
Customisable Semantic Analysis of Texts

Abstract

Our customisable semantic analysis sys-
tem implements a form of knowledge
acquisition. It automatically extracts
syntactic units from a text and semi-
automatically assigns semantic informa-
tion to pairs of units. The user can select
the type of units of interest and the se-
mantic relations to be used. The system
examines parse trees to decide if there is
interaction between concepts that under-
lie syntactic units. Memory-based learn-
ing tags new unit pairs with semantic la-
bels from a user-defined set.

1 Introduction

Knowledge acquisition from texts spans the range
between fully automatic and fully user-driven sys-
tems. Automation relies on manually built re-
sources and on statistical or machine-learning
methods that extract classifiers from annotated
data. The shortcomings include cost of annotation
and low accuracy of such classifiers on new data.
User-driven systems, with friendly interfaces that
domain experts use to identify knowledge in texts,
allow much higher accuracy (insofar as humans
agree on semantic relations). On the other hand,
they require time to train people with minimal AI
or NLP background, and to encode knowledge.

Our approach falls between these extremes. We
rely on parsers for the grammatical structure of
sentences, from which we extract concepts and

pair up those that interact. The user will asso-
ciate the types of concepts of interest with syn-
tactic units that the parser's grammar recognizes,
for example, nouns and noun-phrases if entities in
general are sought.

The system extracts pairs of concepts from the
text. Each pair is assigned a semantic relation
that describes their interaction in the context in
which they appear. While there is a default list of
47 semantic relations, the actual list may be user-
defined, to acknowledge that no set of semantic
relations is appropriate for all NLP tasks. Seman-
tic relations are assigned semi-automatically. The
user can accept a unique suggestion made by the
system, choose from a list, enter the correct an-
swer manually or reject the pair.

Barker et al. (1997) presented and tested a sim-
ilar idea. One of our innovations is to treat the
input text uniformly, without separating syntac-
tic levels (noun phrase, simple clause, compound
clause, paragraph and so on), to recognize that
the same concept can surface in different syntactic
forms. We let the user decide what structures are
interesting, and focus on the concepts behind these
structures. We use syntactic clues to decide which
structures interact and to label the interaction. The
user may specify the list of semantic relations that
best fit the domain and the application.

2 Related Work

One style of semantic analysis for knowledge ac-
quisition uses predefined templates, filled with
information from processed texts (Baker et al.,
1998). In other systems lexical resources are



specifically tailored to meet the requirements of
the domain (Rosario and Hearst, 2001) or of the
system (Gomez, 1998). Such systems extract
information from some types of syntactic units
(clauses – (Fillmore and Atkins, 1998), (Gildea
and Jurafsky, 2002), (Hull and Gomez, 1996);
noun-phrases – (Hull and Gomez, 1996), (Rosario
et al., 2002)). Lists of semantic relations are de-
signed to capture salient information from the do-
main.

An interesting approach has been tested in the
Rapid Knowledge Formation project. The goal
was to develop a system for domain experts to
build complex knowledge bases by combining
components: events, entities and modifiers (Clark
and Porter, 1997). The system's interface facili-
tates the expert's task of creating and manipulat-
ing structures representing domain concepts. De-
scriptions of relations between components come
from a relation dictionary; it includes interaction
between two events (e.g., causality), an event and
the entities involved (e.g., agent), an entity and an
event (e.g., capability), two entities (e.g., part), or
an event or entity and their properties (e.g., dura-
tion or size) (Fan et al., 2001). The relations come
from three syntactic levels (Barker, 1998).

In purely statistical approaches that traverse
corpora to establish connections between concepts
based on word collocations, the incidence of errors
is not negligible (Kilgarriff and Tugwell, 2001),
(Lin and Pantel, 2002), (Pantel and Lin, 2002).

In our system, user feedback will help produce
accurate results, and we will extract knowledge
tailored to the user's interests. The knowledge ac-
quisition systems that we have considered suggest
that in some domains relations between entities
are considered more important, e.g., in medicine
(Rosario and Hearst, 2001). In others it is impor-
tant to see how entities are related to an event, e.g.,
in legal texts (Baker et al., 1998). We are building
a customisable system that will focus on the struc-
tures of interest to a particular domain. We also
experiment with two different lists of relations, to
test the flexibility of the semantic analysis mod-
ule. The goal is to allow the user to plug in a list
of relations that describes the input text best.

3 Semantic Analysis

To get the grammatical structure of the input sen-
tence we need a parser, preferably one with good
coverage and detailed syntactic information. The
parse trees give us syntactic units, from which we
choose those of interest to the user. To pair units
we use simple structural information: if a unit is
directly embedded in another unit, we assume a
subordinate relation between the two; if the two
units are coordinate, we assume a coordinate re-
lation. These assumptions are safe if the parse is
correct: a modifier is subordinate to its head noun,
an argument to its head verb, and a clause perhaps
to the main clause in the sentence. If we conclude
that two units should interact, we seek an appropri-
ate semantic relation to describe this interaction.

3.1 Extracting Syntactic Units

The user can specify a list of syntactic structures of
interest. It must conform to the parser's grammar.
It will contain the relevant non-terminals. For ex-
ample, if the user is interested in entities and their
attributes, the list will contain non-terminals that
describe nouns, noun-phrases and their modifiers.
If the user is interested in events and the way they
interact, the list will contain non-terminals that de-
scribe clauses in the grammar. To simplify the in-
teraction, we let the user choose the corresponding
syntactic level (noun phrase, intra-clause or clause
level). To allow finer-grained distinctions we will
construct a tool that helps the user make a detailed
unit selection.

Each syntactic unit will be represented by the
uninflected form of its head word. For each unit
we also extract the head word's part of speech,
the syntactic role it plays in the sentence (subject,
object, noun modifier, etc.), the indicator of the
structure if one exists (the preposition for a prepo-
sitional complement, the subordinator for a subor-
dinate clause, etc.), and additional information if
available (tense, number, etc.).

3.2 Pairing Syntactic Units

After finding all syntactic structures of interest, we
traverse each structure to extract pairs that are con-
nected by a syntactic relation (modifier, argument,
subordinate clause). This means testing whether



one structure is embedded in another, or whether
they are on the same level, linked by a connective.

3.3 Semi-Automatic Assignment of Semantic
Relations to Pairs of Syntactic Units

3.3.1 Automatically Finding Suggestions for
Semantic Relations

Our system starts with a minimum of manually
encoded knowledge, and accumulates information
as it processes texts. This design idea was adopted
from TANKA (Barker et al., 1997). The manu-
ally encoded knowledge consists of a dictionary
of markers (subordinators, coordinators, preposi-
tions). These markers are closed-class words, so
not much effort is required to build such a re-
source. The system has the option to run without
these resources, in which case it will take longer
to start making good predictions.

We apply memory-based learning, so that in ev-
ery semantic label assignment the system uses ev-
ery previously processed example. This allows us
to find the best match (Daelemans et al., 1999).

Every stored example is a tuple with the struc-
ture:
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Figure 1 presents the distance metric between two
pairs of words.

The first option in our metric applies when a
pair containing the same words as the current pair
has already been tagged. The same two words
may be connected by different semantic relations,
if their attributes differ.
(1) When you look at a cloud in the sky ...
(2) Look at the sky above you.

In sentence (1) you is a subject, while in sen-
tence (2) it is a prepositional complement. The
two (look,you) pairs should be assigned different
relations (AGENT in (1) and DIRECTION in (2)).

If we constrain the system to match only pairs
of structures with the same attributes, generaliza-
tion to pairs from different syntactic levels will not

occur. The pairs (protest,student) from the sen-
tences:
(3) The students protested against tuition fee in-
crease.
(4) student protest against tuition fee increase
should both be assigned the AGENT relation, even
though their attributes are obviously different.

We choose to allow the system to match pairs
that do not have the same attributes, in order to let
it generalize. The downside is that occasionally
the metric will give inaccurate predictions.

When the words in two pairs L 
 and L � differ,
we consider the distance between L 
 and L � to be
0 if the networks of pairs centered on the heads
of L 
 and L � match. This idea was adopted from
Delisle et al. (1993) who applied it to verbs. We
extend it to nouns.

A network of pairs centered on
�

consists of
the collection of pairs from a sentence S, in which�

appears either as the main (head) element, ei-
ther as an argument (modifier). When we compute
the distance between two networks, we compute
the distance between pairs in the two networks.
Two pairs match if their modifiers have the same
syntactic role, and the same indicators. The best
match will give the minimum distance. We only
attempt to match networks centered on words with
the same part of speech. For the sentence:
(5) Weathermen watch the clouds day and night.,
the system builds the following network centered
on the predicate watch:
[watch, v, svo,
[weatherman,(sent,nil),(subj,nil),_],
[cloud,(sent, nil),(compl, nil),_],
[day_and_night,(sent,nil),(compl,nil),_]]

The system will extract, from previously stored
networks, those centered around verbs1 For
example, if sentence (6):
(6) Air pilots know that clouds can bring rain,
hail, sleet and snow.
were processed before sentence (5), the system
would find the following matching pattern:

[know, v, svo,
[_X,(sent,nil),(subj,nil),AGENT],
[_Y,(sent,nil),(compl,nil),OBJECT]]

According to the metric, the networks
match, and the pairs (watch,weatherman)

1If more detailed information is available, the system will
choose only networks associated with verbs that have the
same subcategorisation structure (svo,svoc, etc.).
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Figure 1: Distance metric used for memory-based learning

and (know, X) match, so the relation for pair
(know, X) is proposed as a possible relation for
pair (watch,weatherman) .

If no matching network has been found, the dis-
tance between two pairs is computed as the dis-
tance between the modifiers. The key information
is in particular the syntactic role and the indicator
(if it exists). Our system works with a dictionary
of indicators (prepositions, subordinators, coordi-
nators), which are semantic relation markers. One
indicator may signal more than one relation (e.g.
since may indicate a causal or a temporal relation).

After processing each sentence, the networks of
pairs around head words are compiled and stored.

4 Experiments

We need to compare our system with other knowl-
edge acquisition systems available. There are no
measures of time or precision that show how an
automatic or user-based system performs.

The system that is most similar to ours is the one
that we have started from, TANKA (Barker, 1998).
In order to compare the systems we will use the
same input data – a text on meteorological phe-
nomena (Larrick, 1961) – the same syntactic anal-
yser and the same evaluation measures. An exact
comparison is not possible, since the two systems
have different working paradigms. We will discuss
this in Section 5.

After running the system in a set-up that allows
us to compare it with TANKA, we run three more
experiments, designed to evaluate its performance
with a different list of semantic relations, and with

a different parser.

4.1 Parsers

We compare the performance of the system when
it uses different syntactic analysers. We first use
DIPETT (Delisle and Szpakowicz, 1995), a com-
prehensive English parser. After using the results
obtained to compare the system with TANKA, we
plug in different parsers.

We have looked at the Link Grammar Parser
(Temperley et al., 1998) and the Xerox Incremen-
tal Parser (XIP) (Chanod et al., 2004). While the
Link Grammar Parser is quite robust – it produces
a parse tree for every input – its parse trees are too
coarse-grained for the type of analysis that our
system does. For example, for the sentence:
(7) These tiny clouds are real clouds
LINK produces the following output:
[S But [NP these tiny clouds NP] [VP are

[NP real clouds NP] VP] . S]

We cannot extract modifier-noun relations from
this parse tree.

XIP on the other hand produces relatively de-
tailed parse trees. As a bonus for us, it also has the
option to extract dependencies, which reduces our
task of processing the parse tree looking for pairs.
For the sentence
(8) Clouds tell the story.
the parser extracts the following information
(apart from the parse tree):
DETD(story,the)

VDOMAIN(tell,tell)

VDOMAIN(cloud,cloud)



OBJ POST(tell,story)

MAIN(cloud)

HEAD(story,the story)

We adjust the system to work with this output,
without processing the parse tree.

The original TANKA system analysed three
syntactic levels: clause, intra-clause and noun-
phrase. For a better comparison with the new sys-
tem, the list of syntactic units will have to contain
structures from all these levels. The new system
does not distinguish syntactic levels, but treats all
structures the user wants uniformly. Table 1 shows
the list of syntactic units that we ask the system to
extract.

adj, adjectives
n, proper noun, nouns (common,

proper)
advs, adv clause,
simple adv clause,
pp adv,

adverbial modifiers
(simple adverbs,
adverbial clauses,
adverbial phrases)

entity, covers anything that
can be conceived of as
an entity

predicate, head of a verb phrase
statement, clause
simple sentence,
complex sentence

sentence (simple or
complex)

subord clauses,
head main clause,
next main clause

types of clauses (sub-
ordinate, main or
coordinate)

Table 1: List of syntactic units from DIPETT

In Table 2 we show the list of non-terminals that
describe the possible roles that each of the struc-
tures plays in a sentence.

XIP uses a much simpler grammar than
DIPETT. We use the dependencies it detects to ex-
tract the data. The dependencies of interest here
are presented in Table 3.

The dependency relations also give us informa-
tion about the syntactic roles that the words play
in a sentence. They are shown in Table 4.

4.2 Semantic Relations

The list of 47 semantic relations that we use com-
bines three separate lists used in (Barker et al.,

2The asterisk can be the empty string, or a string con-
taining other dependency information, for example PRE or
POST (it refers to the position of the modifier relative to the

head), PROGRESS (progressive verb), etc.

subj subject
complement complement
attrs attributes
adverbial adverbial
np postmodifiers
pre modif
post modif

modifiers of the noun
phrase

s qualifier sentence qualifier
rel clause
single main clause
head main clause
next main clause

type of clause

initial final
medial

type of subordinate
clause

ing clause
genitive ing clause
to infinitive clause

type of relative clause

Table 2: Possible syntactic roles in DIPETT

MAIN main element in the sentence
HEAD head of a phrase
VDOMAIN*2 head verb in a clause

Table 3: List of dependency relations from XIP

1997), one for each syntactic level that TANKA
analysed. The semantic relations included are gen-
eral, domain-independent.

Since the system is meant to be customisable,
we experiment with plugging in a different list.
This list contains 6 relations causal, temporal,
spatial, conjunctive, participant, quality.

5 Results

The input text consisted of 513 sentences.
When DIPETT was plugged in, the experiment

was performed by two judges (to make the assign-
ment of semantic relations more objective) in 5
sessions of approximately 3 hours each. The over-
all time spent on semantic relation assignment was
6 hours, 42 minutes and 52 seconds. We have used
the results collected from this run to automate the
system when we changed the list of semantic rela-
tions, and when we changed the parser to XIP. Be-
cause the alternative list of semantic relations we
used is a generalised version of the original list, a
simple mapping allowed us to change the results
collected and the marker dictionary file.

Neither DIPETT nor XIP produced a correct
parse for all trees. When a complete parse (cor-



NMOD* noun modifier
SUBJ* subject
OBJ* object
*COMPL* complement
VMOD* verb argument

Table 4: List of dependency relations that indicate
syntactic roles from XIP

rect or incorrect) was not possible, DIPETT pro-
duced fragmentary parses. The semantic analyser
extracted units even from tree fragments, although
sometimes the fragments were too small to let us
find pairs. XIP produces a parse tree for each input
sentence.

Since XIP and DIPETT did not always parse
correctly the same sentences, the pairs of concepts
extracted by XIP were cross-referenced with the
pairs tagged semi-automatically when DIPETT
was plugged in, and then manually checked. Pairs
obtained from XIP which were correctly identi-
fied, even if the parse was erroneous (wrong part
of speech, wrong phrase, etc.), were kept.

In the experiment with DIPETT, the semantic
analyser extracted a total of 2020 pairs, 555 of
which were discarded by the user in the dialogue
step. An example of an erroneous pair comes
from the sentence in example (9).
(9) Tiny clouds drift across like feathers on
parade.
The semantic analyser produces the pair
(drift,parade), because of an erroneous parse
tree, in which parade is parsed as a complement
of drift, instead of a post-modifier for feathers.
The correct pairing (feather,parade) will be
missing, because it cannot be inferred from the
parse tree.

XIP produced fewer correct parses than
DIPETT. Its errors come mostly from mistagging
words with part-of-speech information. For ex-
ample, clouds is tagged mostly as a verb, even
in structurally simple sentences. From the output
produced, we extracted 1153 pairs, 445 of which
were discarded.

Table 5 shows a summary of the results ob-
tained, for the two parsers and the two lists of se-
mantic relations (with 47 and 6 relations respec-
tively), and the number of each possible user ac-

tion (accept, choose, supply) during the memory-
based semantic analysis step.

The results in Table 5 and the plots in Figures 2
and 3 show how the system behaves in 4 con-
figurations: with two parsers (DIPETT and XIP),
and two lists of relations (47 and 6 respectively).
When the system works with the short list of rela-
tions it performs better for both parsers. Both lists
make the system perform better with DIPETT than
with XIP. This may be due to the amount of in-
formation that DIPETT provides, compared with
XIP. Also, the system runs faster with DIPETT,
when information about verb subcategorization al-
lows it to filter out many networks before trying
to match them. In each figure the x axis shows
the number of examples analysed, and the y axis
shows the cummulative number of user actions
(accept or choose versus supply). The plots show
that as more examples are analysed, the system
makes better suggestions.
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Figure 2: User action results for DIPETT
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Figure 3: User action results for XIP

For comparison of the TANKA and our sys-
tem, we present Figures 4 and 5. Figure 4 shows
the user action results for the intra-clause level
over the course of the experiment for the origi-
nal TANKA system. Our system does not differ-
entiate between syntactic levels, but based on the
structures corresponding to each pair we can de-
cide which syntactic level it pertains to. We have
separated the results obtained for pairs from the



Parser nr. of rels correct pairs accept choose supply
DIPETT 47 1465 30.7% (450) 27.3% (401) 41.9% (614)
DIPETT 6 1465 49%% (718) 24.6% (360) 26.5% (388)
XIP 47 708 27.5% (195) 20.3% (144) 52.1% (369)
XIP 6 708 37% (262) 21.1% (150) 41.8% (296)

Table 5: Summary of results

intra-clause level, and present them for compari-
son in Figure 5. The difference in the number of
examples tagged comes from the fact that TANKA
analyses the entire argument structure around the
verb in one step, while our system tags each (ar-
gument,verb) pair separately.
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Figure 4: Original TANKA: User action over time
for intra-clause level
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Figure 5: New system: Statistics for the intra-
clause level

We observe from these results that the new sys-
tem starts learning much earlier. The original

TANKA system processed half the input exam-
ples before the combined results of the accept and
choose user actions surpassed supply; the new sys-
tem obtains good results almost right away.

6 Evaluating the System's
Customisability

The system's code is grouped in two modules: a
module for extracting syntactic units and produc-
ing pairs, and a module for semantic analysis.

In order to allow a user to choose syntactic
structures once a parser is plugged in, no modifi-
cations are necessary. During processing, the sys-
tem automatically assigns a level label to the pair
(np for noun-modifier pairs, ic for verb-arguments
pairs, cl for pairs of clauses). The user can just set
a parameter to np, ic or cl to choose the level she
is interested in. For a more fine-grained selection,
the user can access a detailed list of non-terminals
used by the parser. When we do not have access
to the parser's grammar, a list of nonterminals can
be extracted from the parse trees produced. A tool
that performs this task is part of future work.

Plugging in a new syntactic parser has vari-
ous degrees of difficulty. If the structure of the
output it produces matches the one obtained with
DIPETT, no change is required in the code. Other-
wise, the system must be provided with a descrip-
tion of the grammar for the new parser. In the case
of XIP, the parser itself produces a list of depen-
dencies, so the system was adjusted to bypass the
tree processing stage, and its rules for finding syn-
tactic roles and extract indicators were modified.

Plugging in a different list of semantic relations
requires modifying one rule in the semantic anal-
ysis module (the rule simply lists the possible se-
mantic relations to be assigned) and, optionally,
modifying the dictionary containing 325 markers.
While the system will function without this dic-
tionary, its performance will drop since it needs



either indicators or previously tagged examples to
find semantic relations. In our experiments, we
have used a list of 6 relations that generalize the
original list of 47, so the dictionary change was
automatic; we manually built a hash table to indi-
cate the mapping between the two lists.

7 Conclusions

Having a human judge supervise the task of se-
mantic analysis produces accurate results, but the
time needed to spend on the task may be pro-
hibitively long. Also, the type of knowledge that
one wants to extract from a text, and the semantic
labels to assign to it may vary. We propose a semi-
automatic semantic analysis system, customisable
to the task at hand. It can use different syntactic
analysers, it will extract the syntactic units that the
user is interested in, and will tag them with the se-
mantic labels that are relevant for the domain of
the input text.

We have compared our system with a similar
endeavour. The results show that having a unified
approach to analysing text leads to better results,
in the form of faster learning. The learning that
the system performs is memory-based, in which
all examples previously analysed are used when
processing a new one.

Part of future work is to deploy the system on
the Web, so that it can be used for semantic analy-
sis with various configurations. Also, its learning
part could be refined using machine learning tools
and lexical resources.
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