraints. As extension to the monolingual skipgram model, BiSkip predicts neighbouring
words cross-lingually given the alignment link between words of both languages. It achieves
state-of-the-art performance on a German to English CLDC task, while still outperforming
other bilingual embeddings (amongst them [Klementiev et al., 2012], [Gouws et al., 2014],
[Hermann & Blunsom, 2014]) on monolingual word similarity tasks.

[Gouws & Sggaard, 2015] rely neither on alignment information, nor on parallel data. Instead,
their approach requires a mixed corpus (shuffled concatenation of source and target corpus)
and a small number of bilingual task-specific equivalences, which can originate e.g. from
word alignments and knowledge bases. Randomly substituting words in the mixed corpus
with their equivalences, they train the standard CBOW model on this bilingual input. They
demonstrate that a model trained on Wiktionary POS classes and WordNet equivalence

classes performes well on cross-lingual POS tagging and supersense tagging tasks.
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3 Deep Learning for NLP

Evaluating and comparing word embeddings

From the large number of possible approaches to word embeddings the question arises how these
embeddings can be compared or evaluated. Word representations are traditionally expected to
reflect the semantics that the represented words carry, so that semantically similar words should
have similar embeddings, i.e. their vectors should be close in the resulting embedding space.
While it can be misleading to simply take a look at nearest neighbour words, present them in lists
or visualize them in a two-dimensional space, quantitative means are needed to evaluate these
embeddings more thoroughly. Therefore, a number of datasets for intrinsic semantic evaluation
were created. These include word similarity tasks, where given a pair of words, their similarity is
predicted. The predictions are compared to human ratings of similarity in terms of correlation
metrics. Tasks for semantic similarity include e.g. the WordSim-353 [Finkelstein et al., 2001]
or the MC [Miller & Charles, 1991] dataset. Note that these datasets are mostly monolingual
and if available in several languages, they have (to our knowledge) not been applied to measure
cross-lingual similarity. Similar tasks are the word analogy tasks. These tasks require to predict
suitable words for questions like “a is to b as c is to ?" or to score given analogy pairs. The
analogies to find might be syntactically or semantically defined [Mikolov et al., 2013d].

In addition to this intrinsic evaluation, there are various extrinsic evaluation scenarios. The idea
behind these is to improve standard benchmarks on different NLP tasks by providing classifiers with
new features derived from the trained word embeddings. For example, the CoNLL 2003 named
entity recognition (NER) benchmark datasets is used evaluate NER classifiers that learn from a
standard discrete feature set extended with continuous word features from trained word embeddings
(e.g. in [Pennington et al., 2014, Turian et al., 2010]). By using fixed datasets, classifiers and
discrete features, the results of the models enriched with different word embeddings allow a fair

comparison of the effectivity of the word embeddings for these tasks.

Our QE model learns embeddings as a bilingual analog to [Collobert et al., 2011], but benefits
largely from word2vec embeddings trained on monolingual corpora. In comparison to the above
described approaches, we make use of both word alignments (optional) and bilingual QE training
data. The training of high-quality multilingual word embeddings as such is not the primary objective
of our deep learning approach to QE, but we will include evaluations of the trained embeddings
to gain insights into the learned embedding space in Section [5.3]
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3 Deep Learning for NLP

3.3 SENNA: NLP "Almost from Scratch"'

As explained in previous sections, feature engineering is a tedious process, especially because
there is no globally valid set of features across NLP tasks. [Collobert et al., 2011] therefore
motivate to "use a single learning system able to discover adequate internal representations." By
this they aim to avoid task-specific feature engineering and instead find meaningful intermediate
word representations that can be used for various NLP tasks. They develop the all-purpose
tagger “"SENNA" (Semantic/syntactic Extraction using a Neural Network Architecture) for
NER, POS tagging, semantic role labeling (SRL) and chunking based on a neural network
architecture that learns these tasks “almost” from scratch, i.e. with reduced reliance on prior NLP
knowledge.

Input Window
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Figure 1: SENNA neural network architecture for the window approach. Source: [Collobert
et al., 2011]

Neural network architectures for NLP tagging on word level

In contrast to standard state-of-the-art NLP systems, [Collobert et al., 2011] do not optimize

their models for a single benchmark, but for multiple benchmarks, and they avoid task-specific
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Figure 2: SENNA neural network architecture for the sentence approach. Source [Collobert
et al., 2011]

engineered features and dependencies on pre-existing systems. Also, they do not only build on
manually annotated text corpora, but aim to leverage large amounts of unlabeled data. To this
aim, they train NN models for four NLP tasks in end-to-end fashion with features that require
minimal pre-processing.

Two suggested NN architectures are illustrated in Figures[I]and 2] In the window approach, the
input layer extracts k features for each word within a window (centered around the word that is
predicted). These features are further processed by a lookup-table layer that maps each feature to
a d-dimensional feature vector. These feature vectors are concatenated and constitute the input
to a standard linear layer. The output of this linear layer is a ny,-dimensional vector. This vector
is transformed with a hardtanh activation function and subsequently fed into another linear layer.
This layer produces a vector with one value for each possible tag. The values of this output vector
can be interpreted as scores, when normalized with a softmax operation (Equation [10)).

The window approach does not appear suitable for SRL, so they extend the architecture to consider
the whole sentence when tagging a word. The architecture is roughly the same (compare Figures

and , but a convolutional layer is added between the lookup table layer and the first linear
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layer. The convolution can be interpreted as a generalized version of the window approach: For
each window extracted from the sentence, feature representations are looked up in the table and
concatenated (local feature representation). They are subsequently fed into a linear layer with
parameters shared across all windows. Since the size of the output of this layer depends on the
number of windows and thus the length of the input sentence, a max operation over all output
vectors (over “time” in terms of positions in the input sentence) is applied to obtain a global
feature representation with a fixed dimensionality. The further processing works exactly as in the

window approach.

Training the neural network

The training objective is to maximize the likelihood of the training data given the model. To
compute this likelihood, [Collobert et al., 2011] suggest two approaches. The word-level likelihood
considers all words to be tagged independently. The output of the NN is a vector with one score
s; for each possible tag ¢ € T'. Transforming these scores via a softmax operation [Bridle, 1990]
over all tags allows to interpret the score as probability. The sentence-level likelihood on the other
hand considers dependencies between successive tags of words in a sentence. Therefore, transition
scores for jumping from one tag to another in successive words are added to the network scores
to form a score on sentence-level. Although the sentence-level likelihood turns out to be superior
in the experiments by [Collobert et al., 2011|, our approach described in implements the
word-level approach, so we will not further got into details for the alternative on sentence-level.
Training is realized with stochastic gradient ascent [Bottou, 1991, Rumelhart et al., 1986] on
iteratively selected random training samples (z,y) € D making gradient steps with a given learning
rate A:

dlog p(y|x,0) (1)

0«6+ M\ 20

The key to representation learning is that not only the parameters of the linear layers, but also
the parameters of the lookup table layer are updated during training.

The neural network can be understood as composition of functions, where each layer [ corresponds
to one function f! with parameters '. The first layer is a function on the training input z, the
second a function on the output of the first layer and so on. The input signal is passed through

the network in a feed-forward manner:
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folw) = f(fi (.. fy(@)...)) (2)

where L is the number of layers in the NN. Given a loss function, e.g. the negative log-likelihood,
its gradient can hence be recursively computed with respect to each #' using the chain rule for
backpropagation [Rumelhart et al., 1986]. Details of the backpropagation through the MLP and

the computation of gradients for each layer follow in Section [4.2]

Experiments and Findings

With this training process, the deep NN models are trained on the four supervised CoNLL
benchmark tasks. Input words are lowercased, occurrences of numbers are replaced by the string
“NUMBER" and a feature for capitalization is introduced. The dictionary for the lookup table layer
contains the 100,000 most frequent words of Wall Street Journal. Out-of-vocabulary (OOV) words
are replaced by the string “RARE". The results on the benchmark tasks reveal that the NN models
perform not as well as benchmark systems selected as baseline. The authors identify data sparsity
in the training corpus (i.e. rare words) as one possible reason for inferior performance. To solve
this problem they enhance the network by initializing the word lookup table with unsupervised
word embeddings trained on large unlabeled corpora (Wikipedia and Reuters) with a NNLM as in
[Collobert & Weston, 2008]. After the initialization, supervised training is performed as before.
Note that the supervised training affects also the word embeddings, so that they are fine-tuned
for the supervised tasks (cf. [Weston et al., 2008]). This unsupervised pre-training of the word
embeddings significantly improves the performance on the benchmark tasks, such that at least the
POS baseline can be reached. Interestingly, the final word embeddings without pre-training appear
to not make sense when judged by intuition (considering nearest neighbours in the embedding
space), whereas the pre-trained final embeddings do. [Collobert et al., 2011] further implement
multitask learning for training the parameters for all four tasks jointly, which results in minimal
improvements over the single-task systems. However, they cannot beat the baselines without
adding additional features loosening their “from scratch” philosophy. As depicted in Figures [
and [2| adding discrete features is realized with additional lookup tables, one for each feature type.
The effect is that the NN learns not only embeddings for words, but also embeddings for the
additional feature types, e.g. for POS tags.
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3.4 Deep Learning for QE

As mentioned in Section only a few approaches used neural networks for QE. [Shah et al.,
2015b| build a continuous space neural language model to extract features for sentence-level
predictions. In the WMT15 QE evaluation these features alone yield slightly better results than the
baseline features, and added to other features they consistently lead to improvements. Likewise,
[Shah et al., 2015a] perform a detailed analysis of the effectiveness of these types of features for
sentence-level QE on both source and target side and come to similar results. In contrast, |[de Souza
et al., 2014] use neural networks as classifiers for QE, not only for feature extraction. With their
bidirectional long short-term memory recurrent neural network (BLSTM-RNN) they were ranked
first in the WMT14 word-level evaluation. The recurrence in the network architecture allows to
keep a history about the models states, and by bidirectional processing of the input the prediction
for a word is dependent on the hidden states for all previous and all subsequent predictions of
that sentence [Schuster & Paliwal, 1997]. The input to the BLSTM-RNN are features including
word posterior, language model and word lexicon probabilities, POS tags and features based on

confusion networks and on the QE labels of other granularities.

Like [de Souza et al., 2014] we design a deep neural network classifier for word-level QE, but we
only use raw words as input and train an unidirectional multi-layer perceptron without recurrence.
This makes our approach similar to the continuous space neural language models, except for we
have bilingual input (as suggested by [Shah et al., 2015a]) and a discrete output value instead of a
probability distribution over words. With our system combination we similarly to [Collobert et al.
2011] address the question, where manually-designed features are superior to the latent feature
representation of the deep neural network and what their individual contribution to a combined

model is.
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4 Quality Estimation from Scratch

We apply the framework of [Collobert et al., 2011] to learn bilingual correspondences “from
scratch”, i.e. from raw input words. The following sections provide details about the NN
architecture, the training process, and the design of system combination with a linear baseline

feature classifier.

4.1 Neural Network Architecture

Our QUality Estimation from scraTCH (QUETCH) system is based on a neural network architecture
built with Theano |Bergstra et al., 2010]E]. We design a MLP architecture with one hidden layer,
non-linear tanh activation functions and a lookup-table layer as proposed by [Collobert et al.,
2011]. The lookup-table has the function of mapping word to continuous vectors and is updated
during training. Figure [3|illustrates the connections between the input, hidden lookup-table and
linear layer, and the output. The softmax over the activation of these output units is interpreted
as score for the two classes. Formal details about the layers, the parameters and the training are

specified in the next two sections.

As briefly sketched in Section [3.3] feed-forward neural networks can generally be formalized as
a nested composition of functions, where each function f} corresponds to a layer [ € L of the

network:
fol) = fo (fa™ (o fo () )) (3)

The input for the network is the input to the innermost function fJ representing the first layer,
whose output is input to the next function representing the next layer, etc. The output of the
outmost function f{ representing the last layer, is the output of the network. This mechanism
allows feeding forward the input signal through all the successive layers of the network. The signal
is transformed at each layer, and if non-linearity is involved in these transformations, the output

signal is not linearily reconstructable from the input.

1 Code available at https://github.com/juliakreutzer/quetch
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4 Quality Estimation from Scratch
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The input to our network consists of:

(1) a tokenized and lowercased?| target sentence ¢ = [t1t». .. t7] of length T,

(2) a tokenized and lowercased source sentence s = [s152 ... Sg| of length S,

(3) an indicator ¢ € [0, T to the position of the target word ¢; (focus word) that has to be labeled,
and

(4) an alignment function a : i — j that maps the target position i to a source position j € [0, .S].
Note that this alignment function does not have to be a linguistically sound alignment function as
used in SMT — it only requires to be fully defined on the target side. In the following, = = (¢, 5,1, a)
denotes the input to the network.

From words to vectors All target and source words are indexed within a vocabulary V' and
represented as one-hot encoded vector of length V. From the input sequences ¢ and s context
words are extracted around the positions ¢ and j. For this purpose we define a context extractor
function Cyin,,.win,: (-) Which is parametrized by the source window size win,. and the target

window size wmtgf]

i |wineg: /2

it |wineg: /2]

Sa (i)~ |winge /2]

ClUinsrcﬂUintgt (I') -

Sa(i)

L Sa(i)+|winigt /2] ]

The result of the application of the context extractor function on an input is a (win,g+wing.)x|V|
sparse context matrix C' of one-hot row vectors, each row representing one context word.

For example, consider a single sentence pair with s = “The cat sat on the bike" and t =
“Die Katze saB auf dem Fahrrad". The vocabulary V' contains all word types (lowercased) of

the two sentences: V' = {the, cat, sat, on, bike, die, katze, saB, auf, dem, fahrrad}.

2 Apart from tokenization and lowercasing, no additional pre-processing was applied to the raw input data.

3 We assume that window sizes are uneven integers larger than 1 such that they can be centered at the target
position i or the source position j respectively. If the window exceeds the sentence, a special PADDING token
is inserted.
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They are represented as one-hot-encodings:

the : [100000000000],
cat : (010000000000,
sat : [001000000000],
on : [000100000000],
bike : [000010000000],
die : [000001000000], (5)
katze : [000000100000],
saB : [000000010000],
auf : [000000001000],
dem : [000000000100],
fahrrad : [000000000010],
PADDING : [000000000001]

Assuming that a is the identity function, context window sizes of 3 yield the following context

matrix for the target word ¢; = "Katze":

000001000000
000000100000
000000010000
100000000000
010000000000

001000000000

cs3s(t, s, 1,a) =

Word embeddings One-hot representations of words are sparse and not informative, since
all words representations have equal distances in the embedding space. We aim to find dense
representations that capture bilingual distributional knowledge such that words similar in meaning
have similar representations. These word embeddings are stored in a lookup-table (LT) matrix
MVIxdwra and are updated during training for QE after random initialization or unsupervised
pre-training.

frr(z) = vecyow(Mz)T (6)
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The lookup table operation (Equation is realized by a vectorized dot product of context
matrix and embedding matrix and returns a dy,q * (wing,; + wing..)-dimensional lookup vec-
tor, where vec,., represents the row-major vectorization of the input matrix: vec,o,(A) =
11+ Qi Q2] - G2 - CGnl - - - Gum- INtuitively, this operation concatenates slices of the

lookup table representations for all context words, as illustrated in Figure[3]

Standard affine layers The lookup vector is input to the first affine layer
Jiin(z) =b1 + Wiz (7)

which is parametrized by a bias vector b; of length hu and a hu X |dypq * (Wingg + wing.)|
weight matrix W;. We speak of the hyper-parameter hu as the number of hidden units of this
layer. To introduce non-linearity into the neural network, we apply the hyperbolic tangens tanh
as non-linear activation function elementwise to the output of the linear layer. The tanh returns

a value in the range [—1,1].

2x;—1
exp-¥i
tanh(z;) = prE (8)
Another linear layer
Jout(x) = by + Wax (9)

parametrized by a k x hu-dimensional matrix W5 forms the output layer of the whole neural
network architecture. The number of units of this layer equals the number of output labels %, i.e.
k = 2 in the case of a binary prediction (Y = {OK, BAD}).

From activations to scores To make the outputs of the neural network interpretable as label
probabilities, we apply an elementwise softmax normalization function to the k-dimensional output

vector of the second affine transformation:

T
score(x;) = _ P (10)
E§:1 expri

For each label we hence obtain a probability score.

25



4 Quality Estimation from Scratch

Feed forward A full feed-forward pass through all the layers of the network is a nesting of the

above defined functions:

N9(x) = fOut(tanh(flin(fLT(CWinSTCWintgt(x))))) (11)
= by + Wy tanh(b1 + W (Uecrow(M * Cwingre,winggt (SE)))) (12)

The predicted label ¢ for a given input z is the arg max of the network output:

§ = argmax score(Ny(x),,) (13)
yi€Y

4.2 Training

Maximum likelihood objective Trainable parameters of the NN architecture are the bias
vectors (by,by) and weight matrices (1W;,115) of the linear layers and the matrix M € RwraxIV]
that represents the lookup-table. When not explicitly referred to, they are denoted by 6. Let &'
denote the parameters of a single layer [. Tunable hyper-parameters are the number of units of
the hidden linear layer, the lookup-table dimensionality d,,.q and the learning rate.

The log-likelihood given the training data D consisting of labeled training samples (z, y) is defined

as follows:
Ly= Y logp(ylz,0) (14)

(z,y)€D

The training objective is to maximize this log-likelihood, that is to find 6 = argmaxg Lg. The
likelihood is defined as the softmax model score for the true label ([Collobert et al., 2011]'s

word-level likelihood):
p(yle,0) = score(No(x),) (15)
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Using the definition of the softmax normalization (Equation the log-likelihood can be rewritten
in terms of the NN feedforward output N(z).

Lo= ) logp(y|z,6) 16)
(z,y)eD
= Y logscore(Ny(z),) an
(z,y)eD
N9(x)y
exp
) 8 (18)
(I%:ED Z?Zl explNe(®);
k
= > Np(z), —log ) exp™@s o)
(z,y)€D e

SGA For maximizing we use stochastic gradient ascent. With each training sample (z,y)
at timestep ¢, the parameters are updated into the direction of the gradient of the objective
function with stepsize A:

oL
9t+1 == Qt + )\876‘5 (20)
—o Aalog score(Ny(z),) (1)
00,
DN, (), — log S°E_ expa @)

00,

Modular computation of gradients In order to compute the gradients for the parameters of
each layer, the chain rule is applied repeatedly. Parts of the chain are the same for inner partial
derivatives (the so-called backpropagated error signal), which allows for a modular definition of
the derivatives. For each Iayerﬂ it is hence sufficient to compute the gradient w.r.t. (1) the layer's
parameters, and (2) the layer's input. Given a nested functions that defines the neural network (see

Equation , gradients for all layers [ can be computed from the gradient with respect to this layer’s

oL .

input oft 26, -

and the gradient with respect to own parameters
oL 0L %

7= _ 7= 2
90" — afL 96, (23)

4 Here, "layers" are functions, so also the non-linear activation function is considered as a layer.
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Depending on the depth of the layer, the gradient w.r.t its inputs might require applying the chain

rule again:

oL OL ofyt
afy  oftt of;

The detailed gradients for all layers are given in Section [A.1]

(24)

4.3 Unsupervised Pre-training

Usually, the parameters of a neural network are initialized with zeros or random numbers, i.e. no
a-priori knowledge is captured in the network. However, the learning process can benefit from
knowledge that is encoded into the architecture prior to training [Saxe et al., 2011] by being
guided to good local minima in non-convex optimization [Erhan et al., 2010, Bengio, 2009]. In
case of QE, the model profits from seeing well-written source and target sentences — before
actually seeing translations. word2vec [Mikolov et al., 2013a, Mikolov et al., 2013b| offers
efficient methods to pre-train word representations in an unsupervised fashion such that they
reflect word similarities and relations. Initializing the lookup-table with pre-trained word2vec
vectors allows us to incorporate prior linguistic knowledge about source and target language into
QUETCH. During the learning process, these representations are further optimized for QE and
the vocabulary encountered during training. Note that other submissions to the WMT15 QE task
also utilize features based on word2vec (|Shah et al., 2015b]), but in a static way, such that the

word embeddings are not optimized during training for QE.

4.4 Baseline Features and System Combination

The WMT15 data contains a number of baseline features (listed in Table [L0). In order to exploit
this additional information, a straightforward approach would be to integrate the baseline features
in the deep learning system on the same level as word-features and train lookup-tables for each
feature class [Collobert et al., 2011]. While this certainly works for cetagorical features like
POS tags, this is not suitable for continuous numerical features. Preliminary tests of extending
QUETCH with a lookup-table for POS-tags did not result in better F1 scores. Also, training
takes considerably longer, because of (1) the additional lookup-table to train and (2) the larger
dimensionality of the vector representing a target word with its context. For these reasons, we
decided to design a system combination that treats the QUETCH system and the baseline features
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individually and independently. To this aim, we train separate systems, one based on the DL
approach described in Section (QUETCH), and one based solely on the baseline features.
In a final step, the outputs of both systems are combined with binarized versions of selected
baseline features. This combination is the input to a linear classifier that learns weights for these
features (QUETCH+). On the one hand, system combination is a generally effective strategy
for complex applications (see e.g. for MT [Heafield & Lavie, 2011, [Karakos et al., 2008| or for
cross-lingual information retrieval [Schamoni & Riezler, 2015]). On the other hand, the modular,
linear combination provides additional knowledge about the individual contributions. This will
help to address the questions how much feature-engineering is necessary for QE, which features
are most useful, and whether the information represented by QUETCH is already present in some

of the baseline features.

Baseline Features System

To obtain a system for baseline features that is most complementary to QUETCH, we use the
Vowpal Wabbit (VW) toolkit [Goel et al., 2008] to train a linear classifier, i.e. a single-layer
perceptron. We build new features by “pairing” baseline features, thus we quadratically expand

the original feature space and learn a weight for each possible pair.

Assuming two feature vectors p € {0,1}F and q € {0, 1}¥ of sizes P and Q where the n'® dimen-

sion indicates the occurrence of the n'® feature, we define our linear model as

P Q
fp,a) =p Wa =% pWiaq (25)
i=1j=1
The weight matrix W € RP*Q encodes relations between features [Bai et al., 2010, [Schamoni
et al., 2014]. The value of f(-,-) is the prediction of the classifier given a target vector p and a
vector of related features q.

To address the problem of data sparsity, we reduced the number of possible feature pairs by
restricting the feature expansion to two groups: (1) target words are combined with target context
words and source aligned words, and (2) target POS tags are combined with source aligned POS
tags.
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4 Quality Estimation from Scratch

System Combination

For the final system combination, we train another linear classifier. The combined systems
comprises 82 features: the QUETCH-score, the score predicted by the baseline feature system,
and the remaining 80 features are binary features derived from the baseline feature set. The
QUETCH-score is the system’s prediction combined with its likelihood, for the baseline feature
model we directly utilize the raw predictions with clipping at £1. Binarized features were inserted
to enrich the classifier with additional non-linearity. They consist of (1) the binary features from
the baseline feature set, and (2) binned versions of the numerical features from the same set.
For small groups of discrete values we assigned a binary feature to each possible value, for larger
groups and real-valued features we heuristically defined intervals (“bins”) containing roughly the
same number of instances. The integration of the single components for the system combination
is illustrated in Figure [4]
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5.1 WMT QE Tasks

In this section, we describe the training of the QUETCH model on WMT data and report results
of experiments that led to the WMT15 submission. With experiments on both WMT14 and
WMT15 data we are able to analyse the performance of our model on four language pairs, two
different kind of gold labels, two different data set sizes, and in a system combination with baseline

features.

As described in section the WMT word-level QE tasks consist of predicting the word-level
quality level of machine translations, without the use of human references, and without insight into
the machine translation system. We focus on binary labels for quality (*OK"/“BAD"), since these
are available for both WMT14 and WMT15 data. Main evaluation metric for both evaluations is
the Fl-score of BAD instances. Tables (3| and |4| present the definition for true positives (7'P),
true negatives (T'N), false positives (F'P), and false negatives (F'IV) for the classification of OK
and BAD instances respectively. From these, Precision (P), Recall (R), and the F1-score (F'1)
are computed as defined in Equation [26]

TP

P:TP+FP (26)
TP
TP+ FN
P-R
F1 =2
P+ R
Prediction Prediction
OK BAD OK BAD
T OK |TP FN Twe OK |TN PP
" BAD | FP TN ' BAD | FN TP

Table 3: Confusion matrix for OK-classification. Table 4: Confusion matrix for BAD-classification.
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Sentence id Token id Token Multi-level L1 Binary
31 0 This OK OK OK
31 1 group OK OK OK
31 2 of OK OK OK
31 3 galaxies  OK OK OK
31 4 called OK OK OK
31 5 Arp OK OK OK
31 6 273 OK OK OK
3.1 7 , Punctuation Fluency BAD
3.1 8 took Mistranslation Accuracy BAD
3.1 9 up Mistranslation Accuracy BAD
31 10 the OK OK OK
3.1 11 space Word_order Fluency  BAD
3.1 12 telescope Word_order Fluency BAD
31 13 Hubble OK OK OK
31 14 for OK OK OK
31 15 Nasa OK OK OK
31 16 : OK OK OK

Table 5: Example of WMT14 de-en target sentence annotation.

WMT14

The WMT14 data covers translations of several thousand training instances from German to
English (de-en), Spanish to English (es-en), and vice versa (en-de, en-es). The following example
from the de-en training data (sentence with id 3.1) illustrates the characteristics and the format
of the data. For the source sentence “Diese Gruppe von Galaxien, Arp 273 genannt, nahm
das Weltraumteleskop Hubble fiir die Nasa auf.”, the target annotations are listed in Table .
All tokens of the target sentences were annotated with MQM categories, that were used to
infer L1 and binary labels. In this example word order, mistranslation and punctuation errors
cause 5 of 17 tokens being labeled BAD. Note that punctuation and word order errors are errors
that could be detected by a standard target-side language model, whereas the mistranslation
error cannot be identified without knowing the source text. Learning both from local target
and source context, the QUETCH model should in principle be able to cover both types of

€rrors.

Table [0] presents an overview over the distribution of labels in training and test data across the
four language pairs. The skewness of the data varies from language to language. The WMT

evaluation focuses on the classification quality for the BAD class, but the model is trained with a
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Language Pair Total Words % OK % BAD

de-en 6,453 79.06 20.94
Training Set en-de 11,281 70.48 29.52
es-en 19,912 83.43 16.57
en-es 47,411 64.87 35.13
de-en 1,777 78.61 22.39
Test Set en-de 2,368 71.33 28.67
es-en 3,114 82.37 17.63
en-es 9,613 64.38 35.62

Table 6: Distribution of binary labels on WMT14 datasets for binary word-level QE.

maximum likelihood objective that treats both classes equally. This is why the skewness heavily
influences the results when measured with BAD F1. A solution for this effect will be addressed in
the experiments for WMT15.

Since the plain QUETCH system does not rely on language-specific features, we simply use the
same deep learning architecture for all of these language pairs.

QUETCH is trained on the WMT14 training set, with a source and target window size of 3, a
lookup-table dimensionality of 10, 300 hidden units, and a constant learning rate of 0.001 Test
and training data were lowercased and tokenize(ﬂ and aligned with the fast_align tool from the
cdec toolkit [Dyer et al., 2010]. The collection of corpora provided with WMT13's translation
taslﬂ served as source for unsupervised pre-training of the word embeddings: Europarl v7 [Koehn,
2005], Common Crawl corpus, and News Commentary. The initial word embeddings were trained
jointly for all language pairs in the hope that this will lead to embeddings that suit multilingual
tasks best. Therefore we concatenated the above listed corpora and use gensim's [Rehtirek &
Sojka, 2010] word2vec CBOW implementation for training on all words of the concatenated

corpus with a context window of five.

Following the WMT14 evaluation [Bojar et al., 2014], we report on accuracy and BAD F1-score,
the latter being the task's primary evaluation metric. The WMT14 baselines trivially predict
either only BAD or only OK labels. Table [7| presents the best Fl-scores during training and the

according accuracies for QUETCH under different configurations.

1 This hyper-parameter set was chosen by grid search on the WMT15 development data. The primary goal was
to build a competitive system for the WMT15 evaluation, so the WMT14 data served mainly the purpose of
exploring other language pairs and translations, and hyper-parameters were not tuned for WMT14 specifically.

2 Training and test target data was delivered tokenized, source data was not tokenized.

3 http://www.statmt.org/wmtl13/translation-task.html
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Configuration BAD F1 Accuracy

(v) 0.4378 0.5087

& (a) 0.4164 0.5107
& (p) 0.5206 0.4026
(a), (p) 0.5228 0.4196

(v) 0.2197 0.7604

5 (a) 0.2470 0.7749
& (p) 0.3203 0.8051
(a), (p) 0.3396 0.8076

(v) 0.3743 0.6090

S (a) 0.4197 0.6381
& (p) 0.4684 0.6060
(a), (p) 0.4863 0.6271

(v) 0.2482 0.7001

3 (a) 0.2426 0.6837
S (p) 0.3734 0.6657
(a), (p) 0.3791 0.6792

Table 7: QUETCH results on WMT14 task 2 test data under different configurations:
(v)anilla system, (p)retraining of word embeddings, (a)lignments from an SMT system.

The plain QUETCH system yields an acceptable accuracy, but the BAD F1l-scores are not
competitive. Adding alignment information further improves the accuracy for all language pairs
but de-en. It improves the F1-score only for es-en and en-de, which indicates that the model is
still prone to local optima. It is in fact pre-training that boosts the BAD F1-score — this initial
positioning in the parameter space appears to have a larger impact on the training outcome than the
introduction of translation knowledge via alignments. However, we can achieve further improvement
when combining both pre-training and alignments. As a result, QUETCH outperforms the official
winning systems of the WMT14 QE task (see Table @ and the trivial baselines for all language
pairs. The fact that the overall tendencies are consistent across languages demonstrates that

QUETCH is capable of language-independent quality estimation.

In addition to the above experiments, we train a multilingual QUETCH model on the concate-
nation of all WMT14 datasets jointly and test it on the concatenated test sets ("all") and the
individual language pairs. The results in Table [8| indicate that this approach is not superior to the
independent training for each language pair in terms of BAD F1-score for the individual language

pairs.
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Model BAD F1 Acc.

all  (a)(p) 0.4288  0.6396
en-es (a)(p) 0.3079 0.5614
es-en (a)(p) 0.2320 0.6429
en-de (a)(p) 0.3179 0.5832
de-en (a)(p) 0.2698  0.6528

Table 8: Multilingual learning for all WMT14 language pairs. The model is trained on a
multilingual corpus that contains the WMT14 training data for all language pairs.

Submission BAD Acc.

en-es FBK-UPV-UEDIN/RNN 0.4873 0.6162
es-en  RTM-DCU/RTU-GLMd 0.2914 0.8298
en-de RTM-DCU/RTU-GLM  0.4530 0.7297
de-en  RTM-DCU/RTU-GLM  0.2613 0.7614

Table 9: Winning submissions of the WMT14 Quality Estimation Task 2 [Bojar et al.,
2014].

WMT15

For the WMT15 QE word-level task, training, development and test data with annotations for
errors as edit operations (replacements, insertions, or deletions) with respect to human post-edits
[Snover et al., 2006] were provided. Table [L1] presents two example sentences of the WMT15
training data and illustrates how the QE labels are inferred from comparing the target and the
postedition. Note that the binary label scheme based on edits is very strict and agnostic about
the severity of the error in the translation, e.g. "humana" is labeled "BAD" although only the
gender is incorrect ("humano").

In addition to the labeled data, a set of 25 baseline features that operate on source and target
translation, but do not use features of the SMT pipeline that produced the translations, was
supplied. For an overview of the baseline features see Table [I0] Note that the the extraction of
these features requires additional resources like WordNet for polysemy counts, language models
in both source and target language, alignments, and pre-processing by a POS tagger, a named
entity recognizer, and a machine translation system for generating the pseudo-references. These
dependencies on external resources and processors can have an effect on the quality of the resulting
QE model, but this has not been evaluated yet. However, the features allow us to evaluate the
approach for system combination introduced in Section [4.4]

The distribution of binary labels is strongly skewed towards “OK" labels as listed in Table [12]
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Category Feature

Token Counts source token count
target token count
source target token count ratio
Context token
left context
right context
Alignment first aligned token
left alignment
right alignment
Token Class is stopword
is punctuation
is proper noun
is digit
Language Model highest order ngram left
highest order ngram right
backoff behavior left
backoff behavior middle
backoff behavior right
source highest order ngram left
source highest order ngram right

MT pseudo-reference
POS-tag target pos

aligned source pos list
Polysemy polysemy count source

polysemy count target

Table 10: Baseline features provided with the WMT15 word-level QE task data.

even more so than in the previous QE task at WMT14 (increased by a factor of approximately

four).

For the experiments on the WMT15 en-es data, we introduce a weight w for BAD training
samples, such that QUETCH is trained on each BAD sample w times. In this way, we easily
counterbalance the skewed distribution of labels, without modifying the classifier's loss function.
Also, we utilize the larger and non-parallel raw Wikicorpus [Reese et al., 2010] in English and
Spanish for pre-training (around 600 mio words for English, around 120 mio words for Spanish,
dump of 2006).

During training of the VW-system, we experiment with various loss functions (hinge, squared,
logistic) and find the model trained on squared loss to return the highest accuracy. Unwanted
collisions in VW's hashed weight vector were reduced by increasing the size of the hash to 28
bits. To prevent the model from degenerating towards OK-labels, we utilize VW's option to set

the weight for each training instance individually and increase the weights of the BAD-labeled
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source Roasted pumpkin , pumpkin seeds , pumpkin pie , you name it .
target Calabaza tostadas , semillas de calabaza , pastel de calabaza , lo que sea .

postedition Calabaza rostizada , semillas de calabaza , tarta de calabaza , dilo tu .

labels 0K BAD OK OK OK OK OK BAD OK OK OK BAD BAD BAD 0K
source Both are too passive to really ascribe human-like behavior .
target Ambos son demasiado pasivos con el comportamiento realmente atribuyen similar a la humana .

postedition Ambos son demasiado pasivos para asignarle comportamiento humano .

labels 0K 0K OK OK BAD BAD OK BAD BAD BAD BAD BAD BAD OK

Table 11: Two examples from the WMT15 training data. Tokens labeled "BAD" are
underlined.

Total Words % OK % BAD

Training Set 257,548 80.85 19.15
Development Set 23,207 80.82 19.18
Test Set 40,899 81.12 18.88

Table 12: Distribution of binary labels on data set for WMT15 word-level QE

instances to 4.

The VW-system and the system combination are trained in a 10-fold manner, i.e. the VW-
system is trained on 9 folds and the weights for system combination is tuned on the 10" fold
of the training data. The final weights of the model for evaluation are averaged over all 10
folds.

Table presents the results on the WMT15 data for both QUETCH, the baseline feature VW
model, and the system combination referred to as QUETCH+. The QUETCH results were
produced under the same parameter conditions as in the WMT14 experiments, and the newly
introduced w is set to 2 for the submitted and the combined model, and to 5 for another model

that was explicitly designed for a high BAD F1-score.

Although proceeding in the same manner as in the WMT14 experiments, we see slightly different
tendencies here: Adding alignments has a positive effect on the BAD F1-score, whereas pre-training
improves mainly the accuracy. Still, the combination of both yields both a high BAD F1-score
and a high accuracy, which indicates that QUETCH succeeds in integrating both contributions in
a complementary way. Adding BAD weights furthermore improves the BAD F1-score, yet losing
some accuracy. Further increasing the weight up to 5 strengthens this effect, such that we obtain
a model with very high BAD F1-score, but rather low accuracy.

The stand-alone VW model yields generally higher BAD F1-score, but does not reach QUETCH's

accuracy. To enhance the orthogonality of the two models for combination, we select a QUETCH
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Configuration BAD F1 Accuracy
(v) 0.2535 0.7104
- (a) 0.2628 0.7099
O (p) 0.2535 0.7668
m (a), (p) 0.2793 0.7716
o f(a), (p), (w=2) 0.3527 0.7508
(a), (p), (w=5) 0.3876 0.6031
t(a), (p), (w=2) 0.2985 0.7888
vw 0.4084 0.7335
TQUETCH+ 0.4305 0.6977

Table 13: QUETCH results on en-es WMT15 task 2 test data under different configuration
setting: (v)anilla model vs. models using (p)re-training, (a)lignments from an SMT-
System, and (w)eighting of the BAD-instances. Submitted systems are preceded by ,
components of the final QUETCH+ system are marked with ¥.

model with high accuracy for the system combination. Interestingly, the system combination
appears to profit from both models, resulting in the overall best BAD Fl-score. The resulting VW
weights of 1.188 for QUETCH and 0.951 for VW underline each system’s contribution. The next
most important features for the combination were pseudo_reference and is_proper_noun with
weights of 0.2208 and 0.1557, respectively.

System BAD F1 OK F1 All F1
baseline 0.1678 0.8893 0.7531
QUETCH 0.3527 0.8456 0.7526
QUETCH+ 0.4305 0.7942 0.7256
UAlacant/OnLine-SBI-Baseline 0.4312 0.7807 0.7147

Table 14: Official test results on WMT15 task 2 for word-level translation quality. The All
F1-score is the weighted average of BAD F1 and OK F1, where the weights are determined
by the frequency of the classes in the test data. The UAlacant/OnLine-SBI-Baseline
and the QUETCH+ predictions show no significant difference at p=0.05 and are both
announced official winners.

Table [14] shows the final evaluation results on the WMT15 task 2 for the main evaluation metric
of F1 for predicting BAD word-level translation quality, the F1 for predicting OK translations and
their weighted average. Both submitted systems, QUETCH and QUETCH-, yield considerable
improvements over the baseline. The QUETCH+ system that combines the neural network

with the linearly weighted baseline features is nominally outperformed by one other system by
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0.07% BAD F1 points, but their difference is not significant at p=0.05, tested with approximate
randomisation [Padé, 2006].

Model Selection

We observe that the training process after the first iterations produces high BAD F1-score models,
then further improves the accuracy whilst slowly decreasing the BAD F1-score. This is due to the
fact that we do not optimize on the BAD F1-score directly, but the log-likelihood of the data,
which is skewed towards the OK label. This behavior allows us to select models with individual
trade-offs between BAD F1-score and accuracy at different stages of training. Figures[5| and [q
illustrate this process: They depict the accuracy and the BAD F1-score for early stopping within
the first 200 epochs of training for the vanilla, the aligned, the pre-trained and two weighted
models. The accuracy for the un-weighted models start high with around 80% and then slowly
decreases, probably an effect of overfitting. The good starting values are due to the high ratio
of "OK" instances in the data. The higher the weight for the "BAD" instances, the lower the
accuracy and the higher the BAD F1-score starts. Whereas all models converge to a consistent
accuracy of around 75% after 200 epochs, the models initialized with pre-trained word embeddings
show a clearly higher BAD F1 score. Naturally, one would select a model at a point where the
evaluation results are stable and close to convergence, but since we need a model with primarly
high BAD F1-score, we exploit the early peak in the BAD F1 curve for weighted models for the
submission to the WMT evaluation (early stopping at epoch 15). For the system combination, we

selected the model after 38 epochs.

5.2 Additional Experiments

A small number of additional experiments with the QUETCH architecture were conducted to give
directions for further development. In contrast to the results reported in the previous sections,
the results reported in this section are not based on exhaustive meta-parameter tuning and do
not aim to compete with state-of-the-art models. The purpose of these experiments is to explore

both further possible applications and limitations of the model.
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Language Pair Configuration MAE RMSE

en-es (p) 0.4983 0.7517
es-en (p) 0.66  0.9487
en-de (p) 0.64  0.9237
de-en (p) 0.6733 0.8981

Table 15: QUETCH results on WMT14 task 1.1. test set

Transfer to Sentence-Level Predictions

The architecture for word-level QE predictions can easily be adapted to sentence-level predictions.
On the sentence level, the input to the NN consists of full source and target sentences and the
output is a single score, depending on the task formulation. We limit these first experiments to
the formulation of the WMT14 task 1.1, where sentence scores are three categories describing
levels of post-editing effort{’]

e 1: perfect translation, no post-editing needed at all

e 2: near miss translation: translation contains at most 2-3 errors, and possibly additional

errors that can be easily fixed (capitalisation, punctuation)
e 3: very low quality translation, cannot be easily fixed

Transferring from word-level to sentence-level predictions, the NN architecture remains unchanged.
Instead of feeding in the representations of context windows, we now feed in the representation of
whole sentences. Technically, we simply choose the size of the context windows in such a way that
they cover the whole sentences, i.e. at least the longest sentence in the training data. Padding is
added to shorter sentences. The only change in the output is that we have one additional quality
label, so we increase the size of the output layer by one.E] For the experiments on the WMT14
task 1.1 data we set context sizes to 60 and the number of hidden units to 100. We found that a
smaller number of hidden units shows clear benefits here. Since the input to the network is much
larger than in the word-level setting, a higher compression for the successive layer appears to be
beneficial for the generalization performance. Table (15| reports mean absolute error (MAE) and

root mean squared error (RMSE) for the model's predictions.

4 See http://www.statmt.org/wmtld/quality-estimation-task.html|for the detailed task description.

5 If the sentence-level task is not understood as a classification, but as a regression task (as for example in the
WMT15 task 1, where HTER scores are predicted), the output layer can alternatively be reduced to one output
unit without softmax normalization.
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Language Pair Configuration MAE RMSE

en-es Baseline 0.5200 0.6600
en-es Winning System 0.4900 0.6100
es-en Baseline 0.5700 0.6800
es-en Winning System 0.5300 0.6400
en-de Baseline 0.6400 0.7600
en-de Winning System 0.5800 0.6800
de-en Baseline 0.6500 0.7700
de-en Winning System 0.5500 0.6700

Table 16: Baseline and winning systems on WMT14 task 1.1. test set

The approach to sentence-level QE via the above described changes to the word-level approach is
naive and the results (compare Table 15| and Table emphasize the need for more sophisticated
NN architectures that are specifically designed for the sentence-level task. Problematic in our
approach are the large proportion of padding vectors that are added to the input representation
for short sentences, and furthermore the fact that all words in both sentences contribute equally
to the sentence pair representation. These issues illustrate that NN architectures that allow
variable-length input sequences and weighted contributions of input elements could offer attractive
solutions for QE (e.g. bidirectional recurrent NN [Sundermeyer et al., 2014], or the encoder-

decoder model with attention mechanism [Bahdanau et al., 2015] that were successful for
SMT).

Learning Parameters

After the WMT15 submission, more experiments with a wider range of meta-parameters for the
learning process were conducted. We found that the use of the sigmoid activation function ([27))
instead of tanh improves the classification results. We hypothesize that the sigmoid’s range
of [0,1] suits the latter transformation into probabilities better than the tanh's range of [-1,1].
Table [17] presents a comparison of models with sigmoid and rectifier (ReLU) activation functions
evaluated on the WMT15 development data. For comparison, the results for a linear model
are also reported. Furthermore we found considerable improvement when shuffling the training
data before each epoch. Regularizing the 12-norm of the parameters however did not result in
better classification quality (not reported here). Still these results indicate that a further tuning
of the learning process and NN properties offer room for improvement over the QUETCH models
submitted to the official WMT evaluation.
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Configuration

BAD Accuracy

w:2) + ReLU

) + tanh

) + tanh + shuffle
)

)

2
2
2) + sigmoid
2

0.3022 0.7710
0.3258 0.7696
0.3527 0.7508
0.3760 0.7259
0.3644 0.7622

+ sigmoid + shuffle 0.3729 0.6606

Table 17: QUETCH results on WMT15 task 2 test data with different activation functions
and optional shuffling before each epoch. The results for shuffling are averaged across 3
independent runs. The "identity" activation function makes the model linear.

o(x) =

ReLU(x) = max(0,z) =

43

1+ exp(—x)
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5.3 Evaluation of the Word Embeddings

So far we found evidence that the QUETCH model successfully learns to make predictions for QE,
but we cannot directly inspect the knowledge that it gained, since the values of the hidden layer's
matrices and vectors are not linguistically interpretable. However, an inspection of the learnt word
embeddings will allow us to at least get an idea of how the model represents the meaning of
single words in the context of QE. With the following experiments we address the questions (1)
how words are represented and (2) whether these representations capture a general cross-lingual

knowledge that could be useful for other cross-lingual tasks.

As in Section the goal of the results reported in this section is not to compete with other
systems, because the model was not designed and optimized for these tasks. By inspecting the
parameters of the lookup table layer in isolation, we only look at the first step of transforming the
input words into abstract representations for QE. It would be a completely different experiment to
transform the QUETCH architecture to be trained for the evaluation tasks below directly. The
experiments of this section are all based on the models trained for WMT15 on translations from

English to Spanish.

The QE Vector Space

Our first analysis aims to find out how words are located in the bilingual vector space that the QE
lookup table represents. To this aim we list nearest neighbours for selected words and visualize
the similarity between words via projections on a two-dimensional space with truncated SVD.

Nearest neighbours are inspected for four selected words: one from English (“love™), one from
Spanish (“amor”), and two that are common in both languages (“internet”, “drama”). The
representations of these words are compared to all other word representations in the vector space:
the word representations with the highest cosine similarity are considered nearest neighbours. Com-
paring the word2vec embeddings and the bilingual vanilla and submitted QUETCH embeddings,
we make the following observations: The word2vec embeddings reflect some conceptual and

contextual similarities (e.g. “internet”-"online”, “love"-
not on the Spanish side (see Table . Also, the lists for the words common in both languages

my") of the English training corpus, but

only contain English words. From that we learn that the way we trained the word2vec embed-
dings (concatenating English and Spanish corpora, details see Section [4.3) might not have been
optimal, since word2vec embeddings are usually good in reflecting those similarities (compare e.g.
[Mikolov et al., 2013a]). Initializing the QUETCH embeddings with these embeddings, we obtain
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embeddings with similar characteristics — the the model is fine-tuned on the QE training data, the
more changes the ranking of the nearest neighbours and the more Spanish neighbours are found.
However, when initializing the embeddings randomly, the similarities appear to stay random (or
unintuitive), although the model performs well on QE. That shows that the embeddings used for
initialization of the QE embeddings do not necessarily have to represent word similarities in an
intuitive way for yielding good QE results. The similarities reflected in the QUETCH vector space
have their origin in the word2vec initialization, not from QE training.

What happens during QE training is that the initial word2vec embeddings that clearly separate
English and Spanish embeddings as illustrated in Figure 7| are moved closer together (compare
Figures and @ During word2vec training, English and Spanish words do not (or only rarely)
share contexts, whereas during QE training, they are observed and updated jointly. This can
be understood as adding cross-lingual knowledge to the word2vec embeddings. The question
remains whether these updates are appropriate for word2vec embeddings, because QUETCH
and word2vec architectures and training contexts differ, which will be addressed in the next two

sections.

Word Similarity Tasks

As illustrated in the previous section, the word2vec embeddings do not reflect any cross-lingual
knowledge. However, when fine-tuned with QUETCH, they are updated in cross-lingual context.
Inspecting the top ten nearest neighbours of a few selected words, we did not find any cross-lingual
similarities in the resulting QUETCH embeddings. Evaluating the embeddings quantitatively on
standard word similarity tasks will show whether cross-lingual similarities are induced by QUETCH
fine-tuning of word2vec embeddings. Therefore we compare the performance of the embeddings
on the wordsim353 [Finkelstein et al., 2001] and the MC [Miller & Charles, 1991] word similarity
tasks. Both tasks involve predicting the similarity of a given pair of words. The predictions
are compared to human annotations by measuring the Pearson correlation between annotations
and predictions. Both datasets originally contain only English words, but translated versions for
Spanish are available [Hassan & Mihalcea, 2009]. From these translations we create a cross-lingual
word similarity task: given a word in one language and a word in another language, predict their
similarity. For example, the translated pairs “book” - “library” (en), “libro” - “biblioteca” (es) form
the cross-lingual pairs “libro” - “library” (es-en) and “book” - “biblioteca” (en-es). Note that the
performance of word2vec and QUETCH embeddings cannot be compared directly, as QUETCH

embeddings are trained on a larger dataset and also use alignment information. We therefore also

45



5 Experiments

include word2vec models trained only on WMT15 data and on both Wikicorpus and WMT15 data
to measure the influence of the training corpus genre and size. Similarity between words is measured
by cosine similarity between their vector representations. The QUETCH embeddings are the ones
of the submitted model. The results in Tables [19] and [20] may indicate that during QE training
cross-lingual similarities are learned, but some monolingual similarities are IostE] Furthermore, we
again find evidence that the Spanish word2vec embeddings do not reflect similarities as well as
the English ones. The QUETCH embeddings based on these embeddings perform surprisingly well

on the monolingual Spanish similarity tasks.

Cross-Lingual Document Classification

After having evaluated the QUETCH embeddings against human judgement of word similarity,
we now continue with an extrinsic evaluation of the QE models in another down-stream task,
namely cross-lingual document classification (CLDC). We therefore conduct experiments similar to
[Hermann & Blunsom, 2014] on the TED corpus. The TED corpus contains English transcriptions
of TED conference talks and their translation{]. All documents are labelled with multiple keywords,
so predicting these keywords originally is a multi-class multi-label task, but here it is reduced to a
multi-class classification task (see [Hermann & Blunsom, 2014]). With this corpus, document
classification can be evaluated both monolingually (predict the keyword of a document after
having trained on documents of the same language) and cross-lingually (predict the keyword of a
document after having trained on documents of a different language). The corpus contains 1038
documents for training and 99 for testing. [Hermann & Blunsom, 2014] reduce the keywords
per document to the 15 most frequent keywords, which are: technology, culture, science, global,
design, business, entertainment, arts, politics, education, art, health, creativity, economics, biology.
Instead of training one multi-class classifier for all classes, we train 15 One-vs-Rest classifiers,
one for each keyword. The features of each document are composed of the word embeddings.
Like [Huang et al., 2012] we use the average of the word vectors weighted by the words’ inverse
document frequency (idf). All our models are linear SVMs with a hinge loss objective and are
built with Scikit-learn [Pedregosa et al, 2011] and are trained for 10 epochs with SGD.
Additionally we introduce class weights to balance the distribution of keywords. The models
reported in [Hermann & Blunsom, 2014| build on word embeddings with a dimensionality of

128. Therefore we train another QUETCH model with the same parameter settings as the one

6 We assume that the large variations for the performance on the MC tasks is due to the small size of the dataset.
7 Available at http://www.clg.ox.ac.uk/tedcldc/
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submitted to WMT15, but with larger word embeddings (d,,.q = 128). Classification performance
is measured with macro-averaged F1 scores over all classes. The results (see Table on the
monolingual document classification task once more support the impression that the trained
embeddings are not suitable for monolingual tasks. Again we find that QE training improves
the quality of the Spanish word2vec embeddings. In the cross-lingual setting (see Table ,
the SVM models based on QUETCH embeddings actually show a very strong performance, in
particular in the translation direction English to Spanish, which was also the direction for QE
training. However, the word2vec embeddings outperform the QUETCH embeddings in the
opposite direction.

In conclusion, these experiments have shown that the knowledge gained during QE training —
manifested in the word embeddings — can be beneficial for other cross-lingual tasks, in particular
for tasks with the same translation direction. Monolingual similarities that are reflected in the
initial word2vec embeddings are not preserved during QE training. We also found that our
word2vec embeddings might not be optimally trained (especially for Spanish), so exchanging
them for other embeddings that better suit the cross-lingual setting might improve the QUETCH
model.
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Word ‘ Vanilla word2vec QUETCH "submitted" QUETCH “late”

love tird fool blowjob great-looking
hotspots dreaming asshole assholes
marsupial boobs sheepish reads
frightened my stupid dreaming
slice blowjob queasy idiots
gazelle-like asshole ahem goddamn
posibilidad dreams snuggles iou
gah sheepish everybody bitch
pre-cambio yesterday boobs hearted
capitalist stranger cuddle lovin

amor Optica camisa sabe fallé
pin narracion partir similar
settlement triste existe ye
stories existe triste twitter
infieles suerte querer figuratively
bali mano aqui blandos
acquihire alguien vengo fuiste
airports mujer dolor proles
cebo sabe miedo jot
balderton hombre vino something

internet | dilapidated database microsoft 2gb
disfuncional digital irc anchors
comprobaciones tripadvisor digital aol
decomissioned  google desktop obvi
twins omg sharepoint weekday
soon gumtree linux commercials
reciprocal online all-in-one mornings
tropos info mozilla updated
chace salesforce.com wordpress itunes
relativo virtual software billboards

drama | guard film brit soccer
filipinas comedy film sundance
layer cabaret comedy program
cosmonaut music classics music
especializa brit threepenny penguin
thankful thriller cabaret hbo
sensational threepenny documentary version
luck documentary thriller orchestra
madgesty classics penguin soap-opera
giving soap-opera soap-opera incitacion

Table 18: Example of nearest neighbors for 10-dimensional word2vec and QUETCH

embeddings after training for QE. Similarity is measured by the cosine between the vectors.
The vanilla model was trained for 323 epochs, the submitted QUETCH model is evaluated
at epoch 15 and 345 epoch (QUETCH “late”).
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en es

Embeddings ‘ WordSim353 MC ‘ WordSim353 MC
QUETCH (a)(p)(w) 0.1189 0.2462 0.4489 0.1303
word2vec Wiki 0.3289 0.4739 -0.1584 -0.0003
WMT15 0.2154 0.4214 -0.0754 0.0643
Wiki+WMT15 0.095 0.0238 -0.0759 0.0404

Table 19: QUETCH and word2vec embeddings evaluated on English and Spanish mono-
lingual word similarity tasks

en-es es-en

Embeddings \ WordSim353 MC \ WordSim353 MC
QUETCH (a)(p)(w) 0.1647 0.2331 0.2194 0.0409
word2vec Wiki 0.1501 0.079 0.1758 -0.1751
WMT15 0.0934 -0.1603 0.1614 0.4078

Wiki+WMT15 -0.027 0.1379 0.1131 0.0808

Table 20: QUETCH word2vec embeddings evaluated on cross-lingual word similarity tasks
from English to Spanish and vice versa

Embeddings en-en es-es

Raw Data NB 0.481 0.526

Senna 0.4

Polyglot 0.382 0.418

BiCVM 0.475 (DOC/ADD joint) 0.472 (DOC/ADD joint)
word2vec | 0.1659 0.1712
QUETCH (a)(p)(w) | 0.1628 0.2311

Table 21: Fl-scores for the TED monolingual document classification task with training
on QUETCH lookup table embeddings, compared to results by [Hermann & Blunsom,
2014] (BiCVM)

Embeddings en-es es-en
BiCVM 0.451 (DOC/BI joint) 0.446 (ADD single)
MT System 0.518 0.486
word2vec | 0.4658 0.4350
QUETCH (a)(p)(w) | 0.5479 0.4011

Table 22: Fl-scores for TED cross-lingual document classification task with training on
QUETCH lookup table embeddings, compared to results by [Hermann & Blunsom, 2014]
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This section presents a discussion about (1) the task of QE as presented in WMT, (2) the proposed
approach and further improvements that could be addressed in future work.

QE at WMT As briefly outlined in Section [2.1] the task of QE is a relatively young task in
the history of WMT. Several human evaluation scenarios have been tried to get ground truth
labels for QE. This introduced inconsistencies in how the datasets were created: there were direct
manual annotations in WMT 14, whereas labels for QE were derived from human post-editions
indirectly for WMT15. This reflects two different perspectives on translation quality, either an
independent absolute judgment or judgment relative to a post-edition. However, one of the goals
of QE is to predict quality without comparison to a reference, so deriving the labels from these
references (posteditions) can be understood as a contradiction against this principle. Furthermore,

one can argue that the comparison to a single postedition per sentence is not sufficiently reliable
(like for SMT).

The system evaluation and ranking methods of WMT QE evaluations on sentence-level have been
subject to criticism in |[Graham, 2015]. This work suggests replacing RMSE and MAE for system
ranking by the Pearson correlation metric, for it is unit-free and invariant to changes in scale and
location. In the WMT15 findings [Bojar et al., 2015] introduce a new metric for word-level QE
system evaluation which is designed to overcome the shortcomings of the two-class F1 scores
and to give credit to correct sequences of predictions. As we demonstrated, the BAD-F1 score
can be pushed artificially whilst losing Accuracy and OK-F1, which is not prohibited by the task

description but might not reflect the original purpose of the task.

Further improvement of the models The from-scratch approach presented in this thesis is
effective, but fairly simple. In the following aspects it could get more complex and sophisticated

to improve classification quality:

e The words are labelled independently. Taking previous predictions into account for subsequent
predictions can be beneficial if e.g. whole phrases are translated incorrectly, as motivated

in [Bojar et al., 2015]. To overcome this independency assumption, we suggest adopting

20
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the sentence-level log-likelihood scoring approach by [Collobert et al., 2011] or using a
BLSTM-RNN model similar to [de Souza et al., 2014] with raw input. According to the
new metric for word-level QE evaluation introduced by [Bojar et al., 2015], our QUETCH
submission outperforms the QUETCH+ submission, but is only ranked second. Systems
that treat word-level QE prediction as a sequence labelling task, where consecutive labels

are considered interdependent, are clearly preferred by this metric.

The model only considers local context on both target and source side, so there is the risk
that relevant context for the target word lies outside this context. For our experiments,
relatively small contexts yielded the best results (with or without alignments), but this could

be because of the similarity of Spanish and English word order.

The learning rate is held constant during training. Preliminary experiments with decreasing
learning rates did not improve the results, but adaptive per-feature learning rates like
AdaGrad [Duchi et al., 2011] or AdaDelta [Zeiler, 2012] might offer further improvements.

In the QUETCH model the baseline features are ignored, but we showed that at least some
features really add knowledge to the model with the system combination. The QUETCH+
model requires separate training and tuning of both QUETCH and baseline features system,
a careful selection of a suiting QUETCH model, and tuning of the combined model, which
can be tedious and prohibits a end-to-end training process. To overcome these issues,
the features could directly get integrated into the neural network architecture like in the
models by [Collobert et al., 2011] or [de Souza et al., 2014]. The challenge here is to
find a suitable way for feature representation. The raw input features are integers and
can be understood as indices to a lookup table, whereas some of the baseline features are
real-valued numbers, which either need to be mapped to integers to allow for lookup table
representations, or can be directly appended to the real-valued vector which is the result
of the lookup opteration. Another option for lexical features would be to directly attach
them to the raw input and jointly represent them in a lookup table, e.g. POS tags and
language identifiers ("love_NN_en", "love_VV_en", "internet_NN_es"). However, this
would probably lead to sparsity issues and prohibits learning feature and word representations

independently.

The method for pre-training the word embeddings was not tuned to best fit the QE
training. The weak performance of the embeddings for the Spanish word similarity task
indicates that the setting in which we trained them was not optimal. Training English and

Spanish embeddings separately would probably already improve the quality of the Spanish
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embeddings. Also, there are a number of parameters for word2vec training that can be
adapted to improve the embeddings. Another idea is to pre-train them with the QUETCH
architecture directly with a ranking objective to distinguish between observed and randomly
sampled contexts (bilingual analogue to [Collobert et al., 2011]). Alternatively, one could
use bilingual word embeddings like those described in Section for the initialization.
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7 Conclusion

This thesis presents a novel neural network model for word-level quality estimation that was proven
successful in the WMT15 QE evaluation. Having outlined the recent development of deep learning
for NLP in general and QE in particular, we presented our motivation for building a deep neural
network model for QE that learns continuous space representations for bilingual word contexts.
In contrast to previous approaches, this model is as such independent of additional linguistic
resources or pseudo-references by learning QE from raw bilingual input. Our QUETCH model
presents an elegant solution to improve supervised QE training on a small dataset by unsupervised
pre-training on large monolingual resources. With the experiments on WMT data and the
successful participation in the WMT15 evaluation campaign, we proved that the QUETCH model
is capable of competitive word-level QE across datasets and languages. A system combination of
the QUETCH model and a strong linear classifier built on baseline features outperformed both
individual models and illustrated the orthogonality of these models. Evaluating the QUETCH word
representations on another two cross-lingual tasks, we found that these bilingual representations
capture knowledge than can be useful for tasks beyond QE. Although the achieved results are
promising, we see this work as a initial proposal of learning QE from scratch and hope for future
improvements with the directions pointed out in the discussion.
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A Appendix

A.1 Gradients

Let f denote the input to each layer and 6; the layer’'s parameters. Note that the outputs of
all layers are computed during feed forward pass (see Paragraph [4.1)) and are necessary for the

computation of the gradients with the equations below.

1. Output layer f,;

With respect to parameters:

oL
— 2
aefout ( 9)
That is:
OL  OL Ofou
8VV2 B afaut 8VVQ (30)
oL
= —fou 31
afout out ( )
oL OL Ofpu
- 32
abQ afout abQ ( )
oL
= 33
afout ( )
(34)
With respect to input f, which is the output of the softmax layer ({10):
oL OL Ofou
— = : 35
Ofout O fout O four (35)
oL
= W. 36
afout 2 ( )
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2. Hidden linear layer f;;,

With respect to parameters:

oL
That is:
oL oL Ofn
= 38
OW: ~ 0frm W (38)
oL ..
oL oL 0fin
7= 4
Oy~ fin Oy (40)
oL
= 41
With respect to input f;7 which is the output of lookup table operation fr7:
oL oL 0Ofn
— = : 42
Ot Ofun 0f i 42)
oL
pr— 4
aflin Wl ( 3)

3. Tanh layer
W.r.t input tanh™ which is the output of the hidden layer fi;, . Note that this gradient

is computed elementwise, because the tanh function is applied elementwise.

oL oL Otanh
n 7.7 / 44
olfim .1 Otanh O[fi".,]i (44)
— aL 2 n )
o atanh(l - tanh ([ tanh]1>> (45)

4. Word-level likelihood
W.r.t input L™ which is the output of the hidden layer f,,; @) Note that this gradient is
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computed elementwise, because the underlying softmax normalization operates elementwise.

oL
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5. Lookup Table Layer f;r
W.r.t. parameters M:
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A.2 Word Embedding Visualizations
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Figure 7: Word representations learned by the word2vec model that was used to initialized
the late and the submitted model, projected into 2-dimensional space with truncated SVD
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