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 Linguistic analysis pipeline (LAP)

Architecture

* Entailment decision algorithm (EDA)
— Classification-based
— Transformation-based

* Knowledge base (KB) (next section)
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* Tokenization (Word Segmentation)

Overview of LAPs

* Part-of-Speech (POS) Tagging
* Lemmatization
* Named-Entity Recognition
* Syntactic Parsing
— Constituent Parsing
— Dependency Parsing
* Semantic Role Labeling

* Coreference Resolution

Token-Level Processing

* Tokenization
— Word segmentation

* Lemmatization Performance
— Morphological analysis 0

* POS Tagging

* Lexical Semantics
— WordNet, distributional similarity, etc.
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An Example

The DT the
TreeTagger NP TreeTagger

is VBZ be

easy JJ easy

to TO to

use VB use
SENT

From TreeTagger website
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e Chunking

Constituents

* Named-Entity Recognition

* Constituent Parsing
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S
NP VP
/\
NNP NNP VBD VP
/\
VBN NP
/\
NP PP
‘ /\
NN IN NP
T~
NNP  NNP
\ \
[Mr. Todt]pgrg  had  been president of [Insilco Corp

From Stanford NER (Finkel and Manning, 2009)
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Dependency

* Syntactic Dependency Parsing

* Semantic Dependency Parsing Syn: 80~90%

— Semantic Role Labeling
— Predicate-Argument Structure

* Logic Form Composition
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An Example

ROOT
SBJ

PMOD
NMOD
PMOD OBJ NMOD

-Root- Devotees of the market question the value of the work national service would perform

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
devotee of the market question the value of the work national service would perform
NNS IN DT NN NN DT NN IN DT NN 1 NN MD VB
ROOT P
==
-Root- Value s questioned
1 2 3 4

value  be question
NNP VBZ VBN

From MSTParser (McDonald et al., 2005); Visualized by
https://code.qgoogle.com/p/whatswrong/
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An Example (cont.)

f(“ﬂf“ﬁ% [ ﬁlﬁ

-Root- Devotees of the market question the value of the work national service would perform
1

2 3 4 5 6 3 9 10 11 12 13 14 15
devotee of the market question the wvalue of the work national service would perform
NNS IN DT NN NN DT NN IN DT NN 1] NN MD VB
{ Al \
-Root- Value is questioned
1 2 3 4

value  be question
NNP VBZ VBN

From Laputa SRL (Zhang et al., 2008); Visualized by
https://code.qoogle.com/p/whatswrong/
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An Example (cont.)

* H: Value is questioned.

* Syntactic dependency
— <is, SBJ, value>
— <is, VC, questioned>

* Semantic dependency
— <questioned, A1, value>

i EXCITEMENT

IS
/ N\
SBJ VC

/L’/ Al \\A

value questioned

15

Semantic Roles

* PropBank (Palmer et al., 2005) and NomBank (Meyers et al.,

2004)

* Core arguments: AO-A5

— different semantics for each verb
— specified in the PropBank Frame files

* 13 types of adjuncts labeled as AM-arg
— where arg specifies the adjunct type

16
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Discourse

* Coreference Resolution
* Event Structure

* Discourse Parsing
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An Example

explanation-argumentative

\

attribution

antithesis <

L/r easor\
elaboration-object-attribute-e purpgse

PN
® @ ® ® ®

[@® Ford Motor Co. and Chrysler Corp. representatives criticized Mr. Tonkin’s plan as
unworkable.] [@ It “is going to sound neat to the dealer] [® except when his 15-day car supply
doesn’t include the bright red one] [@ that the lady wants to buy] [® and she goes up the street]
[® to buy one,”] [D a Chrysler spokesman said.]

@

From RST Discourse Treebank (Carlson et al., 2002)
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RTE Rectangle (more details)
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* Classification-based
— Score / Threshold
— Structure / Alignment

Overview of EDAs

* Transformation-based
— Edit distance
— (Knowledge) rule application

* Meta-EDA

20
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Classification (RTE Style)

. Entailment
Non-Entailment

<T, H> -
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Popular Classifiers

m Perceptron/SVM Logistic Regression

Type Discriminative Generative  Discriminative
Distribution N/A P(X,Y) P(Y|X)
Independence None Strong None
Features Ex/Impilicit Explicit Explicit

Speed Fast/Slow Fast Intermediate

22



Kernel-Based Methods

* Kernel Function
— Mapping between spaces
— Cross-combination of features (implicitly!)
— Intro-pair features = cross-pair features

» Subsequence Kernel (Lodhi et al., 2002; Wang and
Neumann, 2007a)

» Tree Kernel (Collins and Duffy, 2001; Zanzotto et al.,
2007)
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Linguistic Features
* Measure semethinrgsimilarity between t and h:

— Lexical overlap (unigram, N-gram, subsequence)
* Assisted by lexical resources like WordNet

— Syntactic matching

— Lexical-syntactic variations (“paraphrases”)

— Semantic role matching

— Global similarity parameters (e.g. negation, modality)

* Detect mismatch (for non-entailment)

24
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* String-to-String rewriting
— String edit distance (MacCartney and Manning, 2007)
— Tree skeleton difference (Wang and Neumann, 2007a)

Data Structures

* Tree-to-Tree editing
— Tree edit distance (Kouylekov and Magnini, 2005)

* Graph-to-Graph mapping
— Graph matching (Haghighi et al., 2005)
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Word Overlap

* |T|: number of wordsinT
* |H]|: number of words in H

E,=|TAH|/ [H]
* E,=|TAH|/ITI
E,=(2*E, *E,)/E, +E,

57.2 on

* Content words only
* Lemmatization
From (Mehdad and Magnini, 2009)
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Dependencies

» Syntactic dependency trees

— Dependency triples <Node, Relation, Head>
— Bag of such triples

* E,’ = |Triple(T) ATriple (H)| / |Triple(H)]
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Dependencies (cont.)

killed crash
killed A0 Al 1
P-Tree(s) - - 7
Al Pt
e crash children train

S. killed killed crash
crash ~

1 children = ~~__

A-Tree(s) ~-
) A0 Al Al
train

From (Wang and Zhang, 2009) crash  children train

28
I



Results (RTE-5)

* DFKI1: BoW and syntactic dependency
» DFKI2: BoW, syntactic, and semantic dependency

» DFKI3: BoW and joint syntactic and semantic
representation

R Mai Main Main Main
uns am -VO -WN | -VO-WN

DFKI1 62.5% 62.5% 62.7% 62.5%

DFKI2 66.8% 66.5% 66.7% 66.3%

DFKI3 68.5% 68.3% 68.3% 68.3%

From (Wang et al., 2009)
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* Dependency paths

Larger Sub-Structures

— Common sub-paths

e Subtrees
* E,”" = |Subtree(T) ASubtree(H)| / |Subtree(H)|

30
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Subtrees

T,= H, T,=H,
T, “Farmers feed cows animal extracts” T, “They feed dolphins fish”
H, “Cows eat animal extracts” H, “Fish eat dolphins”
feed | ||| — | /eat] |
T;=H,

T, “Mothers feed babies milk”
H,; “Babies eat milk”

From (Zanzotto and Dell'Arciprete, 2009)
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Tree Skeletons

* T:. Doctor Robin Warren and * H: Robin Warren was
Barry Marshall received Nobel awarded a Nobel Prize.

Prize ...
ﬁ;l:C
I fin:C
/ <[>
receive:V /
award:V
<SUBJ> <OBJ>
~ <oiir>  <ORE>
doctor:N Nobel prize:N Ve
<PERSON> <CONJ> <LEX-MOD> Roblgarren:N WN
<LEX-MOD> <DET> <LEX-MOD>
Robin_Warren:N  Barry_Marshall:N Nobel:U / AN
Robin:U a:DET Nobel:U
<LEX-MOD>
Robin:U
From (Wang and Neumann, 2007)
32
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Results

* RTE-2

Bag-of-Words

* RTE-3
Exp2BT&Exp2BL: Training on the RTE-3 Dev Set and Testing on the Test Set |
Systems 1IE IR QA SUM ALL
BoW 54.5% | 66.5% | 76.5% | 56.0% | 63.4%
TSM 54.5% | 62.5% | 66.0% | 54.5% || 59.4%

SK+BS (Mi+SP+Task) -runl | 59.5% | 70.5% | 75.5% | 60.5% || 65.5%
SK+BS (Mi+Length) -run2 | 58.5% | 70.5% | 79.5% | 59.0% | 66.9%

From (Wang, 2007)
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The RIGHT level

Meaning Meaning
representation
W

Semantic Processing

* Trade-offs between
— Competence of the knowledge (deeper)
— Performance of the processing (shallower)

34
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Alignment-Based Approaches

* Word alignment (Glickman et al., 2006)

* Phrase alignment (chambers et al., 2007;
MacCartney et al., 2008)

* Relation alignment (Sammons et al., 2009)

35
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* Transformation-based
— Edit distance

— (Knowledge) rule application

* Meta-EDA

36
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Matching vs. Transformations

* Direct matching (so far, no chaining)

* Sequence of transformations (A proof)
T=T,2>T,2>T,2>..2>T =H
— Tree-Edits
— Knowledge based Entailment Rules

37

Edit Distance

(Limited) pre-defined operators

— Insertion
— Deletion Weakly
— Substition linguistically

* String-to-String

* Tree-to-Tree

* The EDITS system (Kouylekov and Negri, 2010)
— Estimate confidence in each operation

* Wang and Manning (2010), Heilman and Smith (2010), etc.

38
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* Rule application

Knowledge-Based Rules

— Arbitrary knowledge-based transformations
— Formalize many types of knowledge

e BIUTEE (Stern and Dagan, 2011)
— On-the-fly operations
— Cost model
— Search for the best inference

39
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An Example
1d | Operation _[GeneratedText |
0 - |H_ereceived the letter from the secretary.
1 | Coreference substitution The emeloxee received the Iettermthe secretary.
2 | Xreceived Y fromZ > Y The letter was sent to the employee by the secretary.
— -

was sent to X by Z

3 | Y [verb-passive] by X 2 X The secretary sent the letter to the employee.
[verb-active] Y

n X send Y - X deliver Y The secretary delivered the letter to the employee.

— _— _—

letter 2 message The secretary delivered the message to the employee.
T

From (Stern et al., 2012)
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)={1

Entailment Rules

o Verb
, Ver S 0
Generic s/ \O Y/b| \
. e
Syntactic X Y |mod
X
: locate find
Lexical ‘
, ¥ N\ N\
Syntactic X Y X < \y

Lexical boy ‘ child

From (Bar-Haim et al., 2007)

41

Cost Based Model

» Define operation cost

— Represent each operation as a feature vector
— Cost is linear combination of feature values

* Define proof cost as the sum of the operations’ costs

o RiGro

Learn

Variant of (Raina et al., 2005)

42
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Search the Best Proof
T>H TS H

Proof#1 T—~wWV-H X  Proof#1 T—~VVWW-H X
Proof#2 T—~wWVv-H J Proof#2 T—~VwVWVW-H X
Proof #3 T—~VwWW-H X  Proof#3 T—~VwVWV-H X
Proof #4 T—~VW-H X Proof#4 T—vWVVW-H X

* “Best Proof” = proof with lowest cost

* Search space exponential — Al-style search (Stern et al.,
2012)
—  Gradient-based evaluation function

—  Local look ahead for “complex” operations

43
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Inference vs. Learning

Feature
extraction  |Vector Learning
representation algorithm

Feature
extractio

Best
Proofs

Training
samples

44



Iterative Learning Scheme

Training Vector Learning
samples representation algorithm

3. Learn
new w
and b
Best
w,b
Proofs 4. Repeat to step 2

2. Find the best
proofs

1. W=reasonable
guess

45
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Performance (Classification)

Text: A V
Hypothesis: TS
Li)gétheswww x
System RTE-1 | RTE-2 | RTE-3 | RTE-5
Raina et al. 2005 57.0
Harmeling, 2009 56.39 | 57.88
Wang and Manning, 2010 63.0 61.10
Bar-Haim et al., 2007 61.12 | 63.80
Mehdad and Magnini, 2009  58.62 ' 59.87 | 62.4 60.2
BIUTEE (2011) 57.13 |61.63 |67.13 |63.50
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Performance (Search)

{ draw a dot in the middle of a square and
cali that dot the self, the essence. In acting,
eventhing must pass through that dot. The
wiidest style, the most absurd, the natural,
the “be yourself,” all must pass through. It
takes rigor and constancy. Cood actors work
this way by inclination and training.

Acting is a paradox The lie a good actor
tells ‘What's Hecuba to him. . ) is catharsis.
1's a cleansing It can't happen unless the ac-
tor_passes the lie through that dot of self, of
reality.

Unbalanced!

EXCITEMENT

RTE 6 (F1%)

Base line (Use IR top-5 relevance)

34.63

Median (2010)

36.14

Best (2010) 48.01
BIUTEE (2012) 49.54
47

Overview of EDAs

* Meta-EDA

48
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* T: Bush used his weekly radio address to try to build
support for his plan to allow workers to divert part of
their Social Security payroll taxes into private
investment accounts.

An Example

* H: Mr. Bush is proposing that workers be allowed to
divert their payroll taxes into private accounts.

49
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* T: Bush used his weekly radio address to try to build
support for his plan to allow workers to divert part of
their into private
investment accounts.

An Example

e H: Mr. Bush is proposing that workers be allowed to
divert their into private accounts.
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Bag-of-Features
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ized Modules

ial

Spec
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* A specialized RTE module

Divide-and-Conquer

— A good target

Temporal
Anchoring

— A good tackle

Tree Skeleton
Matching Named-Entity

* Results on RTE-4

Accuracy | 80.6% | 74.6% | 54.3% | 56.5% 52.8% 70.6%
Coverage | 3.1% | 34.6% | 47.7% 100% 100% 100%

From (Wang and Neumann, 2009)
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* Linguistic analysis pipeline

Summary

imported
— Various linguistic processing

* Entailment decision algorithm
implemented

— Classification & feature space
— Transformation & knowledge bases (upcoming)

e Overall Strategy

— Specialized modules

54
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