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Overview

- Modal verbs (MVs) are ambiguous between:

= epistemic sense (possibility)
He could be at home.

= deontic sense (permission/obligation)
You can enter now.

- dynamic sense (capability)
Only John can solve this problem.

« MVs are used to implicitly express sentiment

Refugees may4e) not (are forbidden to)
cross the borders. = Writer has negative sen-
timent towards refugees crossing the borders.

« MSC is special case of word sense disam-
biguation (WSD)

« MVs have restricted sense inventory
« MVs act as operators which take a full
proposition as an argument
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Figure 1: Convolutional neural network (CNN), Kim (2014).

Experimental Setup

Corpora

= MPQA: R&R’s small-scaled manually annotated dataset with
strong sense bias

" EPOSE, EPOSG:

= 3 subset of EuroParl & OpenSubtitles corpora, heuristically
tagged via the cross-lingual sense projection method of Z+

Model variations (for every modal verb)

" CNN-EB / CNN-EU
= 5-fold CV
= train: (un) balanced MPQA + EPOSg
= test: MPQA

= CNN-G: train and test data from EPOS¢g

Baselines

= random baseline BL, 4

= majority baseline BL,,;

= MaxEnt classifier from Z-+
= one-layer neural network NN

Convolutional Neural Network for

Modal Sense Classification

 multilingual modal sense classification
using a one-layer CNN architecture

 CNNs outperform strong baselines, in-
cluding manually designed feature-based
classifiers and a plain NN

» we identify known and previously unat-
tested semantic and linguistic features
from flexible window regions without syntactic

pre-processing

» in a standard WSD task the CNN com-

petes with a system using embeddings encod-
ing richer information

MSC Results

can could may must should micro

BL, e 33.33 33.33 50.00 50.00 50.00 41.49
MaxEnt 59.64 61.25 92.14 8/7.60 90.11 74.88
NN  56.01 55.42 90.00 75.24 88.68 69.74

CNN-Eg 65.78 67.50 93.57 93.82 90.77 79.29

can could may must should micro

BL,..; 69.92 65.00 93.57 94.32 90.81 80.18
MaxEnt 64.76 63.33 92.14 92.78 91.48 78.01
NN  67.29 66.08 94.23 86.37 90.96 77.93

CNN-Ey 70.87 66.55 93.49 94.97 90.59 80.74
Table 1: CV accuracies on MPQA with balanced (up-
per table) and unbalanced training (lower table).

durfen konnen mussen sollen micro

BL,¢nq 50.00 33.33 50.00 50.00 39.10
NN 77.73 43.32 73.88 50.25 57.69

CNN-G 99.49 78.95 85.07 74.63 84.10
Table 2: Accuracy on EPOSg.

The CNN approach to MSC
» outperforms strong baselines
» easily applicable to novel languages
« reaches high performance on German

« larger & perfectly balanced training data
 Konjuktiv + tense = ep vs. de/dy

WSD Results

SensEval-3

Shaive-prod  62.20
S-cosine 60.50

S-prod 64.30
S-raw 63.10
CNN 66.50

Table 3: WSD accuracy on SensEval-3 dataset.

« AutoExtend encodes what is the target word,
how many possible senses it has, and a sense
embedding for each synset

« CNN without explicitly marking the target
word outperforms AutoExtend

Feature Detectors

Filters are trained to detect semantic features
found to be relevant in prior work, e.g. tense, as-
pectual classes, negation and semantic properties
of verbs and phrases, as well as, previously unat-
tested features.
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Figure 2: Feature detector that relates past reading of the

embedded verb with epistemic sense for must.

features sense examples
past reading of the emb. verb ep you must have been out last night
non-past reading of the emb. verb de we must take further efforts
stative reading of the emb. verb ep you must think me a perfect fool
eventive reading of the emb. verb de we must develop a policy
passive construction de actual steps must be taken
negation de we must not fear
domain specific vocabulary de Eurreogzelaatr;oaa, rfl;sar:ne finets’ E;eliscint
telic clauses de to address these problems, to
prevent both forum
discourse markers de but, and (then)

Figure 3: Other features detected for must, including

novel feature types.

CNN for WSD

Data: SensEval-3 lexical sample dataset
Baseline: R&S’s sense-specific embeddings

w . ..ambiguous word with k senses
c...centroid = sum of all w2v vectors of words in the sentence

sV .embedding of the j-th synset of w

S-cosine = (cos(c, s'V), ..., cos(c, s™))
S-prod = <015§1)7 S Cn37(11), e ,clsﬁ’“), R Cn*s?(zk)>
S-raw = (¢1,...,Cn, . - ., Sgl‘@’ o snk)>
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