Multilingual Modal Sense Classification Using a Convolutional Neural Network

Ana Marasović, Anette Frank
Research Training Group AIPHES, Department of Computational Linguistics, Heidelberg University

Overview

- Modal verbs (MVs) are ambiguous between:
 - epistemic sense (possibility)
 - He could be at home.
 - deontic sense (permission/obligation)
 - You can enter now.
 - dynamic sense (capability)
 - Only John can solve this problem.

- MVs are used to implicitly express sentiment
 - Refugees may (de) not (are forbidden to) cross the borders.
 - Writer has negative sentiment towards refugees crossing the borders.

- MSC is special case of word sense disambiguation (WSD)
 - MVs have restricted sense inventory
 - MVs act as operators which take a full proposition as an argument

CNN for Modelling Sentences

![Convolutional neural network (CNN), Kim (2014).](image)

Experimental Setup

- Corpora
 - MPQA: R&R’s small-scaled manually annotated dataset with strong sense bias
 - EPOSS, EPOSSH: a subset of EuroParl & OpenSubtitles corpora, heuristically tagged via the cross-lingual sense projection method of Z+.
 - CNN-E, CNN-E\textsubscript{D}: 5-fold CV.
 - CNN-G: train and test data from EPOSS

- Baselines
 - random baseline BL\textsubscript{rand}
 - majority baseline BL\textsubscript{maj}
 - MaxEnt classifier from Z+.
 - one-layer neural network NN

WSD Results

<table>
<thead>
<tr>
<th>Features</th>
<th>Sense</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>past reading of the emb. verb</td>
<td>ep</td>
<td>you must have been out last night</td>
</tr>
<tr>
<td>non-past reading of the emb. verb</td>
<td>de</td>
<td>we must take further efforts</td>
</tr>
<tr>
<td>relative reading of the emb. verb</td>
<td>ep</td>
<td>you must think me a perfect fool</td>
</tr>
<tr>
<td>possible construction</td>
<td>de</td>
<td>actual steps must be taken</td>
</tr>
<tr>
<td>negation</td>
<td>de</td>
<td>we must not fear</td>
</tr>
<tr>
<td>domain specific vocabulary</td>
<td>de</td>
<td>European parliament, present regulation, foreign policy</td>
</tr>
<tr>
<td>telic clauses</td>
<td>de</td>
<td>to address these problems, to prevent both forum</td>
</tr>
<tr>
<td>discourse markers</td>
<td>de</td>
<td>but, and (then)</td>
</tr>
</tbody>
</table>

MSC Results

<table>
<thead>
<tr>
<th>Feature Detector</th>
<th>Balanced</th>
<th>Unbalanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL\textsubscript{rand}</td>
<td>33.33</td>
<td>33.33</td>
</tr>
<tr>
<td>MaxEnt</td>
<td>59.64</td>
<td>61.25</td>
</tr>
<tr>
<td>CNN-E</td>
<td>66.57</td>
<td>70.29</td>
</tr>
<tr>
<td>CNN-G</td>
<td>70.87</td>
<td>66.57</td>
</tr>
</tbody>
</table>

CNN for WSD

Data: SensEval-3 lexical sample dataset

- Baseline: R&S’s sense-specific embeddings
- w: ambiguous word with k senses!
- \(c_1, \ldots, c_k \): centroid — sum of all \(w_2v \) vectors of words in the sentence
- \(S\text{-cosine} \) = \(\cos(c_1, …, c_k, w_1, …, w_n) \)
- \(S\text{-prod} \) = \(\prod_{i=1}^{n} s_i \cdot s_j \)
- \(S\text{-raw} \) = \(\sum_{i=1}^{n} s_i \cdot s_j \)

References

Acknowledgements

This research was supported by the German Research Foundation as part of the Research Training Group “Adaptive Preparation of Information from Heterogeneous Sources” (AIPHES) under grant No. GRK 1994/1.