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Abstract

We investigate the use of syntactically related pairs of words for the task of text classification.
The set of all pairs of syntactically related words should intuitively provide a better description of
what a document is about, than the set of proximity-based N-grams or selective syntactic phrases. We
generate syntactically related word pairs using a dependency parser. We experimented with Support
Vector Machines and Decision Tree learners on the 10 most frequent classes from the Reuters-21578
corpus. Results show that syntactically related pairs of words produce better results in terms of
accuracy and precision when used alone or combined with unigrams, compared to unigrams alone.

1 Introduction

Text classification is an active field of research in machine learning and is applied to domains as diverse
as spam detection [Drucker et al., 1999] and sentence selection for bioinformatics [Nedellec et al., 2003].
The most common representation method in this task is vector representation or bag of words [Sebastiani,
2002]. Values of features in this vector can be measures that summarize certain information about the
words appearing in a corpus, such as TF/IDF [Furnkranz et al., 1998], or they can be binary, indicating
whether or not a word is present in a document.

The motivation for finding alternative features is the fact that words by themselves cannot capture the gist
of a document. Several statistical and Natural Language Processing (NLP) inspired methods have been
researched in the past. We propose an alternative, consisting of syntactically related pairs, generated
using a dependency parser. Intuitively, the set of all syntactically related pairs should capture better what
the text is about than N-grams', also called statistical phrases in the Machine Learning (ML) field, or
syntactic phrases? that have been explored until now.

Syntactically related pairs are better than N-grams at capturing related concepts, and therefore less likely
to introduce noise>. It is an accepted view within NLP community that syntactically related words and

'N-grams are proximity-based sequences of words, obtained by sliding a window of size N over the text. Stop words may
have previously been removed.

2Syntactic phrases are usually constructed by selecting phrases that follow specific structures according to grammatical
rules.

3Noise from a language point of view — from the bigrams generated for the phrase “black large bear”, the bigram “black
large” is noisy, as the two words are not syntactically/semantically connected, as opposed to the word pair captured in the
bigram “large bear”.



phrases are expressions of semantically related concepts. This view is reflected for example in the fact
that among the first semantic relations researched were those between a verb and its arguments — which
are of course syntactically related [Fillmore, 1968]. By using syntactically related words we are thus
one step closer to a more semantic view of a document. Similar to N-grams, such pairs will cover
the entire document. The type of syntactic phrases most commonly used for text classification follow
specific syntactic patterns. The most commonly used are noun-phrases, as we will see in Section 2.
When selecting specific syntactic structures from a document, a large number of unwanted structures
are discarded. The omitted structures may contain relevant document information. Syntactically related
word pairs of the type we extract provide a more exhaustive text description than syntactic phrases.

We use an off-the-shelf dependency parser to obtain syntactically related word pairs from the Reuters-
21578 document collection. Dependency parsers have been in use for quite a while. MiniPar [Lin, 1998]
is one of the free dependency parsers in use. Dependency parsers find pairs of syntactically connected
words in a sentence. Building parse trees is possible, but optional, with such parsers. The advantages of
using a dependency parser are that we easily obtain pairs of syntactically related words.

In this paper we investigate whether this shallow semantic approach improves text classification results,
compared to the classic bag of words and bigrams approach. We discuss how one can use fast and
scalable dependency parsing to build a new representation for documents in a text classification task.
We applied these techniques to the Reuters-21578 text categorization collection*. We experimented with
classifying the 10 most frequent classes in the collection. We reproduce experiments with the bag of
words approach — unigrams and lemmatized unigrams — to provide a comparison baseline for dependency
pair experiments. We observe that representing documents in the Reuters collection using syntactically
related word pairs gives better results than the simple bag of words approach. We experiment with 8 sets
of features and two machine learning algorithms.

In Section 2 we provide some of the related research in this area. Section 3 is dedicated to details of
feature construction techniques we have employed. In Section 4 we present the experimental setup and
discuss the results. Detailed analysis of the data and the impact of the dependency relation representation
on the results obtained are discussed in Section 5. Our conclusions and future research direction can be
found in Section 6.

2 Related Work

The bag of words (BOW) approach provides a very simple and easy to build language model. Less than
perfect scores for text classification based on such a model show that BOW does not fully capture the
gist of a document. It is natural then that researchers are searching for alternative or complementary
representation methods. Inspiration has come from the field of statistics and NLP. N-grams and syntactic
phrases (mostly noun-phrases) have been intensively investigated for the task of automated text classi-
fication (ATC) and information retrieval (IR). More intensive knowledge based methods have also been
tried (see [Jacobs, 1992] for examples), but such methods are slower, and do not scale up with the size
of the collection. The overall usefulness of noun-phrases and statistical phrases for text classification is
still under debate.

Statistic phrases were shown to be better than noun phrases for IR [Fagan, 1987], while also being easier
to obtain. For both ATC and IR, Lewis and Croft [1990], Lewis [1992b] and Lewis [1992a] have not

*http://kdd.ics.uci.edu/databases/reuters2 1578/reuters21578.html



observed an improvement when noun phrases were used instead of words. Mitra et al. [1997] show
that using noun phrases leads to considerable improvement when words perform poorly, but they are not
useful when words alone perform well.

Furnkranz et al. [1998] study the use of linguistic phrases with particular syntactic patterns for the text
classification of web pages. These patterns are learned from the data by an extraction system. The
results show these features can improve the precision of the classifiers at the low recall end. Dumais et
al. [1998] and Scott and Matwin [1999] did not observe a significant improvement in classification on the
Reuters-21578 collection, when noun-phrases were used. Statistical phrases improve text classification
in some cases, according to Furnkranz [1998], Mladenic and Grobelnik [1998] and Caropreso et al.
[2001]. Caropreso et al. [2001] experiment with N-grams (unigrams and bigrams) for text classification.
An N-gram is considered to be a sequence of alphabetically ordered sequence of N consecutive words
in a sentence, after stop words are removed. Analysis of unigrams and bigrams is performed using
information gain, mutual information, 2 and other feature selection measures. While for these measures
bigrams score sometimes higher than unigrams, in actual text classification experiments, the results (in
terms of accuracy) do not improve significantly.

Dumais et al. [1998] test various classification techniques and feature selection methods on the Reuters-
21578 data set (the ModApte split). The best results are obtained for SVM on a representation using
a unigram-based feature set, selected using Mutual Information. They achieve a 92.0% BEP on the 10
most frequent categories of Reuters. This is the best classification result on the Reuter’s 10 most frequent
classes that we found in the literature.

Shapire and Singer [1998] and Weiss et al. [1999] use boosting algorithms with decision stumps and
decision trees respectively to achieve 86% BEP on all Reuters categories, and 87.8% respectively, on the
95 largest categories (the ModApte split).

Structure of the categorized texts — document title, headings — has also provided features that are often
more informative than features extracted from the body of a document [Furnkranz, 1999].

Within the field of NLP, we find similar work on finding ways to represent the topic of a text. Lin and
Hovy [2000] present a first method to extract topic signatures, which are similar to the bag of word
representations. The words are filtered based on frequency analysis in a set of relevant and a set of
irrelevant documents. Harabagiu [2004] takes this one step further and uses relations extracted from
texts - which are (syntactic relation, wordy, words) tuples — extracted using a syntactic parser, and based
on the words from the (Lin and Hovy’s) topic signatures. This analysis is used to find salient relation
tuples for the expansion of questions in a question answering system [Harabagiu et al., 2006], and the
expansion of topics in a topic-driven summarization system [Harabagiu et al., 2007].

The approach we present also makes use of the syntactic analysis of texts. We process texts using a
dependency parser, extract all syntactically related word pairs, and select the most discriminating ones
based on feature analysis. We use only features extracted from the body of the documents. The data sets
obtained for the 8 feature sets generated are processed using SVM light> and C5.0°.

>http://svmlight joachim.org
Shttp://www.rulequest.com



3 Data representation

We test the usefulness of syntactically related word pairs to the task of text classification. Using freely
available dependency parsers, syntactically related word pairs are easy to obtain, are less noisy than
bigrams, and provide a more complete document description than statistic and syntactic phrases. We use
the MiniPar dependency parser [Lin, 1998] to obtain a first approximation for our representation, which
we then post-process as described in Section 3.1.

We compare the results obtained using two word-pair representations (one containing syntactic relation
information between the words in a pair, the other not) with results obtained using unigrams and lemma-
tized unigrams, and pairwise combinations of these four feature sets.

In this section we describe in detail how the representations used were obtained.

A few considerations apply for all feature sets. All features used are binary, where a value of 1 means
the feature was present in the document and O means it was not. We use the subset of 10 most frequent
categories from the Reuters-21578 collection, with the ModApte split. The ModApte split designates
specific documents for training and testing for each class in the collection. The data set on which the
experiments are performed is obtained after several steps of filtering and processing, as follows:

1. Filter out documents that contain no text, or do not belong to one of the 10 most frequent classes;

2. Parse the body of the text with MiniPar, post-process, and collect word dependency pairs as fea-
tures (no title or structural information is used);

3. Filter out features that do not appear in at least 2 documents;

4. Filter out documents that have an all 0 representation vector.

From the final set of documents and their corresponding features we generate the 8 datasets we experi-
ment with. The training and testing sets are processed separately. The feature sets are derived from the
analysis of the training corpus and then used to generate both the training and testing sets. The testing
sets are not filtered. Table 1 shows the distribution of the positive class in the training and testing sets for
each of the 10 classes considered. There are 5912 examples in the training set after filtering, and 2312
examples in the testing set.

3.1 Syntactically related word pairs representation

To be able to run MiniPar on the Reuters data collection, we split each document into individual sen-
tences, using end of sentence punctuation and heuristics to avoid interpreting abbreviations as sentence
terminators. The sentences are put one per line, and the file containing all sentences is read and processed
by MiniPar using the lemmatizing and dependency pair generating options.

A dependency pair is a pair of grammatically related words: the main verbs in two connected clauses,
a verb and each of its arguments, a noun and each of its modifiers. Some particularities of dependency
grammars make necessary a post-processing step. We exemplify this thourgh a sample parse generated
by MiniPar for the sentence:

Faris is the capital of France.



Class Training set Test set
examples (% positive) | examples (% positive)
acq 1489 (25.17%) 644 (27.85%)
corn 160 (2.70%) 48 (2.08%)
crude 353 (5.97%) 164 (7.09%)
earn 2692 (45.50%) 1036 (44.8%)
grain 399 (6.74%) 134 (5.80%)
interest 290 (4.90%) 100 (4.33%)
money-fx | 462 (7.81%) 141 (6.10%)
ship 194 (3.28%) 87 (3.76%)
trade 339 (5.73%) 113 (4.89%)
wheat 199 (3.36%) 66 (2.85%)
Table 1: Positive class distributions

fin C:i:VBE be

be VBE:s:N Paris

be VBE:pred:N capital

capital N:subj:N Paris

capital N:det:Det the

capital N:mod:Prep of

of Prep:pcomp-n:N  France

The parser output shows the dependency related words, their parts of speech, and the syntactic relation
between them. fin is an internal symbol, which connects to the main verb of the sentence. It is interesting
to notice that when the main verb of the sentence is be, MiniPar will consider the predicate to consist
of be and the verb complement, and it will connect the subject with the complement, bypassing the verb
(capital N:subj:N Paris). This is a good feature, as it generates the same pair when a modifier appears
as the modifier of the noun, or as complement of the verb be. For example, the expressions interesting
paper and the paper is interesting will result in the same pair paper N:mod:Adj interesting.

The above parse also shows why we need a post-processing step:

capital N:mod:Prep of
of Prep:pcomp-n:N  France

First, we filter out pairs in which one of the elements is a MiniPar internal symbol, or a closed class word
— for example, determiner (but not prepositions or coordinators, subordinators). Second, we compress
two or more pairs through a “connective bypassing” process, as we show below, such that we obtain
only pairs containing open-class words (nouns, verbs, adjectives and adverbs). In the example above,
we combine the two tuples to produce the dependency (of,capital, France). This type of compression is
performed for pairs containing prepositions and clause subordinators and coordinators.

We generate two representations based on dependency pairs: one that contains information about the
syntactic relation or connective between the words, and one that does not. The purpose is to verify if
further compression can be obtained by disregarding the syntactic relation (as the same two words may
co-occur in different syntactic configurations) and if this omission affects text classification results.

The processing described above produces a dependency pair feature set of 187836 elements when syn-
tactic relations are present (we call it DRY — Dependencies & Relation Yes), and feature set of 170366



Class DRN DRY | U UL
acq 7617 7430 | 1130 947
corn 4156 4024 | 1132 949
crude 4235 4025 | 1189 1050
earn 4314 4988 | 1132 911
grain 5843 5376 | 1130 914
interest 4525 4360 | 1130 912
money-fx | 4745 4967 | 1321 936
ship 4172 4041 | 1130 914
trade 4208 4410 | 1130 910
wheat 4346 4035 | 1264 913

Table 2: Number of features for the 4 representations, per class

elements when the syntactic relation is omitted (DRN). After filtering from both sets features that do not
appear in at least two documents, DRY will have 40159 elements and DRN 41431.

3.2 Unigram representation

The baseline representation to beat in document classification has been for quite a while the bag of
words model. In order to compare the results of the dependency pair representation with the unigram
model, there are two options: compare with results previously published in the literature, or perform
the experiments anew. As we have shown in Section 3, in order to perform experiments using word
dependencies we must perform several document filtering steps. This leads us to a different collection
than used in other research, on which previous results have not been published. We are therefore forced
to resort to the second alternative — reproduce bag of words experiments on the collection.

We create two bag of words representations: words/unigrams (U) as they appear in text — 19918 features
— and unigrams lemmatized (UL) — 16461 features. After filtering out features that appear in only one
document, we obtain a set of 11307 unigrams, and 9101 lemmatized unigrams.

We do not explicitly eliminate stop words. Instead, we filter out later in the process unigrams with low
information gain score. This step filters out many of the closed class words (determiners, prepositions,
pronouns, etc.) which are commonly part of the stop words list.

3.3 Generating datasets

The training and testing sets are represented using the four sets of features U, UL, DRY and DRN.
Because the feature sets are large, they are filtered using information gain (IG)[Manning and Schiitze,
1999].

The final feature sets consist of 10% of the features with the highest IG values. Because more than
one feature may have an IG value equal to the cut-off point, the feature subsets may contain slightly
more than the intended top 10% of features. Table 2 shows the number of features for each class and
representation type. We create for each feature set 10 binary classification file sets (training and testing),
corresponding to the 10 most frequent classes in the collection.



In order to investigate the potential of dependency relations not only as alternative, but also as comple-
mentary to unigrams, we generate four additional feature sets by combining each of the dependency rela-
tion (word pair) feature sets with each of the unigram-based sets (DRN-U, DRY-U, DRN-UL, DRY-UL).
The training and testing data sets are generated by simple concatenation of the source feature vectors
representing each example.

4 Experiments

We perform classification experiments for the 10 most frequent classes in the Reuters 21578 document
collection, using 8 feature sets and two machine learning tools: C5.0 and SVM light. C5.0 was used with
the default options, and SVM light used linear kernel, the other parameters set to their default values.
The performance of the two ML tools was similar, as shown in Tables 3 — 6. SVM performed slightly
better in terms of accuracy and precision.

Independent of the learning algorithm, the best average accuracy was obtained for the data represented
using syntactically related pairs. Omitting the syntactic relation leads to a slight loss in accuracy. These
two representations also have the best precision in classifying the positive class, although they also have
the lowest recall. Lemmatized unigrams perform the worst in terms of accuracy, but when combined
with word dependency pairs the performance improves, although not to the level of word pairs alone. In
terms of per-class scores, a representation using dependency relations produced better F1-score results
than unigrams and unigrams lemmatized. For 9 out of 10 classes, a representation using dependency
relations produced equal or better accuracy results than unigrams and unigrams lemmatized.

It is interesting to notice that, as hypothesized, when we use dependency relations by themselves, both
C5.0 and SVM light classifiers produce the results with the best precision, while unigrams and unigrams
lemmatized have the best recall. This follows the intuition that, compared to words (unigrams), syntacti-
cally related word pairs produce a document topic representation which is one step closer to a semantic
representation. Unigrams, on the other hand, have a broader coverage than word pairs do, so we are able
to find more of the documents in the same topic, though at the cost of precision.

Combining feature sets brings up more interesting avenues to explore. While for most classes, a combi-
nation of unigrams and word pairs leads to better accuracy, there is no feature set that clearly outperforms
others. There are several approaches to try at this point: feature selection on the combined sets — although
filtered, the feature sets that represent the data are quite large, and in a combined set the size increases
further; ansambles — find a way to combine classifiers to obtain a performance better than individual
classifiers by themselves.

S Data analysis

As mentioned in the introduction, the experiments with unigrams and lemmatized unigrams were per-
formed to provide a comparison baseline for the performance of dependency pairs for the text classifica-
tion task. The reason a published result could not be used for comparison is the data filtering process we
had to perform (detailed in Section 3), which lead to a subset of the 10 most frequent classes from the
Reuters-21578 collection different than what was used in previously published work.

We performed data analysis, to get a better understanding of the characteristics of the texts in the Reuters-
21578 collection, and the impact of these characteristics on the results obtained.



Individual feature sets

DRN DRY U UL
Class
P R P R P R P R
acq 415 23.14 | 56.77 2733 | 37.48 8898 | 3644 91.77
corn 1.65 833 8.7 8.33 0 0 3.1 50
crude 25.64 1829 | 21.82 439 17 52.44 | 10.18 72.56
earn 1525 6.76 | 1502 3.67 | 21.89 2635 | 1233 5.31
grain 6.55 14.18 | 31.19 2537 | 647 9.7 9.68  24.63
interest 15.87 20 32.35 22 5.68 76 7.79 74
money-fx 4797 4184 | 26.04 17.73 | 992 71.63 | 593 6596
ship 1.98 4.6 6.71 1149 | 633 3333 | 407 48.28
trade 1224 2124 | 939 1504 | 10.18 69.03 | 932  80.53
wheat 11.63 15.15 | 2.04 3.03 0 0 1.43 1.52
micro Avg. | 17.68 1536 | 2439 1579 | 17.38 48.53 | 12.55 4433
macro Avg. | 18.03 1735 | 21.00 17.79 | 11.50 42.75 | 10.03 51.46
Combined feature sets
Class U_DRN U_DRY UL_DRN UL_DRY
P R P R P R P R
acq 4135 809 | 40.83 79.19 | 36.58 9457 | 37.02 95.03
corn 0 0 0 0 311 52,08 | 311 52.08
crude 1338 5793 | 13.76 6098 | 10.7 61.59 | 943  60.98
earn 3513 51.64 | 22.63 2828 | 1248 695 | 1349 11.68
grain 384 403 | 389 3955 | 1.74 1418 | 7.61 15.67
interest 8.28 28 7.57 69 10.65 33 18.29 30
money-fx 14.08 75.18 | 11.47 8298 | 15.04 5035 | 1516 29.79
ship 713 3678 | 6.19 31.03 | 393 4713 | 3.84 4253
trade 11.16 69.03 | 16.16 6991 | 947 62.83 | 9.64 50.44
wheat 0 0 0 0 0 0 0 0
micro Avg. | 20.29 57.20 | 16.65 49.27 | 13.60 41.14 | 15.62 41.26
macro Avg. | 13.44 4398 | 12.25 46.09 | 1037 4227 | 11.76  38.82
Table 3: Precision and recall obtained using C5.0
Class DRN DRY U UL UDRN UDRY ULDRN ULDRY
acq 69.5 74 556  53.1 62.7 62.2 52.8 53.6
corn 878 963 977  66.6 97.7 97.7 65.3 65.3
crude 904 849 785 526 70.4 70.1 60.8 55.7
earn 414 475 249 407 35.6 245 36.5 26.9
grain 83.3 92.4 86.6 82.3 38.1 39.8 48.6 84.1
interest 92 94.6 444 61 83.5 62.2 85.1 91.2
money-fx 937 919 586 341 70.5 59.9 79.6 85.6
ship 87.8 90.7 78.9 55.3 79.6 79.7 54.7 57.7
trade 887 888 687 608 71.6 80.8 68.8 74.5
wheat 943  93.1 97.1 942 97.1 97.1 97 97
micro Avg. | 8290 8540 69.10 60.10 | 70.70 67.40 64.90 69.20
macro Avg. | 82.89 8542 69.10 60.07 | 70.68 67.40 64.92 69.16

Table 4: Accuracy obtained using C5.0



Individual feature sets

DRN DRY U UL
Class
P R P R P R P R

acq 52.1 9.63 | 48.66 14.13 | 8091 2.8 25.75 13.35

corn 25 833 | 3333 4.17 | 833 417 | 268 3542

crude 7179 17.07 | 83.33 122 | 2535 439 | 17.83 50

earn 10.69 1.64 | 4356 6.85 | 48.89 2.12 | 4488 8.88

grain 2525 18.66 | 26.19 1642 | 1239 209 | 6.13 746

interest 66.67 8 62.5 10 14.93 10 14.69 31

money-fx 62.71 2624 | 6842 18.44 | 26.37 37.59 | 16.85 32.62

ship 6.9 23 | 1111 46 9.17 8276 | 6.67 82.76

trade 68 15.04 | 66.67 1239 | 29.46 33.63 | 24.01 64.6

wheat 13.04 4.55 9.09 1.52 | 1429 152 | 11.11 1.52

micro Avg. 35 8.01 | 4454 10.30 | 16.04 1248 | 13.89 20.13

macro Avg. | 40.21 11.14 | 45.28 10.07 | 19.81 23.94 | 17.06 32.76

Combined feature sets

Class U_DRN U_DRY UL_DRN UL_DRY

P R P R P R P R

acq 21.34 839 | 1948 8.07 | 531 093 | 446 0.78

corn 3.05 2083 | 255 18.75 0 0 0 0

crude 2351 40.85 | 22.86 39.02 | 28.08 34.76 | 27.92 33.54

earn 4184 792 | 41.67 8.2 4792 222 | 4792 222

grain 8 746 | 6.06 597 | 13.64 11.19 | 14.04 11.94

interest 26.92 14 29.82 17 31.25 5 31.25 5

money-fx 33.03 25.53 | 32.04 234 | 45.05 29.08 | 47.83 234

ship 7.85 7356 | 7.82 77.01 | 11.54 65.52 | 12.01 73.56

trade 28.43 49.56 | 2842 4779 | 2742 15.04 | 26.67 177

wheat 0 0 0 0 50 1.52 25 1.52

micro Avg. | 1656 15.52 | 15.87 1536 | 19.34 876 | 1889 8.76

macro Avg. | 19.39 24.81 | 19.07 2452 | 26.02 16.52 | 23.71 16.96

Table 5: Precision and recall obtained using SVM Light

Class DRN DRY U UL UDRN UDRY ULDRN ULDRY
acq 7236 7193 6497  65.14 67.78 67.73 65.87 65.1
corn 97.58 97.84 97.06 71.97 97.53 97.62 84.6 83.43
crude 93.64 936  86.85 80.1 89.06 89.14 86.38 86.33
earn 49.78 5428 5515  54.28 55.1 55.1 53.81 53.72
grain 92.08 9247 86.85 88.02 90.74 90.66 89.66 89.19
interest 9585 9585 93.64  89.23 95.42 95.42 94.64 94.68
money-fx 9455 9451 89.79  86.07 93.51 93.77 923 92.3
ship 9516 95.03 68.51 55.8 79.8 78.72 66.52 64.97
trade 955 9542 92.82  88.28 93.9 93.6 91.44 91.57
wheat 96.41 9676 9693  96.84 97.15 97.06 96.58 96.8
micro Avg. | 8829 8877 8326  77.57 86.00 85.88 82.18 81.81
macro Avg. | 88.291 88.77 83.257 77.573 | 85.99 85.882 82.18 81.809

Table 6: Accuracy obtained using SVM Light



Class Avg. length | Avg.  # | Avg. per-
non-zero | centage
features

acq 132.22 22.35 0.29%
corn 208.17 42.35 1.01%
crude 236.73 40.26 0.95%
earn 78.80 9.91 0.22%
grain 187.15 33.16 0.56%
interest | 180.71 40.99 0.99%
money-fx | 208.4 39.63 0.83%
ship 170.27 36 0.86%
trade 265.11 44.46 1.05%

wheat 184.11 37.42 0.86%

Table 7: Document statistics and feature counts information for DRN representation on the training set.

One of the classes with low F-score and Accuracy is earn, despite the fact that the class is the most
balanced (40%+ positive instances in both the training and testing sets). Analysis of the texts in this class
shows an average document length (in tokens) of 78.8 in the training set, out of which 67.91 words, and
62.12 in the testing set, with 50.08 words on average. This class contains most documents consisting
of tables (62% of the earn instances in the training set, and 81% in the test set). Having a feature that
indicates if a document consists of a table will lead to good predictions, but the feature is idiosyncratic,
and it does not describe the semantic content of the document.

From such structured documents, the parser will not be able to produce informative word pairs. The
average number of pairs for this class is a mere 9.91 (DRY) and 7.49 (DRN) for training, and 9.30 (DRY)
and 7.08 (DRN) for the testing sets. These numbers correspond to less than 0.22% of the word-pair based
feature vector length.

In order to obtain a more global view of the impact of text characteristics on learning performance, we
look at two factors: average text lengths and average number of non-zero valued features in the repre-
sentation of the documents. Table 7 shows the average document length and average vector sparseness
(absolute and percentage) for each of the 10 classes we experimented with, the dependency-based DRN
representation for the training set. We observe a high correlation (0.91) between document length and
number of word-pair features extracted’. The plots connect points corresponding to the sparseness in-
formation and F-scores respectively. Although the individual points bare no relation to each other, we
connect them to emphasize that an increase in vector coverage is closely mirrorred in many cases in an
increase in F-score.

Figures 1 and 2 plot the average number of features and the F1-scores per class for the representation
using dependency pair with no relation information (DRN), and for the unigram (U) representation re-
spectively.

The classes are ordered on the x-axis in the increasing order of the percentage of positive instances in
the training (and testing) sets. From inspecting the graphs we observe a strong correlation between the
vector coverage for the DRN representation with the SVM Fl1-scores (0.96 correlation for the training
set, 0.64 for testing).

"Feature counts were computed on the datasets generated after InfoGain filtering of features. When the full set of features
is considered, the correlation remains.
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Figure 2: Vector sparseness and F1-scores for U representation

This seems to indicate that a sparser feature vector, caused also by text structure and limited length, leads
to poorer F1-scores with SVM, than when the vector is less sparse.

6 Conclusions

Based on the results produced with two classification algorithms and the data analysis, we conclude that
dependency pairs produce a representation that gives better results for text classification on the 10 most
frequent classes of the Reuters-21578 corpus, in terms of precision and accuracy. We plan to investigate a
range of experimental parameters such as feature selection methods (such as Mutual Information, shown
to perform well on the Reuters-21578 collection [Dumais et al., 1998; Joachim, 1998]) and performance
assessment techniques — such as break even point, ROC graphs. We plan to experiment with other types
of combined representation — using both syntactically motivated word pairs and unigrams — in which the
feature selection is performed on the aggregated set of features, as opposed to combining the features for
unigrams and syntactic pairs after feature selection.

Most of the documents in the Reuters-21578 collection are short, many of them consist solely of a table.
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We expect to observe a more dramatic improvement in text classification using syntactically related word
pairs for a different style of texts. We plan to verify this by applying the feature construction techniques
described in the paper to other corpora, and assess their impact on classification performance.

We have seen that there is no clear winner from the two learning algorithms we have used. We plan
to explore using other learning paradigms, and to test whether based on text characteristics — document
length in tokens, number of features (unigrams and word pairs) — we can perform “meta-learning” — can
we learn how to choose the type of learning algorithm that would work best.
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