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Abstract

Semantic space models are computational representations of word meaning
based on co-occurrence counts from large corpus data. This means that the
meaning of each word is described by the contexts in which it occurs. Although
these data-driven models have proven to be well suited for capturing a wide
range of semantic information (such as similarity of synonyms and relevance of
correlating words), the meaning aspects they cover have not been fully explored.
This thesis examines the suitability of automatically built semantic space mod-
els for representing meaning in terms of frame semantics, an empirical seman-

tic theory that emphasizes on the relation between language and experience.
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Introduction

Chapter 1

Introduction

Frame semantics is an empirical semantic theory that “emphasizes the continuities be-
tween language and experience” (Petruck, 1996). Specifically, the frame semantic mean-
ing of a word is characterized in terms of experience-based schematizations (frames).
The underlying notion of this representation is the hypothesis that we know the mean-
ing of a word through prototypical situations in which the word occurs'. For example,
the meaning of the verb “kill” is established through the experience that this word is
used to describe events involving a killer and a victim. In frame semantics, the killing
event and its involved concepts are represented together in the KILLING frame. In gen-
eral, a frame is a coherent structure of related concepts that (together) form an event,

object or situation.

The Berkeley FrameNet project® (Baker, Fillmore, & Lowe, 1998) began roughly ten
years ago with the goal of developing a hand-tagged corpus with frame-semantic anno-
tations for “several thousand English lexical items”. Though work in this project is on-

going, annotations have already been used in developing a so-called frame lexicon,

' Fillmore (1976), the inventor of frame semantics, argues, “A language-learning child first learns labels
for whole situations, and only later learns labels for individual objects. A child might first associate the
word pencil, for example, with (...) drawing circles; later on he becomes able to identify and label iso-
lable parts of such an experience - the pencil, the paper, the act of drawing, etc.”

2 Based at the International Computer Science Institute of the University of California, Berkeley
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which describes prototypical frames, the words that are used to express them sup-
ported by annotated examples in terms of text fragments. Though still in development,
the database has already been released to more than 8o research groups in more than
15 countries (Baker & Sato, 2003). Recently, FrameNet has proved to be useful in vari-
ous language-related tasks. For example, it has been used as basis or training material
for a number of applications including machine translation (Boas, 2002), question an-
swering (Narayanan & Harabagiu, 2004), information retrieval (Narayanan & Mohit,

2003) and recognizing textual entailment (Burchardt & Frank, 2006).

The current version of FrameNet? consists of more than 825 semantic frames and
135,000 example sentences with 10,000 different lexical units*. A lexical unit (LU) is a
word or a multi-word expression that evokes a frame (i.e. one meaning of the LU is a
clear indicator for a certain frame). A non-ambiguous example for a LU is the word
“kill” which indicates the frame KILLING. Other LUs for this frame include the verbs
“murder” and “eliminate”, the nouns “kill” and “suicide”, and the adjectives “deadly”

and “fatal”.

One issue in FrameNet is the fact that all development steps are done manually. This
means that annotators have to carefully read each sentence, determine the lexical unit,
its associated frame and select phrases in the sentence that represent properties of the
frame. Moreover, developers have to build new frames when needed because the frame
lexicon is not yet exhaustive. Each of these development steps is highly time-
consuming and expensive because they need to be done by experts. Though recent re-
search (Gildea & Jurasfky, 2002; Fleischman, Kwon, & Hovy, 2003) showed that the ex-
isting annotations can be used as training data for automated labelling, the benefits of
such an approach are limited. Aside from missing reliability, one disadvantage of this

method is that automatic annotations can only be computed for already trained cases.

3 As of November 2007, the latest release is version 1.3 (June 2006).

4 http://framenet.icsi.berkeley.edu/index.php?option=com content&task=view&id=40
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Moreover, such a method only helps in expanding the database of example sentences.

It cannot be used for expanding the list of lexical units.

The goal of this thesis is to overcome this deficiency by exploring and examining the
suitability of unsupervised learning techniques to automatically build a full representa-

tion of FrameNet that allows for the classification of seen and unseen input data alike.

Previous work showed that it is possible to automatically compute a FrameNet-like
representation for other languages using the existing database of FrameNet (see Chap-
ter 2.3 for details). Specifically, Pitel (2008) computes a frame semantic resource for
French by modelling a bilingual vector space model based on aligned English-French
corpora. Starting from Pitel’s promising results, we investigate the use of vector spaces

for modelling FrameNet in more detail.

1.1. Semantic Space Approach

Based on the results of Pitel, we explore unsupervised training methods to learn vector
representations of LUs and frames in a multi-dimensional space. We utilise the vector
space model originally developed by Salton et al. (1975). Though the original applica-
tion for this model is to represent documents in information retrieval (Klavans & Kan,
1998), it has been generalized to describe also smaller structures such as paragraphs,

sentences and individual words by their co-occurring words.

Nowadays, modifications of this model have been used in a number of natural lan-
guage applications (cf. Chapter 3 for details) and proved to be a good representation
for different kinds of (lexical) semantic information. For example, vector space models
have showed usefulness in identifying antonyms, synonyms and associations
(Sahlgren, 2006; Lin, 1998), disambiguating word senses (Schiitze, 1998) and clustering

verb classes (Schulte im Walde, 2006).

The meaning of frames, however, is different from the meaning of a single word. While

a word has some sort of a standalone meaning, a frame is characterized by the interac-
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tion of its elements. Due to this complexity, the primary goal of this thesis is to exam-
ine whether semantic spaces are a suitable means of representing frame semantics. In
order to verify this hypothesis, we will run experiments to compare vector similarity
within frames and check whether vectors representing the same frame are more simi-
lar than others. For the comparison of vectors, we rely on measures that have recently

proven useful for describing distributional similarity (Mohammad & Hirst, 2006).

Our hope is that the results of this work can support and contribute to semi-
supervised FrameNet related tasks, such as defining relations between frames (e.g. if all
vectors of a frame A are within the cluster of a frame B, A probably describes a special
kind of B), and motivating new frames (i.e. if the vector of a sentence is not similar to
any frame vector). Our intuition here is that similar situations are described with simi-

lar words, thus having a similar vector space representation.

1.2. Overview of the Thesis

The thesis is organized as follows: The next chapter will present an overview of frame
semantics, of the FrameNet project and of state-of-the-art methods for its automatic
expansion. In Chapter 3, we will introduce the concept of semantic spaces and briefly
discuss different approaches and applications in which semantic spaces are used.
Chapter 4 gives a detailed description of our approach and its implementation. Chap-
ter 5 shows different experiments we performed to evaluate our methods. Finally,
Chapter 6 summarizes our work and results, and discusses how further improvements

could be achieved.
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Chapter 2

Frame Semantics

Frame semantics is an empirically motivated sub-discipline of semantics that studies
the combined meaning of a coherent structure of related concepts. In contrast to other
semantic approaches, frame semantics provides no standalone meaning representation
for single words, but only for so-called frames (however, single words can evoke a
frame or be a property of the same). A frame typically represents the meaning of a
situation, object or an event including its participants, properties and other related
conceptual roles (frame elements). For example, the COMMERCIAL_TRANSACTION frame
represents a situation that always consists of a buyer, a seller, money and goods. In
addition to those core roles, a frame can also have optional (non-core) roles. In this
case, these are the medium of exchange, the currency of the money and the payment

rate per unit.

Frames are psychologically motivated by the fact that the understanding of linguistic
expressions requires a complex knowledge of related background. A good example for
this assumption is the word “widow”, whose meaning requires an understanding of
concepts such as family, marriage and death. In frame semantics, each of these con-
cepts is a frame of its own that gets evoked by the word “widow”. In general, frames
can be evoked by a number of words which have a semantically related meaning. Ex-
amples for the previously mentioned COMMERCIAL_TRANSACTION frame include the

words “buy” and “sell”. Most of these so-called lexical units (LU) are verbs and nouns
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but other grammatical categories (e.g. adjectives and adverbs) are possible as well as

multi-word expressions and idiomatic phrases.

The following sections give an overview of the frame semantic resource FrameNet (2.1),
a discussion of examples from the FrameNet database (2.2), and a summary of previous

attempts to automatically expand this database (2.3).

2.1. The FrameNet Project

The Berkeley FrameNet project is currently building a frame semantic lexicon for Eng-
lish that includes over 10,000 LUs (Ruppenhofer et al., 2006). For more than 6,000 of
them, the lexicon contains annotated example occurrences taken from the British Na-
tional Corpus’. Annotations are done manually and include tagging of lexical units and
frame element fillers (FEF). Since lexical units in FrameNet are always pairs of
word/meaning, tagging a LU consists of two tasks: 1) marking the frame-evoking ex-
pression and 2) selecting the right meaning (frame) for the given context. A FEF is a
word or phrase that fulfils a specific role in the respective frame. Thus FEFs are tagged
after the frame has been selected. Figure 1 illustrates the annotation process of an ex-

ample sentence.

> A 100 million word corpus of written and spoken English, http://www.natcorp.ox.ac.uk/.
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You can boil meat, potatoes, pasta or rice (...)
LU selection

A 4

You can boilpesy wear Meat, potatoes, pasta or rice (...)
Frame selection

\ 4

[Youcook] can boilpesy wear [Meat, potatoes, pasta or ricewegium] (-..)
FEF annotation

Figure 1: Annotation process in FrameNet

In FrameNet, annotation is carried out in two ways: In the lexicographic annotation
mode, the annotators have to edit selected sentences that contain a particular LU. This
means that the selection of LUs can be omitted, so that only the right frame and its
properties have to be chosen. The aim of this mode is to collect as many different
combinatorial possibilities of a word as possible. Contrary to that, annotators have to
select words or phrases as LUs themselves in the full-text annotation mode. The ad-
vantage of this mode is that it allows for the discovery of frame-evoking words that are
not yet considered in the FrameNet database. However, both of these annotation mod-
es are highly time-consuming because the annotators have to carefully read each sen-

tence and determine all frame-relevant properties.

As of November 2007, the current version of FrameNet (1.3) consists of 10,195 LUs in
795 frames, making an average of 13 lexical units per frame. However, the real number
of LUs per frame varies from o to 179. In fact, 74 frames (9.3%) have no lexical unit at
all. All LUs together divide into 39.6% nouns, 36.8% verbs, 17.1% adjectives, 5.3% multi-
word expressions and 1.2% other categories (prepositions, adverbs, conjunctions and

interjections).

In our work, we also use the term LU when referring to a frame-evoking expression
without implying a specific meaning. If a LU in this context can evoke different frames,
we call it a polysemous LU. Currently, the FrameNet lexicon contains 1.352 polysemous

LUs and 8.310 different frame-evoking expressions in total.
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2.2. Discussion of Examples

To give a better understanding of the variety of possibilities in which a frame can be
linguistically realized, we present a few chosen examples® for the word “burn”. With
respect to frame semantics, “burn” is a polysemous LU since it can evoke four different
frames: PERCEPTION_BODY, EMOTION_HEAT, CAUSE_HARM, and EXPERI-
ENCE_BODILY_HARM. For each of these frames, we will have a look at examples

showing the syntactic and semantic behaviour of the LU.
1) PERCEPTION_BODY

According to FrameNet’s definition, “burn” in this sense describes “physical experiences
that can affect virtually any part of the body. The body part affected is almost always
mentioned with these words. It is typically expressed by the noun heading the external
argument, and this noun is typically accompanied by a possessive determiner that refers

to the possessor of the body part’.
The core roles of this frame are Experiencer and Body_part.

“... [[his gxperiencer] cheeks Body part] begin to burn all the way up to his scalp.”
“[The throat gody part] burns like coals of fire; ...”

“[[Hl.S Experiencer] face Bodyipart] burnt lil(e a brand ...”

The examples show that the linguistic realizations go for the most part with the de-
scription made in the definition. This is also true for other LUs of this frame including
“ache” (“Her back was aching badly”), “hurt” (“My broken finger hurt like hell”) and

“itch” (“Leith’s right hand started to itch again”).

® Examples are taken from the FrameNet database.

-8-
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2 ) EXPERIENCE_BODILY HARM

“Burn” as a LU of the frame EXPERIENCE_BODILY_HARM describes a harmful experience
caused by an injury to a body part. Core roles of this frame are again Experiencer and

Body_part.

“[My sister gxperiencer]'s burnt [her arm gody part] ...”
“[I Experiencer] tried it once and burnt [my mouth gody _part] -..”

“Then [Austin Bessie gxperiencer] (...) burned [herself oy part] rather badly.”

In contrast to the previous meaning, the FEF for Experiencer is mentioned explicitly in
the given examples. The same observation can be made for other LUs of this frame
such as “break” (“Amelie fell and broke her hip”), “cut” (“Stirling cut his eye quite

badly”) and “strain” (“She strained her back at college”).
3) CAUSE_HARM

In the sense of this frame, “burn” refers to a situation where an Agent hurts or kills a

Victim.

“[Up to 65 protesters victim] were (...) burned to death ...”
“[A battered wife pgent] who burned [her brutal husband vicim] to death was ...”

“Indeed, [Henry V agent] used to burn [them victim] alive.”

As it can be seen in the examples, the frame elements of this frame are different from
the previous two causing the dependents of the LU to be filled with words of other se-
mantic categories. Examples with other LUs of this frame: “She bashed the judicial
scalp”, “Rodomonte saw his father beating his mother”, and “She would cut off her

right arm”.
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4) EMOTION_HEAT

The frame EMOTION_HEAT denotes a strong emotional experience. Necessary frame

elements include an Emotion, an Experiencer and a Seat_of_emotion.

“... [he Experiencer] Was heavy and burning [at heart seat of emotion]
with [his longing to ask gmotion] ---~

»

« . . . .
[The deszre Emotion] blll‘nlng [lnszde [her Experiencer] Seat_of_emotion]

”»

“[The flame that gmotion] had been burning [inside [her xperiencer] seat_of emotion] ---

The difference between these examples and those from the previous frames is similar
to the statement made for the CAUSE_HARM frame. Instead of body parts or people, the
FEF are words from other semantic categories. E.g., Seat of emotion is typically filled
by a word from a category that can be described as something body interior and the
filler for Emotion is an abstract or metaphorical concept representing a feeling. For
other LUs of this frame, the Emotion is more often filled by a feeling itself, e.g. “The
frustration that was boiling inside her”, “The Lemarchand woman who would be (...)

fuming with impatience”, and “Her chin rose as she seethed with anger”.

As these examples have shown, the semantic content of linguistic realizations varies
from frame to frame. In many cases using FEFs for a frame that makes perfect sense for

another would produce sentences that are rather absurd, e.g.:

o *[His cheeks pody part] burned [himself experiencer] rather badly.”
o *[Henry V pgent] used to burn [the throat pody part] like coals of fire.®
. *[The deSire Emotion] [inSide [her Experiencer] Seatﬁoffemotion] burned [her ertal hus'

band victim] to death.’

7 Experiencer from PERCEPTION_BODY and Body_part from EXPERIENCE_BODILY_HARM
8 Agent from CAUSE_HARM in a sentence from PERCEPTION_BODY

® Mixed up Frame Elements from CAUSE_HARM and EMOTION_HEAT

_10_
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This fact gives us reason to believe that there is a dependency between each frame and
combinatorial possibilities in how to express instances of the same. Recent research on
word sense disambiguation (WSD) gives us support on this assumption: Carroll and
McCarthy (2000) pointed out that selectional preferences, i.e. frequently co-occurring
words in a grammatical relation, can give cues to noun word senses. Based on subject
and object fillers, this work was extended to verbs and also showed disambiguation
improvements on verb senses (McCarthy, Carroll, & Preiss, 2001). Most recently, Pat-
rick Ye and Timothy Baldwin (2006) presented a WSD system that showed improved
performance when using selectional preferences for arguments and adjuncts of verbs.
We thus believe that selectional preferences could also be helpful to disambiguate LUs

belonging to multiple frames.

To a lesser extent, a difference in the syntactic structure for the realizations can be
seen as well. For example, it is more probable that a prepositional phrase headed by
“like” is an adjunct for sentences of the frame PERCEPTION_BODY than for EXPERI-

ENCE_BODILY_HARM:

e His face burned like fire/acid/a brand/a torch.

e ?He burned his arm like ...

Previous work indicating a similar syntactic behaviour for semantically similar verbs
(Levin, 1993) gives us reason to believe that this phenomenon could be used to define
frame specific syntactic features. In general, we take these observations as important

cues in modelling a suitable semantic space.

2.3. Automatic Approaches in Frame Semantics

Our work falls in line with other approaches to automatically building or expanding a
frame semantic resource. One noticeable attempt in the FrameNet project is done on
annotating semantic roles (Gildea & Jurasfky, 2002). Gildea and Jurafsky propose a

trainable statistical classifier that identifies and classifies frame elements in a sentence

_11_
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given its frame-evoking lexical unit. Their classifier uses conditional probabilities of
syntax-semantic features extracted from example sentences. Fleischman et al. (2003)
suggested improvements to this model by using a maximum entropy classifier that
considers two further features: the previously assigned semantic role tags and patterns
of all semantic role assignments in a sentence. Their enhanced model yields an identi-
fication precision of 73.6% and a recall of 67.9%. Including the classifier’s performance,

their final f-measure score is 57.6%.

Noticeable efforts have also been spent on the automatic disambiguation and expan-
sion of lexical units. The supervised disambiguation system by Erk (2005) showed that
a combination of syntax-semantic features can be used to identify frames in a sentence
with a precision of 75% and 74.4% recall. The features of this system were trained on
FrameNet’s example sentences and consisted of co-occurring contexts including lem-
ma and part-of-speech tags, word n-grams centered on the target word and head
words of complements and adjuncts of the lexical unit. Another system, Detour
(Burchardt, Erk, & Frank, 2005), aims to expand the frame lexicon by using taxonomy
distances in WordNet (Fellbaum, 1998) to map unknown words to potential frames.
For this task, Detour computes a set of words that are related to the considered word.
The most probable frame can then be determined by a heuristic that regards the num-

ber of LUs of each frame in the set of related words.

Besides work on FrameNet, recent research also proposed methods to automatically
build frame semantic resources for other languages. For example, Padé and Lapata
(2005) utilized FrameNet for constructing an analogous structure for French and Ger-
man based on shallow parsing and automatically aligned bilingual corpora (English-
French and English-German). The aligned word data is used to create a candidate list

for lexical units that are then filtered by different criteria (possible alignment errors,

' WordNet relations considered in Detour are synonymy, hypernymy and antonomy.

_12_
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polysemy and information entropy). The highest F-score obtained by evaluating the

list of computed candidate LUs is 58% for German and 51% for French.

Another approach is taken by Fung & Chen (2004) who use bilingual dictionaries and
the HowNet" ontology to transfer lexical units from English to Chinese. In a first step,
bilingual resources are used to look up potential candidates. In two further steps, the
HowNet category of each candidate word sense is used to compute the most probable
categories per frame. The result of this method is an n-to-n mapping from LUs to
HowNet concepts, which can be used as a Chinese frame lexicon. Their evaluation of
this lexicon based on manually translated example sentences yielding an 82% average

F-measure on lexical entry alignment.

Recent work by Pitel (2008) suggests using a bilingual vector space to build up a frame
lexicon in a foreign language. In his approach, aligned English-French corpora are
merged together document-wise to construct a bilingual vector space. The dimensions
of this model, which contains English as well as French words, is then reduced via LSA.
The idea behind this method is that the representation of the known English LUs
should be similar to their unknown translation equivalents in French since both
should occur within the same range of (merged) documents. When tested against a
gold standard of manually annotated French, the best performance on frame target

classification was 58.9% precision and 58% recall.

The results of Pitel’s work indicate that words evoking the same frame occur within the
same sort of contexts (across languages). Though his model only consisted of LUs that
are already in FrameNet, it can be generalized to capture unknown words as well. In
our approach, we evaluate the correspondence between the (monolingual) vector

representation of a word and the frames evoked according to FrameNet. A positive

" http://www.keenage.com/html/e index.html
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outcome of this evaluation would imply the possibility of augmenting the FrameNet

lexicon with unknown words based on their representation in a semantic space.

_14_
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Chapter 3

Semantic Spaces

The underlying notion of semantic spaces is to represent the meaning of one word by
words that can be used within its context. This approach derives from the so-called
distributional hypothesis which states that “the meaning of entities, and the meaning of
grammatical relations among them, is related to the restriction of combinations of these
entities relative to other entities” (Harris, 1968). Following this hypothesis, it is possible
to model word meaning solely by counting empirical features (namely words that oc-

cur in context) extracted from text corpora.

foot night place food goods insurance child
walk 610 668 504 41 30 1 498
fall 507 486 492 174 141 59 460
pay 83 281 357 246 371 657 576
buy 97 232 370 457 512 143 404

Table 1: Word-by-word matrix representing co-occurrence counts of nouns
for the verbs “walk”, “fall”, “pay” and “buy”

Typically, the resulting model of this method is a word-by-word matrix whose rows are
labelled with the words to be described and columns with the words in their contexts
(cf. Table 1), or vice versa. It has to be noted, however, that this approach can also be
used to describe more complex structures such as sentences, paragraphs and docu-

ments. In fact, the first implementation of a semantic vector space (Salton, Wong, &

_15_
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Yang, 1975) was used in Information Retrieval and characterized documents by the

words they contain.

The semantic space approach has some clear advantages over other models of word
meaning (e.g. a dictionary or ontology): Firstly, the construction of meaning can sim-
ply be done by extracting context windows from a corpus, i.e. for each word to be de-
scribed (basis elements) all neighbouring words up to an arbitrary distance (co-
occurrences) have to be counted (post-processing such as normalization of the counts
is possible but not necessary). In contrast to a dictionary that needs linguistic experts
to write the respective entries, this task is usually done automatically. Consequently,
the meaning of words in a special sub-domain or with respect to a certain point in time

can be captured simply by choosing an appropriate corpus.

Secondly, semantic spaces allow for an easy computation of how much semantic con-
tent two terms have in common (semantic similarity). While dictionaries and other
linguistic resources rely on manually defined relations between selected words, simi-
larity in a vector space can be computed between all words. In a semantic space, word
meaning is represented in form of a vector containing co-occurrence counts. Since vec-
tors are constructed in such a way as to represent the same dimensions, the similarity
of two words can simply be measured as the distance between the vectors. However,
the disadvantage of this measure is its vagueness as it does not express any specific

semantic relation.

3.1. Examples

This section contains two examples of vector space models and representations to get a
better understanding of how they work. The classical approaches that are usually men-
tioned in literature within this context are LSA (Landauer & Dumai, 1997) and HAL
(Lund, Burgess, & Atchley, 1995). Following this tradition, we will briefly discuss the

outlines of both models.
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1) Latent Semantic Analysis (LSA)

Originally developed for information retrieval (Deerwester, Dumais, Furnas, Landauer,
& Harshman, 1990), LSA is a semantic space model that represents word meaning in a
word-by-document matrix, i.e. the vector of each word enumerates how often it occurs
in a given set of documents. In order to reduce the number of dimensions of this space,
LSA uses a mathematical technique called Singular Value Decomposition (Berry, 1992).
We do not discuss the details of SVD here; however it can be summarized as a way of
collapsing dimensions (documents) based on their similarity (i.e. the overlapping

number and selection of words in each dimension).

Document 2 (mostly about cats) Space with reduced dimensions

A A [documents frequently

,cat containing “television”]

o feed”

e  cat”

o ,dog*
o, dog*

[
»

Document 1
(mostly about dogs)

»
»

[documents frequently
containing “feed”]

Figure 2: Simplified LSA representations before and after the application of SVD

Even though the result of this approach is a semantic space model with a relatively low
number of dimensions, it can be used to preserve a wide range of information. For ex-
ample, if we look at a collection of documents about pets, we will find that some of
them may only deal with cats and dogs, while others might be about bunnies or
hamsters. However, since all of them share common topics (e.g. how to raise pets and

how to feed them), the use of similar vocabulary in some of them causes SVD to merge
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their respective dimensions. Following that, even words referring to pets that only
rarely occur within the same document can have a similar vector representation in this

model. Figure 2 illustrates a simplified example™.

2) Hyperspace Analogue to Language (HAL)

In contrast to LSA, the underlying concept of HAL is a word-by-word matrix that
represents word meaning by co-occurring context words. For each word (basis) to be
described the matrix contains one vector whose values are counts of co-occurrences
with all other words. In the case of HAL, the context taken into account consists of the
10 previous and following words. Independently of the window size, words that are

further away from the basis will get a lower count (cf. Table 2).

some dogs need to Be fed twice a Day

some 0 5 4 3 2 1 0 0 0
dogs 5 0 5 4 3 2 1 0 0
need 4 5 (%] 5 4 3 2 1 (%]
to 3 4 5 (%] 5 4 3 2 1
be 2 3 4 5 (%] 5 4 3 2
fed 1 2 3 4 5 0 5 4 3
twice (4] 1 2 3 4 5 0 5 4
a (4] 0 1 2 3 4 5 0 5
day ) ) ) 1 2 3 4 5 )

Table 2: HAL example matrix for the sentence "Some dogs need to be fed twice a day” (with con-
text windows of 5 words each)

Even though the word-by-word matrix uses the same labels for rows and columns,

both of them are filled with different information (i.e. while one represents the context

before the considered word, the other axis of the matrix represents the following con-

text). The vector representation of a word equals the concatenated values from its re-

' Note that the dimensions in the reduced space no longer have concrete labels. The placeholders here are only used to give an
idea of what kind of information the new dimensions represent.
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spective row and column. Although a vector, whose dimensions are two times the size
of the vocabulary, represents each word in this space, Lund and Burgess (1996) re-
ported that the effects they observed only rely on the 100 to 200 most variant vector

elements.

3.2. Applications

Semantic space models are tested over a variety of language related tasks, e.g. experi-
ments that capture semantic similarity/relatedness, categorical information or seman-
tic priming. Over the past decade, the increasing performance in such experiments
made semantic space models more and more popular within the field of natural lan-
guage processing. While one of the first applications of word space models can be
found in information retrieval (Salton & McGill, 1983), recent research proved them to
be useful in a wide range of applications including word sense discrimination (Schiitze,
1998), clustering of similar verbs (Lin, 1998), text segmentation (Choi, Wiemer-
Hastings, & Moore, 2001), and anaphora resolution (Poesio, Ishikawa, Schulte im

Walde, & Viera, 2002).

To exemplify the use of vector spaces, we describe the word sense discrimination ap-
proach by Schiitze in detail. In his work, Schiitze proposed computing a high-
dimensional space containing context-based vectors for each occurrence of an am-
biguous word. Each vector in this space is assigned to a cluster which represents one
word sense. In order to build the actual model, the context of each occurrence of the
ambiguous word gets assigned to the sense cluster to which it is most similar. Since the
contexts taken into account are rather small (50 words window), comparison takes
place in a second order. This means that rather than comparing contexts, the vector-
space representations of the contexts are compared to the representations of the con-
texts from the sense cluster. If the comparison yields a similarity result below a certain
threshold and the number of maximum clusters is not exhausted, a new sense cluster

is created. In his experiments, Schiitze varied with a total number of 2 and 10 clusters,
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with 10 clusters consistently out-performing. The best result achieved with this ap-

proach is a discrimination accuracy of 83.1% for naturally ambiguous words.

3.3. Discussion

As this chapter has shown, the most remarkable point about semantic space models is
that they are well-suited for representing word meaning without actually incorporating
any linguistic knowledge. However, this fact is not true for all semantic space models.
In fact, a number of them perform a minimum of linguistic pre-processing such as
lemmatization or part-of-speech tagging. Even though this preparation step can im-
prove results, recent research also reported the possibility of decreasing results

(Karlgren & Sahlgren, 2001).

One showcase for an approach that goes a step further in utilising linguistic informa-
tion is the semantic space model proposed by Pad6 and Lapata (2007). In their work,
they use a dependency-parsed corpus to build a meaning representation that relies
solely on syntactically related context rather than on words in an arbitrary context
window. As reported in their results, the proposed model outperforms a traditional

word-based approach in experiments testing semantic priming and sense ranking.

Since traditional semantic spaces as well as the dependency-based space proved to be
suitable for modelling word meaning, while at the same time showing promising re-
sults in semantic experiments, we decided to evaluate both models for building a se-

mantic space representation of FrameNet.
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Chapter 4

Frames in the Semantic Space

The fact that the meaning of a frame is more complex than word meaning makes frame
modelling in the semantic space an interesting challenge. Since semantic spaces in
general only represent word meaning, it is not clear whether these models are appro-
priate for frame-related tasks. To get around this difficulty and show the basic suitabil-
ity of semantic spaces, we try to approximate a model for frames by the distribution of
their respective lexical units. Even though this is an over-simplification, lexical units
are the words that evoke a frame, thus being the main indicator for the same. Consid-
ering that a semantic space representation automatically comprises the context of the
considered words, we expect promising LU representations to be equally adequate for

frames since the contexts contain further relevant information such as frame element

fillers.

The main motivation for our approach lies in the simplicity of semantic spaces. As they
have proved to be well-suited for capturing phenomena such as semantic relatedness,
we believe that they can be useful in the field of frame semantics as well. This is espe-
cially true seeing that instances of one frame typically refer to semantically similar ob-
jects, events or situations (cf. Chapter 2 for a detailed discussion). One possible appli-
cation would be to utilize vector distances for extending the frame semantic lexicon of
FrameNet. This can be done by comparing vector representations of new words to the
lexical units that are already in FrameNet. An unknown word can then be assigned to

the same frame as the word with which it is most similar. Another more robust
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method would be to compute representations of each frame (such as by averaging over

all its lexical unit vectors) and compare new words to corresponding frame centroids.

Yet this approach gives rise to a number of questions: Are all lexical units equally im-
portant or do some provide more frame-related information than others? Is there a
way to deal with ambiguities of lexical units? Do we have to explicitly integrate other
parts of the frame, e.g. frame elements? For the implementation of our method, we
acknowledge these questions but cannot answer them at this point. We hope though

that our evaluation in Chapter 5 will be helpful in solving some of these.

However, other questions affect the fundamental design of our model. One question
that we have to answer beforehand is whether a document-based or a word-based ap-
proach is more suitable for this task. We believe that both approaches are possible but
that a word-based space will work better for the following reason: Typically, a frame
represents a prototypical event, object or situation. However, even though instances of
such occur naturally in both context windows and documents, a document rarely fo-
cuses on one specific frame. For example, a COMMERCIAL_TRANSACTION can occur in any
kind of document from business reports (“... EIE also has the right to buy the freehold
from Whitbread ..”) to styling guides (“.. Firstly, buy a good quality moisturis-
ing/conditioning mascara ...”)"%, which does not necessarily focus on that particular
frame. This is different when only looking at the context in the same sentence, which
mostly consists of relevant information in the form of frame element fillers. Another
consideration in this choice is the problem of sparse data. To build a reliable docu-
ment-based model, there has to be a number of documents in which each LU occurs.
Even though our corpus consists of 4.054 documents, they are neither normalized in
length nor are they divided into any frame-specific sections. Thus, we think that a

word-based model would yield more promising results.

8 Examples are taken from http://www.natcorp.ox.ac.uk/.

" For example, [EIE pyy.], [the freehold from Whitbread ooqs] in the first sentence.
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4.1. Pre-Processing

Since we decided to evaluate both a classical word-based semantic space and a de-
pendency-based space, a number of pre-processing steps are required for modelling
our semantic space model. We use the probabilistic parsing system RASP (Briscoe,
Carroll, & Watson, 2006) for all pre-processing steps including tokenisation, part-of-
speech tagging, lemmatisation and dependency parsing. We chose RASP because of its
state-of-the-art performance: 97% tagging accuracy and a lemmatisation error rate of
less than 0.07% are a suitable base for reliably detecting lexical units in text because

FrameNet’s lexicon only contains LUs in the form of lemmas and part-of-speech tags.

RASP’s output contains the pre-processed sentence followed by grammatical relations

in the following format (see Figure 3 for an actual example):

(|NUM: LEMMA+INFLEXION_POS| |LEMMA+INFLEXION_POS| ..*%)
(|RELATION| |HEAD+INFLEXION_POS| |DEPENDENT+INFLEXION_POS]|)

How is infection transmitted?
RASP input
A
(|4:How_RGQ| |be+s VBZ| |infection NN1| |transmit+ed VVN| ?_?)
(|arg_mod| |transmit+ed VVN| |4:How RGQ|)
(|aux| |transmit+ed VVN| |be+s VBZ|)
(|ncsubj| |transmit+ed_VVN| |infection_ NN1|) RASP output

Figure 3: RASP input and output format

" Each line contains as many |LEMMA+INFLEXION_POS| elements as there are words in the sentence
considered.

_23_



Frames in the Semantic Space

4.2. Model and Implementation

Our system goes through several processing steps to compute the final vectors in the
semantic space (cf. Figure 4). This chapter gives an overview of the different steps: The
computation starts with the extraction of word counts (4.2.1) and co-occurrence win-
dows (4.2.2) from a given corpus. The information gathered is then used to compute a
centroid vector for each LU (4.2.3) and each frame (4.2.4). In the next step, the vectors

are compared with other frame vectors to compute similarities (4.2.5).
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* Corpus
* Retain only syntactically
related contexts (y/n)

A 4

(1) Word count extraction

A 4

(2) Co-occurrence extraction

Co-occurrence file

Word counts and
total word count

\ 4

A 4

(3) Vector space computation

* Window size
* Association measure

* Retain part of speech tags (y/n)

A 4

(4) Frame centroid computation

(5) Similarity computation

A 4

* Similarity measure
* Frames / frame ele-
ments

similarities
A\ 4

(6) Evaluation

Lexical unit / frame X
il context word matrix

Frame or frame element

Figure 4: Overview of the system architecture

4.2.1 Extraction of wor

In the first step, counts for all occurring words w € W in the corpus are created by
processing all available text files once and setting up counters (freq(w) = 1) for every
previously unseen word. If a previously word re-occurs, the system increases the re-
spective word counter (freq(w) = freq(w) + 1). In addition to single word counts,

counts for multi-word LUs [ € L (L € W) are also considered. For this purpose, the

d counts
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system extracts the respective set of LUs L from FrameNet’s database beforehand. The
counts extracted in this step are used later on to calculate the vectors of lexical units

and their influence on each frame vector.

4.2.2 Extraction of co-occurrence window

Given the set L of all lexical units in FrameNet, the goal of this step is to extract all co-
occurrence windows for each lexical unit [ € L. Our system starts by parsing the Fra-
meNet database in XML format to find the set of all lexical units. The LUs are used to
extract all of their co-occurring contexts C (co-occurrence windows) in a given corpus

by processing the available text word by word.

To extract contexts for the bag-of-words model, a buffer stores the context of the cur-
rent word in each position (by default, the 20 previous words). When encountering a
LU [; € L, the current buffer is saved to an output file corresponding to the LU, i.e. the
system writes out the previous context words c_,, . _; € (;. If the last word in the con-
text buffer is a LU, the current buffer plus the next word (i.e. the following context
¢y .20 € C; of the LU [;) is written to the same output file. This way, our system can
handle the previous and following words within the same data structure. This strategy

guarantees for this step a runtime linear to the corpus size (= 0(n)).

Before adding a word to the context buffer, we remove punctuations and normalize
words and their respective part-of-speech tags. Words are converted to lower case to
avoid mismatches at the beginning of a sentence, and punctuations within words are
removed due to incorrect tokenization' (e.g. “also,” > “also”). The part-of-speech tags
given by RASP are mapped to the more generic tags used in FrameNet (e.g. “VBZ” >
“V”) to identify lexical units (cf. 4.1).

% Since our system expects input parsed by RASP, words in the corpus have already been tokenised and
lemmatised.
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The output format of this step is a list of co-occurring words along with their respec-
tive distances to the LU in whose context it was found. This format can be used in the
next step to create co-occurrence matrices with different parameters; i.e. the window
size and stop words can be varied to consider only selected co-occurrences or smaller

windows. Figure 5 shows an example of input and the resulting format for the LU

“straightforward”.
... (|43:None_PN| |of _I0| |they+ PPHO2| |be+s VBZ| |new_33| |and_CC|
|they PPHS2| |be+ VBR| |all DB| |straightforward_3JJ| . .) ...
input
P
A 4
straightforward A -> none N: -9 straightforward A -> of I0: -8
straightforward A -> they N: -7 -3 straightforward A -> be V: -6 -2
straightforward A -> new A: -5 straightforward A -> and CC: -4
straightforward A -> all DB: -1
output
P

Figure 5: Input and output file format (bag-of-words model)

For the construction of a dependency model, the system writes out only those context
words ¢ € C; that are in the same sentence and in (any) syntactic relation to a LU [;.
Instead of a string buffer, a simple graph is used here to determine the relevant context.
The graph represents words as nodes, grammatical functions as (undirected)
weighted” edges between the nodes, and is automatically constructed from the rela-

tions given in the RASP output format (cf. Figure 6).

7 We weight all grammatical relations equally except for conjunctions which are ignored in our model.
Thus “Rob ate and Bob ate” and “Rob and Bob ate” will result in the same representation in our depen-
dency model: (Rob, eat) =1 and (Bob, eat) = 1.
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(|conj| |and_cC| |be+s_VBZ|) (|conj| |and_cC| |be+_VBR]|)
(|ncsubj| |be+_VBR| |they PPHS2|) (|xcomp| |be+_VBR| |all_DB|)
(|ncmod| |all_DB| |straightforward_JJ|) (|ncsubj| |be+s_VBZ| |43:None_PN|)
(|xcomp| |be+s_VBZ| |new_33]) (|ncmod| |43:None_PN| |of_IO|)
(|dobj| |of_IO| |they+ PPHO2|)

input

ST

straightforward_A

straightforward A -> none N: 3 straightforward A -> be V: 2
straightforward A -> they N: 3 straightforward A -> and CC: 2
straightforward A -> new A: 3 straightforward A -> of IO0: 4
straightforward A -> all DB: 1
output
P

Figure 6: Input and output file format (dependency model)

4.2.3 Vector space computation for LUs

In this step, the system calculates the vector representation [ for each lexical unit [ € L.
The calculation uses the context windows C from the previous step (4.2.2) and the
word counts freq(w) from the first step (4.2.1) in order to compute vectors in the se-

mantic space. Each dimension d in this space is labelled with a context word ¢ € C.

The selection of dimensions D € C is based on a threshold. Every word below this
threshold is ignored. The reason for this is that low frequency words lead to a sparse
data problem, which would make the space noisier than reliable (cf. (McDonald,
2000)). Since the first vector space model by Salton et al. (1975), additional stop word

lists are used to remove high frequency and function words that do not provide any
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significant meaning'®. The selection of specific dimensions is not only useful for remov-
ing noise, but also for simplifying the calculation of vector similarity since every unfil-
tered word adds a new dimension to the vector space. The runtime complexity of this

step is linear to the number of LUs times the number of dimensions (= O(|L| * |D])).

The value of a dimension d € D for the lexical unit ! € L equals one of the following
association measures™: co-occurrence frequency, conditional probability or point-wise
mutual information. The actual values of these measures are computed using maxi-

mum-likelihood estimates (MLE).

Co-occurrence frequency is a simple measure that counts how often two words co-
occur and is generally used as a baseline to evaluate other measures (Evert & Krenn,

2001):

freqll,d)  freq(l,d)
corpus_size  ¥.ec freq(c)

Cooc(l,d) = p(l,d) ~MLE

Conditional probability allows for computing the probability of a lexical unit [ given a
specific context word d, i.e. it estimates with which probability a occurrence of d indi-

cates a occurrence of [:

PLD) e freakd)
p(@ frea(@

cP(l,d) =

(Point-wise) Mutual Information accounts for the fact that words can have different

frequencies and measures how significant the number of real co-occurrences is com-

*® A list of stop words and part-of-speech tags can be found in Appendix A: Stop Word Lists.

“If freq(l) = 0 or freq(w) = 0, we assign the value 0 instead of the actual association measure to avoid
division by zero.
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pared to an estimated co-occurrence count based on their frequencies (Church &

Hanks, 1989)*:

p(Ld) g freq(l,d) x corpus_size  freq(l,d) * Y.cec freq(c)
p(D *p(d) ~ freq() = freq(d) ~—  freq(D) * freq(d)

MI(L,d) =

In order to find the best suitable model for frame semantics, the association measure
and additional options can be parameterized. Further parameters include the window
dimension specifying how many context words before and after the LU are taken into
account, a file with part-of-speech tags and words to skip, and a lower bound for word

frequencies.

The output of this step is a file with a dense matrix containing vectors for all LUs and
two files with labels (cf. Figure 7). The first line of the main file gives information
about the matrix dimensions, i.e. number of rows |L| and number of columns |D|. All
further lines represent the values of one vector each. The two label files contain labels

for both rows (LUs L) and columns (dimensions D) of the calculated matrix.

8310 10

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 17.0 0.0 0.0 0.0 0.1 0.0
0.0 0.0 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0
0.0 5.3 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0
0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0
0.0 9.5 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0
0.0 0.0 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0

Figure 7: Matrix file format

** Note that we left out the logarithm in the actual formula to avoid negative values as some of our simi-
larity measures (cf. 4.2.5) require positive input values.
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4.2.4 Vector space computation for frames

The computation of centroid frame vectors f is based on the lexical units vectors [. For
each frame f € F, we compute its representation based on its lexical units L(f). In par-
ticular, the dimension i of a frame centroid is calculated by summing up over the re-

spective values of its associated lexical units [ € L(f):

| frea®
" frea)

fi =
LEL(f)

The weighting factor w for each value is defined as the relative number of occurrences
that one LU has compared to all LUs from the considered frame, so that the resulting
frame vector represents an average distribution over all co-occurrences of the asso-
ciated LUs. The weighting ensures that low frequency LUs have a smaller impact on
the frame centroid than high frequency LUs since these typically have a more robust
vector representation. The runtime complexity of this step is (approximately) linear to

the number of frames times the number of dimensions (= O(|F| * |D])).

The output format of this step is equal to the output of the previous step. The only dif-
ference is that the output file contains vectors for frames instead of LUs, thus the ma-

trix has a smaller amount of rows.

4.2.5 Similarity computation

In the similarity computation step, the previously created matrices are used to com-
pare vector representations to each other. This step can be used to calculate the simi-
larity between the representations of two LUs, between a LU and a frame, and between
frames. For every pair of vectors (X,y), our system can apply different measures that
have been proven to be useful for calculating semantic similarity (Mohammad & Hirst,

2006). A measure which is often used (e.g. by Schiitze and Pederson (1997), and Yo-
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shida et al. (2003)) is cosine similarity, which calculates the cosine of the angle be-

tween two vectors.

¢ Cosine similarity

R Y
Slmcos(x: y) - m

The main advantage of this measure is that it takes both real values and total vector
lengths into account. This is useful because the vector lengths can contribute as a
normalization factor when a matrix does not contain already normalized values. Nor-
malization is an important factor in ensuring that similarity computations are not bi-
ased by word frequency. This is especially true for the comparison of two LUs that have
a very different frequency (for example, the infrequent verb “sop” and the frequent
verb “soak”). However, if the given matrix contains values resulting from an association
measure that already considers word frequency, further normalization can be skipped.
Some of the following similarity measures, which we additionally implemented, do not

perform any normalization:

e Jaccard coefficient (Jaccard, 1908)

[x Nyl

Simiaccard(xr y) = XUyl

The original Jaccard coefficient computes the similarity of two sets by comparing their
common elements to the number of elements in the union of both sets. While ele-
ments in this measure are treated as binary values, it is also possible to use their actual

values in a modified version as proposed by Dagan et al. (1993):
e Modified Jaccard coefficient

min (x;,y;)

sim; X,y) =
]accard( y) : max (x;, y;)
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Another measure we want to test is Jensen-Shannon divergence, a symmetric similarity

measure based on the Kullback-Leibler divergence:

e Jensen-Shannon divergence (Lin J., 1991)

Vi

simysp (%, y) = Z Vi * logm
L L

{i 1x;>0,y;>0}

Finally, the following two similarity measures are derived from information theory and

are used to compare point-wise mutual information™:
e Lin’s similarity measure (Lin D. , 1998)

i 1x>0,y;>03 (X + Vi)
Dfi x>0 Xi T i |y>01 Vi

SimLin(f' 5}) =

e Saif’s similarity measure (Mohammad & Hirst, 2006)

2 % Xti 1x>0,y;>01 MIN (X, Vi)
i x>0 Xi T i |y >0} Vi

Simsaif (J_C), )_’)) =

* Note that we removed the relation variable from both Lin and Saif’s similarity measures since relations
are not explicitly stored in our matrices.
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Chapter 5

Experiments

The experiments described in this chapter were performed with different semantic
space models to evaluate the impact of various parameters. All models were built with
the British National Corpus (BNC; Burnard, 2000), a 100 million word text corpus of

written and spoken English, and have the following properties:

e Model type: Bag-of-words model or dependency model (cf. 3.3)

e Association measure: co-occurrence frequency, conditional probability or mu-

tual information (cf. 4.2.3)
e Distance weighting: no weighting or E—welghtmg22

e Distance measure: cosine or modified Jaccard coefficient® (cf. 4.2.5)

e Maximum distance: 5, 10, or 20 for context windows; 1 or 3 for syntactic rela-

tions**

The following tests are conducted with a fixed model-size of about 4,000 dimensions

representing all words occurring at least 2,000 times in the BNC (excluding stop

** When using ;—welghtlng, words in position d of a context window are counted as 1/|d| co-occurrences

with the lexical unit.
 We use only these two measures because other measures performed either equally well or worse.

** For the syntax-based models, a maximum distance of 1 means that we only consider words directly
related to the LU; 3 means that all words are considered that are related to a LU given up to two other
words inbetween.
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words™). As pointed out by McDonald (2000), 100-2,000 dimensions are typically used
in a vector space model unless some kind of dimensionality reduction is applied. How-
ever, we chose a higher number of dimensions as this proved to be more robust, e.g.
Schiitze and Pedersen (1997) use 3,000 dimensions, and Sahlgren and Coster (2004)

report best performance with 5,000 dimensions.

5.1. Similarity Experiment

The purpose of this first experiment is to confirm our hypothesis that LUs of the same
frame have a similar distributional representation. We expect to obtain higher similar-
ity values between two LUs of the same frame than between LUs randomly chosen
from different frames. By analyzing the results of different configurations, we also gain

insight into which vector spaces are better suited for frame semantics than others.

To do so, we create a true set (TS) that contains all pairs of LUs that evoke a mutual
frame and a control set (CS) of pairs of LUs not in the same frame. The TS is defined as

follows:

The CS is formed by as many randomly chosen LU pairs that do belong to a mutual

frame:
CS ={<1,l, > L |Af € F.{l;,1,} € L(f)}s.t.|TS| = |CS]

For each LU pair in the true and control set (around 350.000 in total), we compute the
similarity using the measures described in 4.2.5. In order to evaluate the actual per-
formance of these similarities, we create a ROC curve (Fawcett, 2006) that shows how

well a statistical measure is able to distinguish between the true set and the control set.

*> The stop word list that has been used to filter out noisy words and part-of-speech tags can be found in
Appendix A: Stop Word List.
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This is done by modelling a curve with the rate of true positives (TP) on one axis and

the rate of false positives (FP) on the other axis for each similarity value (cf. Figure 8).
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Figure 8: Similarities and ROC graph representation

We also compute the classification accuracy at each point in the ROC curve in order to
find the similarity threshold for the best classification performance (best accuracy
point). A measurement often used for comparing ROC curves of different classifiers is
the (total) Area under the ROC curve (AROC). This is a simple means of comparison
based on the fact that better performing methods will have a smaller FP rate (higher
TP rate), meaning that the curve is more to the left (up) and has a higher AROC (cf.
Figure 9). The minimum AROC is always 0% (the TP rate is 0% at any FP rate), while

the maximum is 100% meaning that every element is classified correctly.
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Figure 9: Comparison between the baseline and a sample of our results

5.1.1 Results

We compute the performance of all models by means of best accuracy and AROC.

Since this is a binary classification task, the random baseline has both an accuracy and

AROC of 50%. Tables 3-8 below give an overview of the resulting values in percentage

for all models tested (best values compared to the baseline in parenthesis).

dependency 1 2 3 4 5 6 7 8 9
Association Cooc Cooc Cooc Cp Cp CP MI MI MI
measure
Window size 1 3 3 1 3 3 1 3 3
Weighting O O X O O X O O X
AROC 58.6 53.9 55.8 58.6 54.0 55.9 62.5 63.0 63.1
(+13.1)
61.8
Best Accuracy | 57.5 53.7 55.3 57.0 53.8 55.3 613 61.4 (+1.8)

Table 3: LU-LU results for dependency models (cosine measure)
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dependency

1

2 3 7 8 9
Association Cooc  Cooc Cooc CP CP Cp MI MI MI
measure
Window size 1 3 3 1 3 3
Weighting O O X 0) 0) 0) X
64.0
AROC 59.9 57.0 57.5 4 58.4 62.0 635 59.7 62.8
(+14.0)
61.4
Best Accuracy 57.3 54.6 54.7 ( ) 56.7 60.0 60.7 57.9 605
+11.4

Table 4: LU-LU results for dependency models (Jaccard measure)

bag-of-words 1 2 3 4 5 6 7 8 9
Association Cooc Cooc Cooc Cooc Cooc Cooc CP Cp CP
measure
Window size 5 5 10 10 20 20 5 5 10
Weighting O X O X O X 0) X 0)
AROC 50.7 49.8 5.8 504 53.9 51.0 50.7 49.7 51.8
Best Accuracy | 517 51.3 52.5 51.7 53.8  52.2 51.7 51.3 52.5
Table 5: LU-LU results for bag-of-words models 1-9 (cosine measure)
bag-of-words 10 1 12 13 14 15 16 17 18
Association | 'cpcpcp M MI  MI  MI Ml MI
measure
Window size 10 20 20 5 5 10 10 20 20
Weighting X 0) X 0) X 0) X 0) X
60.
AROC 50.4  53.8 51.7 54.2 52.0 56.2 52.5 3 53.5
(+10.3)
58.1
Best Accuracy | 51.8 53.7 52.7 53.9  53.2 55.1 53.6 (+8.) 54.4
Table 6: LU-LU results for bag-of-words models 10-18 (cosine measure)
bag-of-words 1 2 3 4 5 6 7 8 9
Association Cooc Cooc Cooc Cooc Cooc Cooc CP CP CP
measure
Window size 5 5 10 10 20 20 5 5 10
Weighting O X O X O X @) X O
AROC 537 531 542 534 545 535 523 526 532
Best Accuracy 53.1 52.8 53.4 529 535 53.0 52.1 52.5 52.8

Table 7: LU-LU results for bag-of-words models 1-9 (Jaccard measure)
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bag-of-words 10 11 12 13 14 15 16 17 18
Association | cp cpcp MI  MI MI Ml Ml M
measure
Window size 10 20 20 5 5 10 10 20 20
Weighting X O X O X 0) X 0) X
AROC 53.6 55-0 543 522 5.7  52.7  52.0 53.6 52.4
(+5.5)
54-3

Best Accuracy 53.1 54.3 51.7 51.8 52.1 52.1 52.8 52.4

(+4.3)

Table 8: LU-LU results for bag-of-words models 10-18 (Jaccard measure)

5.1.2 Results Analysis

The results of this experiment show that most of our selected models yield a higher
AROC and accuracy than the baseline. In fact, only one configuration (dependency
model 8) yields worse performance with respect to the AROC. Figure 10 shows the ROC

curves for the two best performing configurations and the baseline.

When comparing the curves, it is clear that our models outperform the baseline for
most of the cases. However, there seem to be a number of LUs from the test set that
are not more similar to each other than the pairs from the control set. Two possible
reasons behind this are ambiguity (LUs evoking multiple frames probably have a dif-
ferent representation than non-ambiguous words) and data sparseness (the represen-

tation of infrequent words is more sparse than that of frequent words).

_39_



Experiments

100% g A 100%
90% !
S |90%
80% o “#83%
70% " o s
L2 o
60% - L 66% Dependehcy Model4
& |59% (Jaccard similarity)
»
50% 44% | ¥ |52% «@-** Dependency Model9
40% e (cosine similarity)
32% | _

30% [ ] Baseline

20% =

10% 3

0% So%

0% 20% 40% 60% 80% 100%

Figure 10: The best performing models and random baseline (ROC curves)

We discuss the parameter’s influence on best accuracy and AROC in the following sec-

tions:

Model type: Both syntax and context-based matrices performed equally well, though

the best results are achieved with the dependency model 4.

Association Measure and Distance Measure: Overall, matrices that are computed
using co-occurrence frequency as an association measure showed the worst results. We
believe that the main reason for this is that the frequencies of the LUs are distributed
over a decent range. Consequently, more frequent LUs have a higher average associa-
tion measure than low frequency LUs and most frames have LUs from different fre-
quency ranges leading to low similarity results. The other two association measures
yield better similarity results: Conditional probability appears to be the best associa-
tion measure for computing jaccard similarity, whereas Mutual Information performs
best for cosine similarity. The best results for dependency models are achieved with

jaccard (model 4), whereas it is cosine for bag-of-words models (model 17).
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Window Size and Distance Weighting: Weighting the distance between two words
improves the results of dependency-based matrices, though it does not do so for con-
text-based matrices. Apparently, words that are directly related to a target syntactically
comprise more frame semantic information than other words in context. This can also
be seen by the fact that a maximum distance of 1 yields better results for a dependency
model than a distance of 3. In a bag-of-words model, however, syntactically related

words can be found within any distance to the target word, e.g.
“[We supjsseiter] do the maintenance instead of just selling [the plants opj/Goods].”

Thus all words in a context window potentially have the same importance. Since syn-
tactically related words are at the same time often frame element fillers, these observa-

tions confirm our intuition that frame elements are important indicators for a frame.

5.2. Leave-One-Out Experiment

This second experiment aims to test the possibility of assigning an “unknown” LU to
the right frame by comparing vector representations in the semantic space. Our intui-
tion for this experiment is that the similarity between a LU and the evoked frame
should be higher than the similarity between a LU and any other frame. We expect the
results of this evaluation to be a useful indicator for the possibility of automatically
expanding FrameNet. One way in which these results can be used is to suggest the
most similar frames for unknown LUs to a human annotator in order to reduce the

time needed when assigning LUs to frames.

The experiment consists of comparing each LU to all frame centroid vectors to retrieve

the most probable frame(s): frest (1) = arg max¢cp sim(z), f)

In order to avoid biased results, our system re-computes the frame centroid in each

comparison without the considered LU.
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5.2.1 Results

We measure the performance of a model by counting how many LUs are assigned to
the frame they actually evoke (precision). To gain better insight into the differences
between LUs and their frame representations, we compute the rank 7; of the correct
frame f; for each LU [ and the median rank 7 over all LUs (i.e. the middle value of an

ordered set R that contains the ranks for all LUs):

n=|{feF|leL) A sim(lf)>sim(f))
R =<nmr,nr,..1m> st rn=1

. { T|L|/2 |L| odd
'r' =
L (fujz + rquieny2)  ILI even

During the experiment, we compute the similarity between all 8.310 LUs and the 794
frames currently in the FrameNet database. The simplest baseline for this approach is a
random frame assignment for each LU, resulting in a precision of less than 1% and a
median rank of 397 (half the total number of frames). A more informed baseline that
assigns all lexical units to the most probable frame from a naive point of view, i.e. the
frame with the most lexical units, results in 179 right classifications out of 8.310 (about
2% precision). Tables 9-14 give an overview of the results with our models (best values

compared to baseline in parenthesis).

dependency 1 2 3 4 5 6 7 8 9
Association Cooc Cooc Cooc Cp Cp Cp MI MI MI
measure
Window size 1 3 3 1 3 3 1 3 3
Weighting O O X O O X O O X
0
Precision 4% 1% 9% 9% 13% w% 18% 2D % 20%
(+23%)
Median Rank | 121 105 16 81 68 76 16 8 12
(+389)

Table 9: LU-frame results for dependency models (cosine measure)
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dependency 1 2 3 4 5 6 7 8 9
Association Cooc Cooc Cooc CP CP CP MI Ml MI
measure
Window size 1 3 3 1 3 3 1 3 3
Weighting 0) 0) X O O X 0) O X
. 23%
Precision 7% 7% 7% 16% 20% 18% 21% 23%
(+22%)
Median Rank | 218 267 254 42 21 28 17 14 12
(+385)
Table 10: LU-frame results for dependency models (Jaccard measure)
bag-of-words 1 2 3 4 5 6 7 8 9
Association Cooc Cooc Cooc Cooc Cooc Cooc CP CP CP
measure
Window size 5 5 10 10 20 20 5 5 10
Weighting O X 0) X 0) X O X O
Precision 9% 8% 9% 8% 12% 9% 9% 8% 10%
Median Rank | 139 159 128 156 98 144 104 126 93
Table 11: LU-frame results for bag-of-words models 1-9 (cosine measure)
bag-of-words 10 11 12 13 14 15 16 17 18
Association | cp cpcp M MI O MI MI MI MI
measure
Window size 10 20 20 5 5 10 10 20 20
Weighting X 0) X 0) X O X O X
11 0, 0 0, 0, ) 0, 0, 2‘3% 0,
Precision 8% 14% 9% 17% 15% 19% 15% 17%
(+21%)
Median Rank 18 63 106 32 50 25 45 13 38
(+384)
Table 12: LU-frame results for bag-of-words models 10-18 (cosine measure)
bag-of-words 1 2 3 4 5 6 7 8 9
Association Cooc Cooc Cooc Cooc Cooc Cooc CP CP CP
measure
Window size 5 5 10 10 20 20 5 5 10
Weighting O X @) X 0) X O X O
Precision 5% 5% 4% 4% 5% 4% 8% 7% 9%
Median Rank | 288 284 287 283 290 285 82 100 69

Table 13: LU-frame results for bag-of-words models 1-g (Jaccard measure)
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bag-of-words 10 11 12 13 14 15 16 17 18
Association |\ "cp  cpcp MT  MI  MI Ml M M
measure
Window size 10 20 20 5 5 10 10 20 20
Weighting X O X O X O X 0) X
0
Precision 7% 14% 7% 9% 10%  10% 1% 15% 12%
(+13%)
Median Rank | 104 41 100 68 70 58 62 34 53
(+363)

Table 14: LU-frame results for bag-of-words models 10-18 (Jaccard measure)

5.2.2 Results Analysis

The results of this experiment show that all models are better suited to finding the cor-
rect frame of a lexical unit than the random baseline. Though our system only classifies
25% of the lexical units correctly, the median rank of the right solution reveals that a
correct frame can be found within the 8 most similar results in more than 50% of the
cases. When extending the model to 30.000 dimensions, the top precision improves to
27% correct frame assignments. This outcome indicates the possibility of considerably
assisting frame assignment for new lexical units. Figure 11 shows the precision of the
best performing model (and an extended model with 30.000 dimensions) when also

considering the top-20 most similar frames for each lexical unit.
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Figure 11: Top-20 precision of the best performing model

Compared to the baseline, the results obtained from this experiment are better than
those from the first experiment. The reason for this is that frame centroids are more
reliable than LU vectors because they do not suffer from problems like ambiguity and
data sparseness (typically a frame consists of multiple LUs not all of which are polyse-

mous or infrequent).

A closer look into our results shows that frames which were ranked higher are many
times related to the correct frame. Indeed, in cases where the correct frame is among
the top ten results, higher ranked results quite often are plausible substitutes for those
actually assigned in the FrameNet database. The following list gives a few examples

indicating the correct frame according to FrameNet and those assigned by our system?:

*% An overview of 100 assignments made with our best performing model can be found in Appendix B:
Most Similar Frames.
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e carve V (CREATE_REPRESENTATION) = 1. SHARPNESS, 2. CUTTING, ...

Even though the verb “carve” potentially describes an event in which a “Creator pro-
duces a physical object which is to serve as a Representation of an actual or imagined
entity or event”, in our opinion, the actual process intuitively fits better with the frame
CUTTING. Between FrameNet version 1.3 and the current state, which can be viewed
online, “carve” actually got assigned to the CUTTING frame as well. The reason why
SHARPNESS is closely related to this word in our model can be seen by the fact that

“sharpness” is a required property for all processes described with the CUTTING frame.
e guerrilla N (PEOPLE_BY_VOCATION) = 1. MILITARY, 2. TERRORISM, ...

“Guerrilla” is another good example of a word that fits the definition of multiple frames.
In the current version of FrameNet, however, it evokes only the frame PEO-
PLE_BY_VOCATION though, intuitively, the frames proposed by our model are equally
valid: MILITARITY describes “some Possessor, either a nation, institution, or private
individual, [who] controls a Force (...)” and TERRORISM is defined as an event in which a
“Terrorist commits a violent or otherwise harmful Act upon a Victim in order to

coerce or terrorize a government or populace.”
e caravan N (BUILDINGS) = 1. VEHICLE, 2. BUILDINGS, ...

According to our best performing model, the frame VEHICLE is most similar and BUILD-
INGS is the second most similar frame to the lexical unit caravan. Conceptually, this
makes sense since a caravan describes an object that “form[s] an enclosure and pro-
vide[s] protection” (BUILDINGS) and that at the same time can be used for “the purpose
of transportation” (VEHICLE). However, as FrameNet only contains BUILDINGS as a
frame for caravan, we believe that this is a good example showing the expansion poten-

tial that could be achieved through this approach.
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5.3. Discussion

The results of both our experiments show that semantic spaces are, to some extent, a
suitable means of representing frame semantic meaning and potentially useful in as-
sisting the expansion of FrameNet. Moreover, the results obtained from our leave-one-
out evaluation are useful indicators of additional frames evoked by existing lexical

units in the FrameNet database.

Although our results rank below state-of-the-art methods (Erk, 2005; Burchardt, Erk, &
Frank, 2006) in terms of precision, our approach nevertheless clearly outperforms
other systems through coverage in that it does not depend on labelled training data or
additional semantic resources. For example, Detour (Burchardt, Erk, & Frank, 2005)
heavily depends on the words contained in WordNet, thus only covering 87% of the
cases appearing in the annotated FrameNet corpus. Moreover, this annotated corpus
itself only provides training data for around 60% of all lexical units currently in the
FrameNet lexicon. In contrast to this, a semantic space representation as proposed in
our work can be computed for any arbitrary word (labelled or unlabelled) that occurs
in the corpus. Moreover, this approach is also applicable for other languages, for which

a small set of lexical units are already assigned to frames.

To confirm these observations outside the range of FrameNet, we conducted the same
experiments in the SALSA framework (Erk, Kowalski, Pado, & Pinkal, 2003), a German
frame-based lexical semantics resource, as well as the German part of the Europarl
corpus (Koehn, 2005). With a top precision of 26%, the best results* of this small-scale
experiment are comparable to the findings described in the previous section. When
considering the top-20 most similar frames, 53% of correct frame assignments can be

made (cf. Figure 12).

*7 Note that we only evaluated the bag-of-words model because RASP cannot be used for German input.
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Figure 12: Top-20 precision of the best performing model (SALSA)
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Chapter 6

Conclusions

This work attempts to model frame semantic meaning in a semantic space. In contrast
to previously computed models, e.g. (Burchardt, Erk, & Frank, 2005) and (Fung & Chen,
2004), the goal of our study was to use a minimum of available resources in order to
achieve the highest possible coverage. Though our results do not yet fall in line with
precision achieved by state-of-the-art systems (e.g. (Erk, 2005)), our approach com-

pensates in its outstanding coverage.

Our results indicate that a syntax-driven approach is better suited for the actual con-
struction of a semantic space model. Presumably, this fact is based on the observation
that roles in a frame are typically filled by syntactically related words. Any other words
which do not provide relevant information for the frame are filtered out in a purely
syntax-based model. Based on the overall results of our experiments, our methods

show promise for extending the existing yet incomplete FrameNet database.

In the following sections, we discuss the limitations of this approach, potential im-

provements and applications of the results.
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6.1. Known Issues

One of the main issues that we encountered during the evaluation is that very infre-
quent LUs such as “to sop” (13 occurrences in 100 million words) have a very sparse
vector representation. This is problematic because only few dimensions are available
for comparison, and if the values in those dimensions are not similar to those in the
correct frame vector, the assignment fails. To verify this hypothesis, we ran a number
of experiments with thresholds on the LU frequency, confirming our intuition that
data sparseness is indeed a problem in our approach (cf. Figure 13). One possibility to
make this process more robust is to use smoothing techniques in order to fill the other

dimensions with some sort of backing-off values.

45% T

° T Lo |40%[ 3TF A%
40% 379% | 38% S L LA

33% 33% .‘-00000'°"“...
35% 5100...0.... a0®°
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25%
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Figure 13: Top-1 precision and recall with thresholds on LU frequencies

Another issue is based on the fact that our syntax-based model currently treats all syn-
tactic relations the same way. This leads to the problem that two different frames
sometimes have very similar vector values in some dimensions, even though the same
word never occurs in the same relation to a LU. One example for this is the pair of

frames FOOD and INGESTION which are often evoked in contexts containing words that
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refer to eatable objects. However, in the case of FOOD, these words typically modify a
lexical unit (e.g. [cheese mop] sandwich), while in the case of INGESTION, they occur as
objects of a LU (e.g. eat [cheese ogj]). In order to diversify the representations of both
frames, one could extend the syntax-based model to have different dimensions for
various relations (cf. for example (Pado, 2007)). Another possibility is to use multiple
representations for different part-of-speech tags, so that “cheese” would only have a
noun representation, while “eat” would have a verb representation. Following that,
each frame could have a centroid vector for each part-of-speech tag to achieve a more

robust performance across different lexical categories.

The incompleteness of FrameNet is another problematic aspect of our approach.
Though we do not expect every word to be in the lexicon, we assumed for our experi-
ments that the existing words in the lexicon are assigned to all frames they potentially
evoke. It turned out, however, that this assumption does not hold. For example, the
verb “carve” evokes but is not assigned to the frame CUTTING and the noun “caravan” is
not assigned to the frame VEHICLE in the current version of FrameNet. Not only does
this fact bias our evaluation results, but it influences the quality of our frame represen-

tations.

6.2. Future Work

As discussed in the previous chapter, the results of our approach are promising for fur-
ther research both in the direction of pursuing further improvements of this model
and its application in the actual development of FrameNet. One possibility for the
former is to intelligently handle data sparseness and representation issues as discussed
in the previous section. However, even without additional work, our methods can be

immediately applied in guiding the frame assignment process for new lexical units.

One of the key features of this model, as stated before, is its independence from addi-
tional semantic resources. This advantage makes our methods particularly interesting

for extending frame semantic resources in languages that are not as rich in resources as

_51_



Conclusions

English. In fact, a small set of frame-assigned lexical units and an un-annotated text
corpus in the target language are sufficient to build a context-based frame model as
suggested in our work. Following recent trends in cross-lingual projection (Pado, 2007),
another possibility to build a frame semantic resource for another language is to take
our existing model for English and transfer it to a target language using an aligned bi-
lingual corpus. Based on this corpus, a bilingual vector space model can be computed
(Pitel, 2008) containing meaning representations for words in both languages. Using
the English part of those representations, the model can be directly compared to our

results leading to implicit similarity results for the candidate words in the target lan-

guage.
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Appendix A: Stop Word Lists

This section lists the stop words and part-of-speech tags as used in our models.

Excluded words (in English):

should may
other now
more all
that for

such
then
it
to

very
than

Excluded part-of-speech tags (in English):

. J
? !
DD2 DDQ

771 NUM
PPIS1 PPIS2
CSW CSA

(

DDQ$
PPIO1
PPHS1
CST

Excluded words (in German):

<unknown>

)

;

DB
PPI02

PPHS2
PREP

Excluded part-of-speech tags (in German):

$. $,
$? $!
ART PPER
PWS KOUI

$(
$_
PREP
KOUS

$)
$;
PRF
PDS

- 58 -

just
could
you

DD
DB2
PPHO1
APP$
W

$$
$/
PRELS

also
who
not

DD1
ART
PPHO2
()

$:
NU
PTKZU
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Appendix B: Most Similar Frames

This section lists 100 randomly chosen lexical units, the frames they evoke and the

most similar frame according to our model.

pathetic A (Subject_stimulus, Desirability) => Mental_property

conceal V (Hiding_objects, Eclipse) => Hiding_objects

delta N (Relational natural features) => Natural features

motorway N (Roadways) => Roadways

obstruct V (Hindering, Eclipse) => Arrest

sick A (Medical conditions, Biological urge) => Biological urge

bearing N (Conduct) => Change_tool

insipid A (Chemical-sense_description) => Exertive_force

ankle N (Observable bodyparts) => Shaped part

utilise V (Using) => Using

youth N (People_ by age) => Aggregate

pro N (Expertise) => Competition

slosh V (Self_motion) => Mass_motion

effect N (Objective_influence, Being_in_effect, Subjective_influence)
=> Subjective_influence

liquidate V (Killing) => Predicting

boo V (Judgment) => Sounds

sombrero N (Accoutrements) => Accoutrements

botch V (Bungling) => Hit_target

innocent A (Guilt_or_innocence) => Guilt_or_innocence

room V (Residence) => Becoming_ aware

spear N (Weapon) => Bearing_arms

electrical A (power N) => Electricity

seamount N (Natural features) => Prison

sarcophagus N (Containers) => Buildings

gat N (Weapon) => Part_edge

wellington N (Clothing) => Commerce_sell

toxin N (Toxic_substance) => Response

exasperating A (Subject_stimulus) => Typicality

trammel V (Hindering) => Change_tool

surprising A (Subject_stimulus) => Disembarking

summons V (Arrest) => Dimension

dread N (Experiencer_subj) => Experiencer_subj

undergarment N (Clothing) => Clothing

pray V (Rite) => Remembering_information

make N (Type) => Building

forecast V (Predicting) => Change_position_on_a_scale

embellish V (Filling) => Accoutrements

disagreement N (Quarreling) => Quarreling

irritating A (Subject_stimulus) => Experiencer_obj

dampen V (Cause_to be wet) => Institutionalization

snarl N (Facial_expression, Sounds) => Perception_active
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sadden V (Experiencer_obj) => Measure_linear_extent
poach V (Apply heat) => Fleeing
cluck V (Communication_noise) => Motion_noise
indicative A (Sign) => Type
saunter V (Self_motion) => Traversing
forgetful A (Mental_property) => Motion_directional
ruling N (Verdict, Documents) => Organization
chemical A (weapon N) => Weapon
annoy V (Experiencer_obj) => Experiencer_subj
whiff N (Sensation) => Sensation
wet V (Cause_to_be wet) => Grooming
refuse V (Agree_or_refuse_to_act) => Agree_or_refuse_to_act
tablespoon N (Measure_volume) => Food
elegy N (Text) => Reading
scrimp V (Frugality) => Part_piece
stenosis N (Medical conditions) => Death
obese A (Body description_holistic) => Cause_change_of_phase
invention N (Invention, Invention, Achieving_ first)
=> Jury_deliberation
intimidate V (Experiencer_obj) => Sociability
third A (Ordinal_numbers) => Surpassing
embarrassing A (Subject stimulus) => Forging
befog V (Eclipse) => Resolve_problem
act V (Performers_and_roles, Conduct, Intentionally act) => Conduct
bottom A (Part_orientational) => Hostile_encounter
do V (duty N) => Take_place_of
post V (Sending) => Sending
network N (Network) => Network
smuggling N (Smuggling) => Smuggling
recuperation N (Recovery) => Losing it
system N (Set_of_interrelated entities, System, Gizmo) => Gizmo
smear V (Placing, Filling) => Apply heat
terrorize V (Cause_to_experience) => Setting out
bullet N (Ammunition) => Cause_harm
sicken V (Experiencer_obj) => Sensation
family N (name N) => Being_named
pasta N (Food) => Food
mass N (Quantity, Rite) => Quantity
slip V (Undressing) => Manipulation
distance N (Range) => Shapes
rival V (Evaluative_comparison) => Cause_to_amalgamate
circle N (Shapes, Aggregate) => Natural_features
remedy N (Cure) => Cure
conspiracy N (Offenses, Collaboration) => Killing
cackle V (Communication noise, Make noise) => Communication noise
rid V (Emptying) => Evoking
focus V (Place_weight_on) => Redirecting
frighten V (Experiencer_obj) => Experiencer_subj
hardback N (Text) => Text
convey V (Bringing, Successfully communicate_message) => Giving
shush V (Become_silent, Silencing) => Misdeed
forge V (Forging) => Forging
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reward N (Rewards_and_punishments) => Judgment

carve V (Create_representation) => Sharpness

crisscross V (Traversing, Path_shape) => Aesthetics
screenplay N (Text) => Performers

big-boned A (Body_description_holistic) => Facial _expression
prejudge V (Partiality) => Feigning

jewelry N (Accoutrements) => Medical conditions

wrangling N (Quarreling, Hostile_encounter) => Assistance
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