
Analysis of the Impact of Negative Sampling
on Link Prediction in Knowledge Graphs

Bhushan Kotnis and Vivi Nastase
Institute for Computational Linguistics,

University of Heidelberg
Heidelberg, Germany

{kotnis,nastase}@cl.uni-heidelberg.de

ABSTRACT

Knowledge graphs are large, useful, but incomplete knowledge
repositories. They encode knowledge through entities and relations
which define each other through the connective structure of the
graph. This has inspired methods for the joint embedding of en-
tities and relations in continuous low-dimensional vector spaces,
that can be used to induce new edges in the graph, i.e., link pre-
diction in knowledge graphs. Learning these representations relies
on contrasting positive instances with negative ones. Knowledge
graphs include only positive relation instances, leaving the door
open for a variety of methods for selecting negative examples. We
present an empirical study on the impact of negative sampling on
the learned embeddings, assessed through the task of link predic-
tion. We use state-of-the-art knowledge graph embedding methods
– Rescal , TransE, DistMult and ComplEX – and evaluate on bench-
mark datasets – FB15k and WN18. We compare well known meth-
ods for negative sampling and propose two new embedding based
sampling methods. We note a marked difference in the impact of
these sampling methods on the two datasets, with the "traditional"
corrupting positives method leading to best results on WN18, while
embedding based methods benefit FB15k.

CCS CONCEPTS

• Information systems→ Question answering; Retrieval tasks
and goals; Information retrieval;

KEYWORDS

knowledge graphs, negative sampling, embedding models, link
prediction

ACM Reference Format:

Bhushan Kotnis and Vivi Nastase. 2018. Analysis of the Impact of Negative
Sampling on Link Prediction in Knowledge Graphs. In Proceedings of Work-
shop on Knowledge Base Construction, Reasoning and Mining (KBCOM’18).
ACM,NewYork, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Much of human knowledge can be formalized in terms of real
world entities, abstract concepts, categories and the relations be-
tween them. A graph structure – a knowledge graph (KG) – is a
natural candidate for representing this. NELL [5], Freebase [3] and
YAGO [25] are examples of large knowledge graphs that contain
millions of entities and facts. Facts are represented as triples, each

KBCOM’18, Feb 2018, Los Angeles, California USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

consisting of two entities connected by a binary relation, e.g., (con-
cept:city:London, relation:country_capital, concept:country:UK). Here
entities such as London and UK are represented as nodes and the
relation country_capital is represented as a binary link that con-
nects these nodes. The same two nodes may be connected by more
than one type of relation, making the KG a multi-graph. KGs have
found applications in question answering systems [15], evaluating
trustworthiness of web content [8], and web search [7].

Although KGs such as Freebase consist of millions of entities
and billions of facts, they are still incomplete [28] which limits
their application. However, it is possible to infer new (missing)
facts from known facts. Recently, latent factor models that capture
global patterns from the KG have received considerable attention.
They learn a representation of the graph in a continuous vector
space by inducing embeddings that capture the graph structure.

Predicting new edges to automatically add new facts to a KG
helps bypass the text analysis stage and bootstrap new knowledge
based on what is already captured in the KG. Similar to other prob-
lems in processing natural language, such as parsing, data consists
(almost) exclusively of positive instances. A solution to this issue
is using implicit negative evidence, whereby instances that have
not been observed are considered negatives, and are used for con-
trastive estimation [23], where the aim is to rank observed instances
higher than negative (unobserved) ones. Negative instances can be
generated using a variety of methods.

In this article we present the results of our investigation on the
impact of several negative sampling methods on state-of-the-art
knowledge graph embedding models. Additionally we propose two
negative sampling strategies for fine tuning the model. Understand-
ing the impact of negative instance sampling will have at least
two uses: providing the basis for choosing the negative sampling
method to build the best model for a given method, and allowing us
to place in the right context results reported in the literature that
were produced while using different negative sampling methods.

2 LINK PREDICTION IN KNOWLEDGE

GRAPHS

Knowledge graphs KG = (E,R) contain knowledge in the form of
relation triples (s, r , t), where s, t ∈ E are entities, and r ∈ R is a
relation. These knowledge graphs are not complete, and additional
links (facts) can be inferred, based on the idea that similar nodes
have similar relations – e.g. all countries have a capital city.

The KG can be encoded using different modeling techniques,
which results in encodings for both the entities and the relations.
A variety of techniques have been proposed [4, 14, 20, 21, 24, 29].
These methods learn a model for the processed KG as a large set

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

KBCOM’18, Feb 2018, Los Angeles, California USA Bhushan Kotnis and Vivi Nastase

of parameters, induced based on optimizing a loss function with
respect to positive and negative instances of links representing
different relations. Methods such as Rescal [21] and Neural Tensor
Networks [24] learn millions of parameters that makes them more
flexible, enabling them to model well a variety of relations, but
at the cost of increased computational complexity and potential
overfitting. TransE [4], DistMult [29] learn simpler models (with far
fewer parameters) and are easier to train but are unable to model
certain types of relations such as many-to-one (TransE) and asym-
metric relations (DistMult). Recent work such as [20] achieve the
modeling power of Rescal with a smaller number of parameters
by compressing the tensor product. Complex valued embeddings
(ComplEx) [27] extend the DistMult to model antisymmetric rela-
tions by using complex valued embeddings.

[12] showed that most latent factor models can be modified to
learn from paths rather than individual triples which improves
performance. Recurrent Neural Networks that learn path represen-
tations have also been used for link prediction [6, 18]. All these
models require negative samples during training.

We focus our analysis on four state-of-the-art methods with
respect to link prediction in knowledge graphs: ComplEx, DistMult,
Rescal , TransE. ComplEx performs as well as the Holographic
Embedding (HolE) model, so HolE was not included1.

2.1 Rescal

The Rescal model [21, 22] weighs the interaction of all pairwise
latent factors between the source and target entity for predicting
a relation. It represents every entity as a d dimensional vector
(x ∈ Rd), and every relation as a d × d matrixW ∈ Rd×d . This
model represents the triple (s, r , t) as a score given by

sc (s, r , t) = xTs Wr xt

These vectors and matrices are learned using a loss function that
contrasts the score of a correct triple to incorrect ones. Commonly
used loss functions include cross-entropy loss [26], binary negative
log likelihood [27], and max-margin loss [12, 20] which we use
here:

L(θ) =
N∑
i

∑
t ′∈N (t)

[1 − sci + s ′ci]
+ (1)

sci = sc (si , ri , ti) and s
′
ci = sc (si , ri , t

′
i). N (t) is the set of incorrect

targets. Similar triples are used where the relation and target are
shared, but the source entity is incorrect.

2.2 TransE

TransE [4] interprets relations as a translation operation from the
source to the target mediated by the relation. More specifically, it
embeds a triple spatially such that the source vector can travel to
the target vector through the relation vector, i.e., xs + xr ≈ xt . The
scoring function sc (s, r , t) for TransE is given by

sc (s, r , t) = −d(xs + xr − xt)

1And also because HolE is very similar to ComplEx. This was verified through personal
correspondence with an author of the ComplEx paper.

where xs , xr , xt are d dimensional vectors, and d(x) is either the
L1 or L2-norm of x . We use TransE with L2-norm. For learning
embeddings, we use max-margin loss (1).

Compared to Rescal , TransE has much fewer parameters, but
it is more limited in the variety of relations it can model, as the
translation operation assumes 1 : 1 relations.

2.3 DistMult

DistMult [29] is a special case of the Rescal model, where the
relation matrix is assumed to be diagonal. This results in a sparse
relation matrix and consequently fewer parameters. However this
simplicity results in the reduction of modeling power. The DistMult
model is symmetric and hence can only model symmetric relations.
However, DistMult performs well on FB15K benchmark dataset,
since the test data contains only a few instances of asymmetric
triples. The DistMult scoring function is given by

sc (s, r , t) = xTs Diag(Wr) xt
This can also be written as a three way inner product

sc (s, r , t) = ⟨xs ,xr ,xt ⟩

where ⟨xs ,xr ,xt ⟩ =
∑
i xsi xri xti andxr = Diag(Wr) andxs ,xr ,xt ∈

Rd . As before we use the margin loss (1) for learning these vectors.

2.4 ComplEx

The ComplEx model [27] performs sparse tensor factorization of
the KG in the complex domain. Nodes and relations are modeled by
d dimensional vectors with a real and imaginary part (Re(x), Im(x)).
This allows ComplEx to model anti-symmetric relations since the
three way dot product (inner product) in the complex domain is
not symmetric. ComplEx can be seen as DistMult with complex
embeddings. The score function of ComplEx is given by:

sc (s, r , t) = Re(⟨xs ,xr , x̄t ⟩)
= ⟨Re(xs),Re(xr),Re(xt)⟩ + ⟨Im(xs),Re(xr), Im(xt)⟩
+ ⟨Re(xs), Im(xr), Im(xt)⟩ − ⟨Im(xs), Im(xr),Re(xt)⟩

[27] trained ComplEx with negative log-likelihood. To maintain the
same experimental conditions for assessing the efficacy of negative
sampling, we train ComplEx with max margin loss (1).

3 NEGATIVE SAMPLING

Knowledge Graphs capture knowledge as <entity, relation, entity>
triples, with entities mapped to nodes, and relations to edges. KGs
contain only positive instances. While one-class classification so-
lutions have been around for some time [17], for inducing KG
embeddings, using negative instances leads to better models.

Negative instances are not marked in a knowledge graph. The
task of link prediction has much in common with other tasks in
NLP where (most of) the observed data consists of positive in-
stances. [23] proposed contrastive estimation, whereby instances
that were produced by perturbing the observed ones (and that them-
selves have not been observed) will serve as negative instances, and
the aim is to rank observed instances higher than the unobserved
("negative") ones. In neural probabilistic language models, negative
sampling was first proposed in [1] as importance sampling. A sam-
pling solution that was more stable than importance sampling was

Analysis of the Impact of Negative Sampling
on Link Prediction in Knowledge Graphs KBCOM’18, Feb 2018, Los Angeles, California USA

introduced by [16], who built upon the noise-contrastive estima-
tion [10]. In these approaches negative samples are drawn from a
non-parametric noise distribution.

For knowledge graphs in particular there are many different
ways to produce negative instances based on the graph structure.
We present an overview of techniques for producing negative in-
stances from a knowledge graph, and we evaluate their impact on
knowledge graph completion, or link prediction.

3.1 Random sampling : R

The simplest form of sampling negative instances is to assume
a closed world hypothesis and consider any triple that does not
appear in the KG as a negative instance. Let

K = K+ = {(si , ri , ti)|yi = 1; i = 1, 2, · · · ,N }
denote the complete knowledge graph, where yi = 1 represents
the presence of a triple (si , ri , ti) (a positive instance) and yi = 0
represents absence. According to the closed world assumption, the
set of negatives K− is given by

K− = {(si , ri , ti)|yi = 0; i = 1, 2, · · · ,N }
Since the KG is incomplete this set contains positive triples not

present in the KG. Furthermore this set might be very large because
the incorrect facts (O(N 2)) far outnumber the correct ones.

A simple solution to the scalability problem is randomly sam-
pling a small number of samples from K−. Given a positive triple
(s, r , t) we generate ns negative triples by sampling ns target en-
tities from the entity set E. Since the sampling is random, we do
not check whether the sampled triples are present in the train and
development set, because the probability they are present in K+ is
negligible. The same procedure is used to generate negative source
entities.

The negatives produced by random sampling may not be very
useful: for the positive triple (Tom_Cruise, starred_in, Top_Gun),
negative targets such as London or Mount_Everest seem irrelevant.
Relevant negative targets should include entities that are movies,
such as Terminator, Inception. To obtain such negatives it is neces-
sary to constrain the set of entities from which samples are drawn.
We explore such constraints in the following sections.

3.2 Corrupting positive instances : C

We use a method described in [24] that generates negative instances
by corrupting positive instances: for every relation r , Socher et al.
[24] collect the sets

S = {s |(s, r , ∗) ∈ K+} and T = {t |(∗, r , t) ∈ K+},
and produce sets of corrupted triples

S ′ = {(s ′, r , t)|s ′ ∈ S, (s ′, r , t) < K+} and
T ′ = {(s, r , t ′)|t ′ ∈ T , (s, r , t ′) < K+}.
During training K+ consists of triples from training and develop-

ment set. We sample a number ns of negative samples from S ′ and
T ′. Such a method produces negative instances that are closer to
the positive ones than those produced through random sampling.

An issue with this method is that for relations with very few pos-
itive instances, there will not be a large enough pool of source and
target candidates to corrupt the positive instances. The data analy-
sis shows that this is an issue for the FB15k dataset. For relations
where not enough corrupted negative instances can be produced,
we supplement this set with randomly produced negative samples.

3.3 Typed Sampling : T

Knowledge graphs such as FreeBase and NELL [5] have strongly
typed relations. For example, a relation born_in holds between
entities of type person and entities of type city. Relevant negative
candidates (sources or targets) can be mined by constraining the
entities to belong to the same type as that of the source (or target).
This can help bypass the problemmentioned for the corrupt method,
when some relations in the dataset have very few instances.

For every relation r : S → T ,
if Sr,t = {s |s has type St } and Tr,t = {t |t has type Tt },

with St and Rt the domain and range respectively of r , negative
instances will consist of triples
(s ′, r , t), s ′ ∈ S and (s, r , t ′), t ′ ∈ T ,

such that
(s ′, r , t) < R and (s, r , t ′) < K+.

We then sample ns number of negative samples from these triples.
If an entity has more than one type (e.g.Albert_Einstein has types

person, scientist), we include it in Sr,t (or Tr,t) if one of its types
matches St (orTt). We obtain category data for the Freebase dataset
from Freebase relation metadata released in [9], and the entity type
by mapping the Freebase entity identifier to the Freebase category.
This results in 101,353 instances of the category relation which
is used in the training stage to produce typed negative samples.
Domain and range types for Freebase relations are provided by
Freebase itself. A few examples of entities and types are included
in Table 1.

We do not use typed sampling forWordnet. The hypernym/hyponym
relations are the de facto type relations in WordNet, but are hier-
archical rather than a mapping onto a given small set of predeter-
mined types as in Freebase.

3.4 Relational Sampling : REL

Although typed or corrupt relation sampling can generate relevant
negative candidates, due to the incompleteness of the KG, some of
these candidates could be unknown positives. If we assume that
source target pairs participate in only one relation, then sampling
targets (sources) that are connected to the current source (target)
through relations other than the current relation can yield true
negatives. This is a common procedure in multi-class learning.

More formally, for positive triple (s, r , t) the negative candidate
source set is S− = {s |(s, r ′, t ′), ∀ r ′ ∈ R, r ′ , r } and target set
T− = {t |(s ′, r ′, t), ∀ r ′ ∈ R, r ′ , r }. As before, after computing S
and T we filter out positive triples from train and development set
and sample a number ns of negative samples.

3.5 Nearest Neighbor sampling : NN

Most negative sampling methods generate negative samples based
on either the closed world assumption, functional constraints such
as type constraints, and triple perturbation [19]. We introduce a
negative sampling method which uses a pre-trained embedding
model for generating negative samples. We name this pre-trained
embedding model the ‘negative sampling model’. We use the nega-
tive sampling model to generate negative targets (sources) that are
close to the positive target (source) in vector space. This would help
the model learn to discriminate between positives and negatives
very similar to the positives.

KBCOM’18, Feb 2018, Los Angeles, California USA Bhushan Kotnis and Vivi Nastase

Source Type Source Relation Target Target Type
f ilm star_wars_episode_IV produced_by дeorдe_lucas f ilm_producer
person alexandre_dumas people_pro f ession writer pro f ession
academic_post pro f essor pro f ession_people albert_einstein award_winner

Table 1: Entity Types in Freebase: Examples of source and target entity types from Freebase used for generating negative

samples.

For a positive triple (s, r , t), with xt the vector representation of
t obtained from the negative sampling model, the set of negative
samples are the top ns nearest neighbors of xt (that are not positive)
obtained from the negative sampling model. The negative sampling
model may be different than the model that is being trained. We
use the Rescal model trained with 100 typed (T) negative samples
as a negative sampling model for the FB15K dataset. Note that the
Rescal model parameters are frozen (not updated), it is simply
used for generating negatives that are used for training another
model. Algorithm 1 describes the procedure for a single triple. In
practice we use a batch of triples and the nearest neighbor search
is performed using the Ball Tree algorithm which is built only once
since the negative sampling model is not updated.

Algorithm 1: Algorithm 1 Nearest Neighbor Sampling
Input :Triple (s,r,t), Entity Set E, Positive source and targets

Ps and Pt , Negative Sampling Embedding Model fn ,
Number of negative samples ns

Output :Set of ns negative samples
Ns ← E\Ps , Nt ← E\Pt ;
X s
n ← f (Ns), X t

n ← f (Nt) ;
Initialize the K ball tree with X s

n and X t
n ;

xt ← fn (t) ;
xs ← fn (s) ;
S ← nearest_neighbors(xs ,num=ns);
T ← nearest_neighbors(xt ,num=ns);
return S,T

Nearest neighbor sampling is computationally expensive com-
pared to the methods discussed in previous sections. This is because
a search over all entities needs to be performed for source and target
entities for every triple. Therefore we use a model trained using
typed negative sampling methods for Freebase and corrupted sam-
pling for Wordnet to initialize the parameters and then fine tune
the model using nearest neighbor sampling for 5 epochs.

3.6 Near Miss sampling : nmiss

The nearest neighbor sampler generates negatives that are similar
to positives in vector space. Some of those negatives may be ranked
higher than the positives. Exposing such highly ranked negatives
to the classifier can help the model learn a better discriminator. We
name this setting as near miss sampling, because the generated
negatives are top ranked candidates which makes it difficult for the
model to classify them as negatives (nearmisses). To generate highly
ranked negatives, we collect the top ns targets (sources) closest
to the predicted target (source) vector. Like the nearest neighbor
sampler, we use the negative sampling model for obtaining the
predicted vector and entity embeddings. The negative sampling
model is not updated.

Given a positive triple (s, r , t) we obtain the predicted vector
vt = xTs Wr where xs , Wr are entity and relation embeddings
of source s and relation r obtained using the negative sampling
model. Note that vt may not be the same as xt , the target entity
representation. The set of (target) negative samples are the top ns
nearest neighbors of the predicted vector vt . Algorithm 2 describes
the procedure for a single triple, in practice we use a batch and the
Ball Tree is built only once.

Algorithm 2: Near Miss Sampling using Rescal negative sam-
pler
Input :Triple (s,r,t), Entity Set E, Positive source and targets

Ps and Pt , Negative Sampling Embedding Model fn ,
Number of negative samples ns

Output :Set of ns negative samples
Ns ← E\Ps , Nt ← E\Pt ;
X s
n ← f (Ns), X t

n ← f (Nt) ;
Initialize the K ball tree with X s

n and X t
n ;

xs ← fn (s), xt ← fn (r),Wr ← fn (r) ;
vs ← xTs Wr , vt ←Wr xt ;
S ← nearest_neighbors(vs ,num=ns);
T ← nearest_neighbors(vt ,num=ns);
return S,T

Like nearest neighbor sampling, near miss sampling is also com-
putationally expensive, so instead of learning from randomly ini-
tialized parameters we tune a pre-trained model for 5 epochs.

4 DATA

We evaluate the impact of negative sampling on the Freebase dataset
(FB15k) and on the WordNet dataset (WN18) introduced by [4].
They are very different in coverage – FB15k contains mostly named
entities connected through strongly typed relations, while WN18
contains mostly common nouns connected through lexical and
semantic relations. Dataset details are included in Table 2.

4.1 FB15k

FB15k [4] consists of approximately 15,000 entities and 1345 rela-
tions. We use the split supplied by the dataset: 483,142 train, 50,000
validation and 59,071 positive test instances.

The training data contains relations that have high variation
in the number of instances – 39% of the relations have at most
10 instances, while the most frequent relation2 has almost 16000.
2/award/award_nominee/award_nominations./award/award_nomination/award_nominee

Data set |E | |R| Training Development Test
FB15K 14,951 1345 483,142 50000 59071
WN18 40,943 18 141,442 5000 5000

Table 2: Dataset Details: |E | = # of entities, |R | = # of relations.

Analysis of the Impact of Negative Sampling
on Link Prediction in Knowledge Graphs KBCOM’18, Feb 2018, Los Angeles, California USA

0 2000 4000 6000 8000 10000 12000 14000
100

101

102

103

104 Argument_1

train
dev
test

0 2000 4000 6000 8000 10000 12000 14000
100

101

102

103

104 Argument_2

train
dev
test

0 200 400 600 800 1000 1200
100

101

102

103

104

105

Fr
eq

ue
nc

y

Relation

train
dev
test

Figure 1: FB15k dataset frequency statistics

This disparity is also reflected in the distribution of node degrees
– 12% of the entities have degree equal or less than 10 (appear
in at most 10 instances). The average degree of a node in FB15k
is approximately 13.2 overall, and 32.4 on the training data. The
distribution of relations and node degrees is presented in Figure 1.

The type of relations included in Freebase connect named entities.
They are extrinsic relations, in that they do not hold based on
the intrinsic properties of the connected entities, but are due to
external circumstances. For example, the people_profession relation
connecting people and their professions are not determined by
intrinsic properties of people and professions. Relations in FreeBase
are strongly typed – the domain and range of the relations are types,
e.g. the country_capital relation connects countries and cities.

4.2 WN18

This dataset consists of a subset of relations from the WordNet lex-
ical database3, split into training, development and testing: 141442/
5000/ 5000. There are 18 relations. There is less variation in the
number of instances per relation compared to the FB15k, as can be
seen in Figure 2. There is one relation with less than 100 instances
(similar_to), while the most frequent relations (hypernym, hyponym)
have approximately 35,000.

From a graph structure point of view, WN18 nodes have low
connectivity – the average degree on the entire dataset is approx-
imately 1.2, and on the training data alone approximately 3.45.
3https://wordnet.princeton.edu/

0 10000 20000 30000 40000
100

101

102

103 Argument_1

train
dev
test

0 10000 20000 30000 40000
100

101

102

103 Argument_2

train
dev
test

0 2 4 6 8 10 12 14 16 18
100

101

102

103

104

105

Fr
eq

ue
nc

y

Relation

train
dev
test

Figure 2: WordNet18 dataset frequency statistics

This translates into sparser adjacency matrices for factorization,
compared to Freebase.

WordNet contains lexical and semantic relations. Lexical rela-
tions – such as derivationally_related_form connect lemmas from
different parts of speech that are morphologically connected. The
semantic relations cover is_a relations (hypernym / hyponym, in-
stance hypernym/hyponym), three types of part_of relations (mem-
ber, substance and part). The semantic relations in WordNet are
intrinsic, as they reflect or arise from intrinsic properties of the
connected entities. For example, a cat is_a animal, and cat has_part
paws not because of external circumstances, but because of what
a cat is. Compared to FreeBase, WordNet relations are not typed –
there is no clear domain and range for the WordNet relations.

5 EXPERIMENTS

5.1 Implementation

For fair comparison we reimplemented Rescal , TransE, DistMult,
ComplEx using PyTorch, and tested them using the same experi-
mental setting: same loss (max-margin loss), embedding size (100),
and data. We use the Adam [13] SGD optimizer for training because
it addresses the problem of decreasing learning rate in AdaGrad. We
ensure that entity embeddings for all the models have unit norm.
We performed exhaustive randomized grid search [2] for the L2
regularizer on the validation set for all models and we tuned the
training duration using early stopping. The learning rate (lr) and

https://wordnet.princeton.edu/

KBCOM’18, Feb 2018, Los Angeles, California USA Bhushan Kotnis and Vivi Nastase

Model lr λ

Freebase
ComplEx 0.001 1.31E-06
DistMult 0.001 4.93E-06
Rescal 0.001 0.0002084
TransE 0.001 0.00024036
Wordnet
ComplEx (ns ∈ {1, 2, 5}) 0.005 2.82E-05
ComplEx (ns >= 10) 0.01 2.82E-05
DistMult (ns ∈ {1, 2, 5}) 0.005 3.12E-06
DistMult (ns >= 10) 0.01 3.12E-06
Rescal (ns ∈ {1, 2, 5}) 0.005 7.48E-05
Rescal (ns >= 10) 0.01 7.48E-05
TransE (ns ∈ {1, 2, 5}) 0.005 0.0001863777692
TransE (ns >= 10) 0.01 0.0001863777692

Table 3: Parameter values

λ (the L2 norm coefficient) are presented in Table 3. The code is
available in Github 4.

The different methods for negative sampling described in Section
3 were used to produce negative instances for training. In FB15K
some relations do not have enough sources or targets to generate
negative triples by corrupting positive triples. If the number of
generated triples are less than the required (ns), we complete the
set of negative samples with randomly generated triples.

For the nearest neighbor and near miss settings, we used the
best performing model for initializing the parameters, and used the
Rescal model tuned on typed negative samples (100 negative sam-
ples) as the negative sampling model for FB15K and Rescal trained
by corrupting positive samples (100 negative samples) for WN18.

5.2 Test data

The test data is the same across all experiments. The negative
instances for the test data were generated as described in [4] –
corrupting positive instances using all entities of the dictionary
instead of the correct source and target, without sampling.

Also following the procedure of [4], we use the filtered setting:
the negative samples added to the training data are filtered with
respect to the test data to avoid (known) false negatives in training.

5.3 Evaluation metrics

For evaluation we use the mean reciprocal rank (MRR) and hits@K
that are commonly used for link prediction.

For a list of N answers for link prediction, the mean reciprocal
rank (MRR) and hits@k are defined as:

MRR = 1
N

N∑
i=1

1
ranki

hits@K = | {i |ranki<K } |N

where ranki is the rank of the positive instance i predicted by the
model with respect to the negative samples. For FB15k we use
hits@10, for WN18, hits@1.

4https://github.com/bhushank/kge-rl

5.4 Results

We present the results of link prediction on FB15k and WN18 in
terms of MRR in Figures 3 and 4 for ns ∈ {1, 2, 5, 10, 20, 50, 100} for
each positive instance.

The results show that the different sampling methods have dif-
ferent effects on the two datasets. Since link prediction is based
exclusively on the embedding of the graphs, differences in perfor-
mance are caused by the different structure (e.g. different node
degrees which are reflected in the sparsity of the relation adjacency
matrices) and the different nature of the relations – typed and
extrinsic in FB15k, not typed and (mostly) intrinsic in WordNet.

As suggested by work on learning statistical models through
noise contrastive estimation [11], selecting difficult negative in-
stances produces better models: near miss sampling leads to better
results on FB15k for most embeddings methods. The reason em-
bedding based sampling works well on FreeBase is primarily be-
cause the negative samples generated by the pre-trained embedding
model are very close to the discriminator boundary. For example,
the near miss sampling involves generating negative target entities
that are highly ranked by the embedding model. These entities
are likely to be highly ranked by the model that is being trained.
Therefore providing these entities as negatives allows the system
to learn a model that ranks them below the positive target using
the max-margin loss. Note that the samples generated by the em-
bedding model are close to each other in vector space due to the
ability of the embedding model to cluster entities. Therefore almost
all the generated negative samples are close to the discriminator
boundary. We treated the negative sampling model (pre-trained
model) as a hyper parameter. We found that the RESCAL model
worked best. We speculate that this might be due to the superior
ability of RESCAL model to cluster similar entities.

Corrupting positive instances, the method most frequently used
for link prediction, is the least competitive on FB15k, but fits Word-
Net well, particularly for Rescal . DistMult is not very sensitive
to the type of negative sampling on WN18, except for the nearest
neighbor method with which it does not perform well.

To understand why corrupting positive instances works best on
WordNet, we look at the data and the graph statistics. The WN18
dataset has 18 relations while with FB15k has about 1495 relations.
Due to per relation data sparsity in FB15K, see Fig. 1 and 2, negative
sampling using corrupted triples works poorly for FB15K, as it often
has to fall back on random sampling when not enough positive
instances with a shared source/target are available for "corruption".
Corrupt sampling works better in an instance rich environment.

Apart from data sparsity, the nature of WordNet and Freebase
relations may also affect the performance of negative sampling
methods. WordNet relations have open ended ranges and domains
while Freebase relations have typed ranges and domains. Embed-
ding based methods, such as the near miss sampling method we
implemented, work on the basis of clustering similar entities, and
do not function well for WordNet where the relations do not have
domains and ranges that reflect conceptual/semantic clusters.

We have discussed the differences in performance of sampling
methods for the two KGs used. There are also differences with re-
spect to the link prediction methods. Random sampling works best
for TransE. This may be surprising at first, but is understandable

Analysis of the Impact of Negative Sampling
on Link Prediction in Knowledge Graphs KBCOM’18, Feb 2018, Los Angeles, California USA

100 101 102
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
complex

100 101 102
0.1

0.2

0.3

0.4

0.5

0.6
distmult

100 101 102
0.1

0.2

0.3

0.4

0.5

0.6
rescal

100 101 102
0.0

0.1

0.2

0.3

0.4

0.5

0.6
transE

corrupt nmiss nn random relational typed

Figure 3: Link prediction on FB15k, evaluated in terms of MRR for ns ∈ {1, 2, 5, 10, 20, 50, 100} on a logarithmic scale.

100 101 102
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
complex

100 101 102
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
distmult

100 101 102
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
rescal

100 101 102
0.0

0.1

0.2

0.3

0.4

0.5

0.6
transE

corrupt nmiss nn random relational

Figure 4: Link prediction on WN18, evaluated in terms of MRR for ns ∈ {1, 2, 5, 10, 20, 50, 100} on a logarithmic scale.

considering that the theoretical model behind TransE assumes 1 : 1
relations. Providing it with negative entities that are close (using
typed, corrupted or embedding methods) does not result in improve-
ment because the negative entities generated using typed, corrupt
or embeddings are close to each other in vector space and the model
will ultimately be unable to distinguish between them. This is not
the case when doing random sampling, when TransE is not per-
turbed by too close negatives. ComplEx and DistMult perform well
with both near miss and nearest neighbour sampling on FB15k.
Rescal performs best with near miss sampling on this data, and
with corrupting positive samples for WordNet. For middle-range
ns relational sampling performs best.

As described in Section 4, the training data for both methods
varies quite a bit in terms of the frequency of the relations covered.
Freebase is more extreme, in that approximately 39% of the relations
have at most 10 positive instances to train on. We analyzed the
effects of negative sampling on different slices of the data, split by
the order of magnitude (oom) of the frequency of the relations in
the training data. More precisely, we group relations into sets Gn
indexed by the order of magnitude n:

Gn = {r |10n < f req(n, training data) <= 10(n+1)}5.
Freebase has 5 slices (0..4) and WordNet 4 (1..4). The results (as

MRR and hits@K) for slices representing relations with OOM 2
or more closely mirror the overall results. The results for the low
frequency relations are shown in Figures 5 and 6.The hits@K score
are similar to the MRR ones, so we do not include them6.

While the results on the low frequency relations cannot be ana-
lyzed separately from the other relations because the embeddings
process relies on processing and inducing jointly all relation and

5We include relations that have only one instance in G0 .
6The complete set of plots accompanies the code and will be shared.

Yang et al. [29] Negative sampling
MRR HITS@10 neg. sampling MRR HITS@10

FB15k
DistMult 0.35 57.7 near miss 0.46 70.64

Rescal 0.31 51.9 near miss 0.42 64.34

TransE 0.32 53.9 near miss 0.37 62.97

WN18
DistMult 0.83 94.2 corrupt 0.82 94.06
Rescal 0.89 92.8 corrupt 0.92 93.91

TransE 0.38 90.9 corrupt 0.40 86.98
Table 4: SotA results using a max-margin loss function and

corrupting positive instances vs. the best performing nega-

tive sampling.

entity representations, we can note that the performance on link
prediction for these relations with very few instances varies much
with the negative sampling method. Overall, the best results are ob-
tained with the same sampling method as for their more populous
counterparts, but for specific ranges of the number of generated neg-
ative samples other methods would work best (e.g. nearest neighbor
and relational sampling for WordNet data).

The reported experiments were performed using the max margin
loss function. In Table 4 we include the state of the art results on
DistMult, Rescal and TransE obtained with a max margin loss
function reported in [29] and corrupting tripes, to compare with
the results obtained with the best negative sampling method for the
dataset. Slight differences in the learning rate and λ account for the
differences in performance when using corrupt positive instances
as negative samples for the WN18 dataset.

Recently, [27] used the log-likelihood objective, which leads
to improvements over the published results for the methods they

KBCOM’18, Feb 2018, Los Angeles, California USA Bhushan Kotnis and Vivi Nastase

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

complex

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

complex

0.1

0.2

0.3

0.4

0.5

0.6
distmult

0.1

0.2

0.3

0.4

0.5

0.6
distmult

0.1

0.2

0.3

0.4

0.5

0.6
rescal

0.1

0.2

0.3

0.4

0.5

0.6
rescal

100 101 102
0.0

0.1

0.2

0.3

0.4

0.5

0.6
transE

100 101 102
0.0

0.1

0.2

0.3

0.4

0.5

0.6
transE

corrupt
nmiss

nn
random

relational
typed

Figure 5: Results on relations with OOM 0 and 1 in FB15k

(MRRs)

compared (TransE, ComplEx, HolE, DistMult). We plan to analyze
the negative sampling methods while using this new loss function.

6 CONCLUSION

We report an analysis of the impact of six negative sampling meth-
ods on the performance of link prediction in knowledge graphs, for
four methods for graph embedding – ComplEx, DistMult, Rescal ,
TransE. The analysis is performed with respect to two datasets – a
subset of Freebase (FB15k) and a subset of WordNet (WN18) – that
are very different in the type of knowledge they cover.

The results indicate that different approaches to negative sam-
pling work best for the two resources. The proposed near miss

0.2

0.4

0.6

0.8

1.0

complex

0.2

0.4

0.6

0.8

1.0

complex

0.6

0.7

0.8

0.9

1.0

1.1
distmult

0.6

0.7

0.8

0.9

1.0

1.1
distmult

0.2

0.4

0.6

0.8

1.0

rescal

0.2

0.4

0.6

0.8

1.0

rescal

100 101 102
0.0

0.1

0.2

0.3

0.4

0.5

0.6
transE

100 101 102
0.0

0.1

0.2

0.3

0.4

0.5

0.6
transE

corrupt
nmiss

nn
random

relational

Figure 6: Results on relations with OOM 1 and 2 in WN18

(MRRs)

sampling worked best for Freebase with most of the graph em-
bedding methods, while corrupting positive triples leads to best
results on WordNet. The newly proposed near miss and nearest
neighbor negative sampling work best for Freebase, for three out of
the four graph embeddings methods. From analysis of datasets, we
further concluded that embedding based negative sampling is very
useful for combating data sparsity, while corrupt sampling works
best in the data rich scenario. The nature of the relations in these
graphs (typed with respect to their domain and range vs. open) as
well as the statistics of the knowledge graph (number of positive
instances per relation) explain the different behaviour with respect
to negative sampling.

Analysis of the Impact of Negative Sampling
on Link Prediction in Knowledge Graphs KBCOM’18, Feb 2018, Los Angeles, California USA

REFERENCES

[1] Yoshua Bengio and Jean-Sébastien Senécal. 2008. Adaptive importance sampling
to accelerate training of a neural probabilistic language model. IEEE Transactions
on Neural Networks 4, 19 (2008), 713–722.

[2] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-parameter
Optimization. J. Mach. Learn. Res. 13 (Feb. 2012), 281–305. http://dl.acm.org/
citation.cfm?id=2188385.2188395

[3] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: A Collaboratively Created Graph Database for Structuring Human
Knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’08). ACM, New York, NY, USA, 1247–1250.
https://doi.org/10.1145/1376616.1376746

[4] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 2787–2795. http://papers.nips.cc/paper/
5071-translating-embeddings-for-modeling-multi-relational-data.pdf

[5] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hr-
uschka, and Tom M. Mitchell. 2010. Toward an Architecture for Never-Ending
Language Learning. In AAAI.

[6] Rajarshi Das, Arvind Neelakantan, David Belanger, and Andrew McCallum. 2016.
Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural
Networks. arXiv preprint arXiv:1607.01426 (2016).

[7] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Mur-
phy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. 2014. Knowledge vault:
a web-scale approach to probabilistic knowledge fusion. In KDD.

[8] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko Horn,
Camillo Lugaresi, Shaohua Sun, and Wei Zhang. 2015. Knowledge-based Trust:
Estimating the Trustworthiness of Web Sources. Proc. VLDB Endow. 8, 9 (May
2015), 938–949. https://doi.org/10.14778/2777598.2777603

[9] Matt Gardner and Tom Mitchell. 2015. Efficient and Expressive Knowledge
Base Completion Using Subgraph Feature Extraction. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 1488–1498. https://doi.org/10.18653/v1/D15-1173

[10] Michael Gutmann and Aapo Hyvarinen. 2012. Noise-contrastive estimation of
unnormalized statistical mod- els, with applications to natural image statistics.
The Journal of Machine Learning Research 13 (2012), 307âĂŞ361.

[11] Michael Gutmann and Aapo Hyvärinen. 2010. Noise-contrastive estimation:
A new estimation principle for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artificial Intelligence and Statistics.
297–304.

[12] Kelvin Guu, John Miller, and Percy Liang. 2015. Traversing Knowledge Graphs
in Vector Space. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 318–327.
https://doi.org/10.18653/v1/D15-1038

[13] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[14] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning
Entity and Relation Embeddings for Knowledge Graph Completion. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI’15). AAAI
Press, 2181–2187. http://dl.acm.org/citation.cfm?id=2886521.2886624

[15] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-Value Memory Networks for Directly Reading
Documents. In Proceedings of the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics, 1400–1409.
http://aclweb.org/anthology/D16-1147

[16] Andriy Mnih and Yee Whye Teh. 2012. A fast and simple algorithm for training
neural probabilistic language models. In Proc. of ICML.

[17] M. Moya, M. Koch, and L Hostetler. 1993. One-class classifier networks for
target recognition applications. In Proc. of the World Congress on Neural Networks.
International Neural Network Society, INNS, Portland, OR., 797âĂŞ801.

[18] Arvind Neelakantan, Benjamin Roth, and Andrew McCallum. 2015. Com-
positional Vector Space Models for Knowledge Base Completion. In Proceed-
ings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computational Linguistics, 156–166.
https://doi.org/10.3115/v1/P15-1016

[19] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. 2016. A Review of Relational
Machine Learning for Knowledge Graphs. Proc. IEEE 104, 1 (Jan 2016), 11–33.
https://doi.org/10.1109/JPROC.2015.2483592

[20] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic Em-
beddings of Knowledge Graphs. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI’16). AAAI Press, 1955–1961. http://dl.acm.org/
citation.cfm?id=3016100.3016172

[21] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A Three-Way
Model for Collective Learning on Multi-Relational Data. In ICML.

[22] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2012. Factorizing
YAGO: Scalable Machine Learning for Linked Data. In Proceedings of the 21st
International Conference on World Wide Web (WWW ’12). ACM, New York, NY,
USA, 271–280. https://doi.org/10.1145/2187836.2187874

[23] Noah A Smith and Jason Eisner. 2005. Contrastive estimation: Training log-linear
models on unlabeled data. In Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics. Association for Computational Linguistics, 354–
362.

[24] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng.
2013. Reasoning With Neural Tensor Networks for Knowledge Base
Completion. In Advances in Neural Information Processing Systems 26,
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Wein-
berger (Eds.). Curran Associates, Inc., 926–934. http://papers.nips.cc/paper/
5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.
pdf

[25] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. YAGO: A
Core of Semantic Knowledge. In Proceedings of the 16th International Conference
on World Wide Web (WWW ’07). ACM, New York, NY, USA, 697–706. https:
//doi.org/10.1145/1242572.1242667

[26] Kristina Toutanova, Victoria Lin, Wen-tau Yih, Hoifung Poon, and Chris Quirk.
2016. Compositional Learning of Embeddings for Relation Paths in Knowledge
Base and Text. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, 1434–1444. https://doi.org/10.18653/v1/P16-1136

[27] Théo Trouillon, Christopher R Dance, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2017. Knowledge Graph Completion via
Complex Tensor Factorization. arXiv preprint arXiv:1702.06879 (2017).

[28] Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta,
and Dekang Lin. 2014. Knowledge Base Completion via Search-based Question
Answering. In Proceedings of the 23rd International Conference on World Wide
Web (WWW ’14). ACM, New York, NY, USA, 515–526. https://doi.org/10.1145/
2566486.2568032

[29] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding entities and relations for learning and inference in knowledge bases. In
Proceedings of the 2015 International Conference on Representation Learning.

http://dl.acm.org/citation.cfm?id=2188385.2188395
http://dl.acm.org/citation.cfm?id=2188385.2188395
https://doi.org/10.1145/1376616.1376746
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
https://doi.org/10.14778/2777598.2777603
https://doi.org/10.18653/v1/D15-1173
https://doi.org/10.18653/v1/D15-1038
http://dl.acm.org/citation.cfm?id=2886521.2886624
http://aclweb.org/anthology/D16-1147
https://doi.org/10.3115/v1/P15-1016
https://doi.org/10.1109/JPROC.2015.2483592
http://dl.acm.org/citation.cfm?id=3016100.3016172
http://dl.acm.org/citation.cfm?id=3016100.3016172
https://doi.org/10.1145/2187836.2187874
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
http://papers.nips.cc/paper/5028-reasoning-with-neural-tensor-networks-for-knowledge-base-completion.pdf
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.18653/v1/P16-1136
https://doi.org/10.1145/2566486.2568032
https://doi.org/10.1145/2566486.2568032

	Abstract
	1 Introduction
	2 Link prediction in Knowledge Graphs
	2.1 Rescal
	2.2 TransE
	2.3 DistMult
	2.4 ComplEx

	3 Negative sampling
	3.1 Random sampling : R
	3.2 Corrupting positive instances : C
	3.3 Typed Sampling : T
	3.4 Relational Sampling : REL
	3.5 Nearest Neighbor sampling : NN
	3.6 Near Miss sampling : nmiss

	4 Data
	4.1 FB15k
	4.2 WN18

	5 Experiments
	5.1 Implementation
	5.2 Test data
	5.3 Evaluation metrics
	5.4 Results

	6 Conclusion
	References

