Multilingual Modal Sense Classification Using a Convolutional Neural Network

Ana Marasović, Anette Frank

Research Training Group AIPHES, Department of Computational Linguistics, Heidelberg University

Overview

• Modal verbs (MVs) are ambiguous between:

epistemic sense (possibility)
 He could be at home.

Convolutional Neural Network for Modal Sense Classification

- multilingual modal sense classification using a one-layer CNN architecture
- CNNs outperform strong baselines, including manually designed feature-based

Feature Detectors

Filters are trained to **detect** semantic **features** found to be relevant in prior work, e.g. tense, aspectual classes, negation and semantic properties of verbs and phrases, as well as, **previously unat**-

- deontic sense (permission/obligation)
 You can enter now.
- dynamic sense (capability)
 Only John can solve this problem.

MVs are used to implicitly express sentiment

Refugees $may_{(de)}$ not (are forbidden to) cross the borders. \Rightarrow Writer has negative sentiment towards refugees crossing the borders.

- MSC is special case of word sense disambiguation (WSD)
 - MVs have restricted sense inventory
 - MVs act as operators which take a full proposition as an argument

CNN for Modelling Sentences

classifiers and a plain NN

- we identify known and previously unattested semantic and linguistic features
 from flexible window regions without syntactic
 pre-processing
- in a standard WSD task the CNN competes with a system using embeddings encoding richer information

MSC Results

	can	could	may	must	should	micro
BL _{rand}	33.33	33.33	50.00	50.00	50.00	41.49
MaxEnt	59.64	61.25	92.14	87.60	90.11	74.88
NN	56.01	55.42	90.00	75.24	88.68	69.74
CNN-E _B	<u>65.78</u>	<u>67.50</u>	93.57	93.82	90.77	79.29

	can	could	may	must	should	micro	
-mai	69.92	65.00	93.57	94.32	90.81	80.18	

tested features.

Figure 2: Feature detector that relates past reading of the embedded verb with epistemic sense for *must*.

features	sense	examples
past reading of the emb. verb	ер	you must have been out last night
non-past reading of the emb. verb	de	we must take further efforts
stative reading of the emb. verb	ер	you must think me a perfect fool
eventive reading of the emb. verb	de	we must develop a policy
passive construction	de	actual steps must be taken
negation	de	we must not fear
domain specific vocabulary	de	European parliament, present regulation, fisheries policy
telic clauses	de	to address these problems, to prevent both forum
discourse markers	de	but, and (then)

Figure 1: Convolutional neural network (CNN), Kim (2014).

Experimental Setup

dürfen können müssen sollen microBL_{rand}50.0033.3350.0050.0039.10NN77.7343.3273.8850.2557.69CNN-G99.4978.9585.0774.6384.10Table 2: Accuracy on EPOS_G.

The CNN approach to MSC

- outperforms strong baselines
- easily applicable to novel languages
- reaches high performance on German
 - larger & perfectly balanced training data
 - Konjuktiv + tense \Rightarrow ep vs. de/dy

MCD Doculto

Figure 3: Other features detected for *must*, **including novel feature types.**

CNN for WSD

Data: SensEval-3 lexical sample dataset Baseline: R&S's sense-specific embeddings $w \dots$ ambiguous word with k senses $c \dots$ centroid = sum of all w2v vectors of words in the sentence $s^{(j)} \dots$ embedding of the *j*-th synset of w S-cosine = $\langle \cos(c, s^{(1)}), \dots, \cos(c, s^{(k)}) \rangle$ S-prod = $\langle c_1 s_1^{(1)}, \dots, c_n s_n^{(1)}, \dots, c_1 s_1^{(k)}, \dots, c_n s_n^{(k)} \rangle$ S-raw = $\langle c_1, \dots, c_n, \dots, s_1^{(k)}, \dots, s_n^{(k)} \rangle$

Corpora

 MPQA: R&R's small-scaled manually annotated dataset with strong sense bias

\blacksquare EPOS_E, EPOS_G:

a subset of EuroParl & OpenSubtitles corpora, heuristically tagged via the cross-lingual sense projection method of Z+

Model variations (for every modal verb)

CNN-E_B / CNN-E_U

- 5-fold CV
- train: (un) balanced MPQA + EPOS_E
- test: MPQA
- \blacksquare CNN-G: train and test data from $\mathsf{EPOS}_{\mathrm{G}}$

Baselines

- random baseline BL_{rand}
- majority baseline BL_{maj}
- MaxEnt classifier from Z+
- one-layer neural network NN

V	VS	Resul	ILS

	SensEval-3	
S_{naive} -prod	62.20	
S-cosine	60.50	
S-prod	64.30	
S-raw	63.10	
CNN	66.50	
	СГ	10

Table 3: WSD accuracy on *SensEval-3* dataset.

AutoExtend encodes what is the target word, how many possible senses it has, and a sense embedding for each synset
CNN without explicitly marking the target word outperforms AutoExtend

References

Kim, Y. (2014). Convolutional neural networks for sentence classification. In *Proceedings of the EMNLP*, pages 1746–1751, Doha.

Rothe, S. and Schütze, H. (2015). Autoextend: Extending word embeddings to embeddings for synsets and lexemes. In *Proceedings of ACL and IJCNLP*, pages 1793–1803, Beijing. Referred to as R&S.
Ruppenhofer, J. and Rehbein, I. (2012). Yes we can!? annotating the senses of english modal verbs. In *Proceedings of the LREC*, pages 24–26, Istanbul. Referred to as R&R.

Zhou, M., Frank, A., Friedrich, A., and Palmer, A. (2015). Semantically enriched models for modal sense classification. In *Proceedings of the LSDSem*, pages 44–53, Lisbon. Referred to as Z+.

Acknowledgements

This research was supported by the German Research Foundation as part of the Research Training Group "Adaptive Preparation of Information from Heterogeneous Sources" (AIPHES) under grant No. GRK 1994/1.

