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Overview

•Modal verbs (MVs) are ambiguous between:
•epistemic sense (possibility)

He could be at home.
•deontic sense (permission/obligation)

You can enter now.
•dynamic sense (capability)

Only John can solve this problem.

•MVs are used to implicitly express sentiment
Refugees may(de) not (are forbidden to)

cross the borders. ⇒ Writer has negative sen-
timent towards refugees crossing the borders.

•MSC is special case of word sense disam-
biguation (WSD)

•MVs have restricted sense inventory
•MVs act as operators which take a full
proposition as an argument

CNN for Modelling Sentences

Figure 1: Convolutional neural network (CNN), Kim (2014).

Experimental Setup
Corpora
•MPQA: R&R’s small-scaled manually annotated dataset with
strong sense bias

• EPOSE, EPOSG:
• a subset of EuroParl & OpenSubtitles corpora, heuristically

tagged via the cross-lingual sense projection method of Z+
Model variations (for every modal verb)
• CNN-EB / CNN-EU

• 5-fold CV
• train: (un) balanced MPQA + EPOSE
• test: MPQA

• CNN-G: train and test data from EPOSG

Baselines
• random baseline BLrand

• majority baseline BLmaj

• MaxEnt classifier from Z+
• one-layer neural network NN

Convolutional Neural Network for
Modal Sense Classification

•multilingual modal sense classification
using a one-layer CNN architecture

•CNNs outperform strong baselines, in-
cludingmanually designed feature-based
classifiers and a plain NN

•we identify known and previously unat-
tested semantic and linguistic features
from flexible window regions without syntactic
pre-processing

• in a standard WSD task the CNN com-
petes with a system using embeddings encod-
ing richer information

MSC Results

can could may must should micro
BLrand 33.33 33.33 50.00 50.00 50.00 41.49
MaxEnt 59.64 61.25 92.14 87.60 90.11 74.88
NN 56.01 55.42 90.00 75.24 88.68 69.74

CNN-EB 65.78 67.50 93.57 93.82 90.77 79.29

can could may must should micro
BLmaj 69.92 65.00 93.57 94.32 90.81 80.18
MaxEnt 64.76 63.33 92.14 92.78 91.48 78.01
NN 67.29 66.08 94.23 86.37 90.96 77.93

CNN-EU 70.87 66.55 93.49 94.97 90.59 80.74
Table 1: CV accuracies on MPQA with balanced (up-
per table) and unbalanced training (lower table).

dürfen können müssen sollen micro
BLrand 50.00 33.33 50.00 50.00 39.10
NN 77.73 43.32 73.88 50.25 57.69

CNN-G 99.49 78.95 85.07 74.63 84.10
Table 2: Accuracy on EPOSG.

The CNN approach to MSC
• outperforms strong baselines
•easily applicable to novel languages
• reaches high performance on German

• larger & perfectly balanced training data
•Konjuktiv + tense ⇒ ep vs. de/dy

WSD Results

SensEval-3
Snaive-prod 62.20
S-cosine 60.50
S-prod 64.30
S-raw 63.10
CNN 66.50

Table 3: WSD accuracy on SensEval-3 dataset.

• AutoExtend encodes what is the target word,
how many possible senses it has, and a sense
embedding for each synset

•CNN without explicitly marking the target
word outperforms AutoExtend

Feature Detectors

Filters are trained to detect semantic features
found to be relevant in prior work, e.g. tense, as-
pectual classes, negation and semantic properties
of verbs and phrases, as well as, previously unat-
tested features.

Figure 2: Feature detector that relates past reading of the
embedded verb with epistemic sense for must.

Figure 3: Other features detected for must, including
novel feature types.

CNN for WSD

Data: SensEval-3 lexical sample dataset
Baseline: R&S’s sense-specific embeddings

w . . . ambiguous word with k senses
c . . . centroid = sum of all w2v vectors of words in the sentence
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